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Abstract. We present a concept of trust that integrates the truster’s goal, the
trustee’s action that ensures the achievement of the truster’s goal, and the trustee’s
ability and intention to do this action. This concept of trust is formalized in modal
logic and is applied to the particular domain of trust in information sources. In
this context trust may be derived, in particular, from the truster’s beliefs about
some properties of the information source: validity, completeness, sincerity, com-
petence, vigilance and cooperativity. In the last part of the paper we move beyond
binary trust (i.e. either i trusts j or i does not trust j) in order to capture a concept
of graded trust.

1 Introduction

Trust in information sources plays a crucial role in many areas of interaction between 
agents, in particular when information sources are software agents. A typical example 
is in the field of stock and bond market where trust has a strong influence on a decision 
to buy, or to sale, a specific kind of stocks. To take such decisions agents have several 
types of information sources to consult in order to predict the future evolution of the 
stock value. These information sources may be banks, companies, consultants, etc. and 
the agents may believe that some of these sources have a good competence but are not 
necessarily sincere, others are reluctant to inform about bad news, others are competent 
but are not necessarily informed at the right moment, etc.

We think that reasoning about so complex situations requires a clear definition of 
trust and of its main dimensions, and safe inference rules that can be applied by the 
agents. The aim of this work is to present a formal model of trust which meets the 
previous desiderata. We will first present and formalize a general concept of trust as the 
truster’s evaluation of specific properties of the trustee (powers, abilities, dispositions) 
which are together sufficient to ensure that a goal of the truster will be achieved. Then, 
we will apply this general concept of trust to the specific case of trust in information 
sources. It is worth noting that it is out of the scope of our work to propose a model 
of trust based on statistics about past interactions with a given target and reputational 
information.

The paper is organized as follows. We start with a presentation of a logical frame-
work which is used for formalizing the relevant concepts of the present analysis of trust 
in information sources (Section 2). In Section 3 a general definition of trust is 
presented



and its main properties are discussed. In the second part of the paper we start with
a formal characterization of the properties of information sources: validity, complete-
ness, sincerity, competence, vigilance and cooperativity (Section 4). We show that these
properties are epistemic supports for trust in information sources (Section 5). In the last
part of the paper (Section 6) we show how the logical framework presented in Section 2
can be appropriately extended in order to move beyond an analysis of binary trust (i.e.
either agent i trusts agent j or agent i does not trust agent j) and to capture a concept
of graded trust (i.e. agent i trusts agent j with a certain strength k).

2 Setting Up the Formalism

We present in this section the multimodal logic L that we use in the paper to formalize
the relevant concepts of our model of trust. L combines the expressiveness of dynamic
logic [17] with the expressiveness of a so-called BDI (belief, desire, intention) logic of
agents’ mental attitudes (see [7] for instance).

2.1 Syntax and Semantics

The syntactic primitives of the logic L are the following:

– a nonempty finite set of agents AGT = {i, j, . . .};
– a nonempty finite set of atomic actions AT = {a, b, . . .};
– a nonempty finite set of atomic formulas Π = {p, q, . . .}.

LIT is the set of literals which includes all atomic formulas and their negations, that is:

– LIT = {p,¬p|p ∈ Π }.

We note P,Q, . . . the elements in LIT . We also introduce specific actions of the form
infj(P ) denoting the action of informing agent j that P is true. We call them informa-
tive actions. The set INFO of informative actions is defined as follows:

– INFO = {infj(P )|j ∈ AGT , P ∈ LIT}.

Since the set Π is finite, the set INFO is finite as well. The set ACT of complex actions
is given by the union of the set of atomic actions and the set of informative actions, that
is:

– ACT = AT ∪ INFO .

We note α, β, . . . the elements in ACT . The language of L is the set of formulas de-
fined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | After i:αϕ | Does i:αϕ | Bel iϕ | Goal iϕ

where p ranges over Π , α ranges over ACT and i ranges over AGT .
The operators of our logic have the following intuitive meaning. Bel iϕ: the agent

i believes that ϕ; After i:αϕ: immediately after agent i does α, it is the case that ϕ
(After i:α⊥ is read: agent i cannot do action α); Does i:αϕ: agent i is going to do α and



ϕ will be true afterward (Doesi:α� is read: agent i is going to do α); Goal iϕ: the agent
i wants that ϕ holds.

The following abbreviations are given:

Can i(α) def= ¬After i:α⊥
Int i(α) def= Goal iDoes i:α�
Infi,j(P ) def= Does i:infj(P )�

Can i(α) stands for: agent i can do action α (i.e. i has the capacity to do α). Int i(α)
stands for: agent i intends to do α. Finally Infi,j(P ) stands for: i informs j that P is
true.

Models of the logic L (L models) are tuples M = 〈W,R,D,B,G, V 〉 defined as
follows.

– W is a non empty set of possible worlds or states.
– R : AGT ×ACT −→W ×W maps every agent i and action α to a relation Ri:α

between possible worlds in W . Given a world w ∈ W , if (w,w′) ∈ Ri:α then w′ is
a world which can be reached from w through the occurrence of agent i’s action α.

– D : AGT × ACT −→ W ×W maps every agent i and action α to a relation
Di:α between possible worlds in W . Given a world w ∈W , if (w,w′) ∈ Di:α then
w′ is the unique actual next world of w which will be reached from w through the
occurrence of agent i’s action α.

– B : AGT −→ W ×W maps every agent i to a serial, transitive and euclidean
relation Bi between possible worlds in W . Given a world w ∈W , if (w,w′) ∈ Bi

then w′ is a world which is compatible with agent i’s beliefs at w.
– G : AGT −→W ×W maps every agent i to a serial relation Gi between possible

worlds in W . Given a world w ∈ W , if (w,w′) ∈ Gi then w′ is a world which is
compatible with agent i’s goals at w.

– V : W −→ 2Π is a truth assignment which associates each world w with the set
V (w) of atomic propositions true in w.

We distinguish here two types of relations for specifying the dynamic dimension of
models (relations of type R and type D) since we want to express both: the fact that at
a given world w an agent performs an action α which will result in a next state w, the
fact that if at w the agent did something different he would have produced a different
outcome.

Given a model M , a world w and a formula ϕ, we write M,w |= ϕ to mean that
ϕ is true at world w in M , under the basic semantics. The rules defining the truth
conditions of formulas are just standard for atomic formulas, negation and disjunction.
The following are the remaining truth conditions for After i:αϕ, Does i:αϕ, Bel iϕ and
Goal iϕ.

– M,w |= After i:αϕ iff M,w′ |= ϕ for all w′ such that (w,w′) ∈ Ri:α

– M,w |= Does i:αϕ iff ∃w′ such that (w,w′) ∈ Di:α and M,w′ |= ϕ
– M,w |= Bel iϕ iff M,w′ |= ϕ for all w′ such that (w,w′) ∈ Bi

– M,w |= Goal iϕ iff M,w′ |= ϕ for all w′ such that (w,w′) ∈ Gi

The following section is devoted to illustrate the additional semantic constraints over L
models and the corresponding axiomatization of the logic L.



2.2 Axiomatization

The axiomatization of the logic L includes all tautologies of propositional calculus and
the rule of inference modus ponens (MP).

MP From � ϕ and � ϕ→ ψ infer � ψ
Operators for actions of type After i:α and Doesi:α are normal modal operators sat-
isfying the axioms and rules of inference of system K [6]. Operators of type Beli and
Goali are just standard normal modal operators. The former are modal operators for be-
lief in Hintikka style [19] satisfying the axioms and rules of inference of system KD45,
whereas the latter are modal operators for goal in Cohen & Levesque’s style [7] satisfy-
ing the axioms and rules of inference of system KD. That is, the following axioms and
rules of inference for every operatorBeli, Goali, After i:α and Doesi:α are given.

KBel (Bel iϕ ∧ Bel i(ϕ→ ψ)) → Bel iψ
KGoal (Goal iϕ ∧ Goal i(ϕ→ ψ)) → Goal iψ
KPAct (After i:αϕ ∧After i:α(ϕ→ ψ)) → After i:αψ
KAct (Doesi:αϕ ∧ ¬Doesi:α¬ψ) → Doesi:α(ϕ ∧ ψ)
DBel ¬(Bel iϕ ∧ Bel i¬ϕ)
DGoal ¬(Goal iϕ ∧ Goal i¬ϕ)
4Bel Bel iϕ→ Bel iBel iϕ
5Bel ¬Bel iϕ→ Bel i¬Beliϕ
NecBel From � ϕ infer � Bel iϕ
NecGoal From � ϕ infer � Goal iϕ
NecPAct From � ϕ infer � After i:αϕ
NecAct From � ϕ infer � ¬Doesi:α¬ϕ
Axioms KBel and KGoal with rules of inference NecBel and NecGoal are the princi-
ples of a minimal normal modal logic for every modal operator Beli and every modal
operator Goali. Axioms KPAct and KAct with rules of inference NecPAct and NecAct

are the principles of a minimal normal modal logic for every modal operator After i:α

and every modal operator Doesi:α. Axioms DBel, 4Bel, 5Bel correspond (in the sense
of correspondence theory, see for instance [35,2]) to the seriality, transitivity and eu-
clideanity of every relation Bi, whereas Axiom DGoal corresponds to the seriality of
every relation Gi. Thus, we suppose positive and negative introspection over beliefs
(Axioms 4Bel and 5Bel ) and we assume that an agent cannot have inconsistent beliefs
and conflicting goals (Axioms DBel and DGoal ).

Actions and intentions. We add the following constraint over every relation Di:α and
every relation Dj:β of all L models. For every i, j ∈ AGT , α, β ∈ ACT and w ∈W :

S1 if (w,w′) ∈ Di:α and (w,w′′) ∈ Dj:β then w′ = w′′

Constraint S1 says that if w′ is the next world of w which is reachable from w through
the occurrence of agent i’s action α and w′′ is also the next world of w which is reach-
able from w through the occurrence of agent j’s action β, then w′ and w′′ denote the



same world. Indeed, we suppose that every world can only have one next world. The
semantic constraint S1 corresponds to the following axiom.

AltAct Does i:αϕ→ ¬Doesj:β¬ϕ
Axiom AltAct says that: if i is going to do α and ϕ will be true afterward, then it cannot
be the case that j is going to do β and ¬ϕ will be true afterward.

We also suppose that the world is never static in our framework, that is, we suppose
that for every world w there exists some agent i and action α such that i is going to
perform α at w. Formally, for every w ∈W we have that:

S2 ∃i ∈ AGT, ∃α ∈ ACT , ∃w′ ∈ W such that (w,w′) ∈ Di:α

The semantic constraint S2 corresponds to the following axiom of our logic.

Active
∨

i∈AGT ,α∈ACT Does i:α�
Axiom Active ensures that for every world w there is a next world of w which is reach-
able from w by the occurrence of some action of some agent. This is the reason why
the operatorX for next of LTL (linear temporal logic) can be defined as follows:1

Xϕ
def=

∨

i∈AGT ,α∈ACT

Does i:αϕ

The following relationship is supposed between every relationDi:α and the correspond-
ing relation Ri:α of all L models. For every i ∈ AGT , α ∈ ACT and w ∈W :

S3 if (w,w′) ∈ Di:α then (w,w′) ∈ Ri:α

The constraint S3 says that if w′ is the next world of w which is reachable from w
through the occurrence of agent i’s action α, then w′ is a world which is possibly reach-
able from w through the occurrence of agent i’s action α. The semantic constraint S3
corresponds to the following Axiom IncAct,PAct.

IncAct,PAct Doesi:αϕ→ ¬After i:α¬ϕ
According to IncAct,PAct, if i is going to do α and ϕ will be true afterward, then it is
not the case that ¬ϕ will be true after i does α. The following axioms relates intentions
with actions.

IntAct1 (Int i(α) ∧ Cani(α)) → Doesi:α�
IntAct2 Doesi:α� → Int i(α)

According to IntAct1, if i has the intention to do action α and has the capacity to do α,
then i is going to do α. According to IntAct2, an agent is going to do action α only if he
has the intention to do α. In this sense we suppose that an agent’s doing is by definition
intentional. Similar axioms have been studied in [29,30] in which a logical model of
the relationships between intention and action performance is proposed. IntAct1 and
IntAct2 correspond to the following semantic constraints over L models. For every
i ∈ AGT , α ∈ ACT and w ∈ W :

1 Note that X satisfies the standard property Xϕ ↔ ¬X¬ϕ (i.e. ϕ will be true in the next state
iff ¬ϕ will not be true in the next state).



S4 if ∀(w,w′) ∈ Gi, ∃w′′ such that (w′, w′′) ∈ Di:α and ∃v such that (w, v) ∈ Ri:α

then ∃v′ such that (w, v′) ∈ Di:α

S5 if ∃v′ such that (w, v′) ∈ Di:α then ∀(w,w′) ∈ Gi, ∃w′′ such that (w′, w′′) ∈
Di:α

Beliefs and goals. As far as beliefs and goals are concerned, we only suppose that the
two kinds of mental attitudes must be compatible, that is, if an agent has the goal that
ϕ then, he cannot believe that ¬ϕ. Indeed, the notion of goal we characterize here is a
notion of an agent’s chosen goal, i.e. a goal that an agent decides to pursue. As some
authors have stressed (e.g. [3]), a rational agent cannot decide to pursue a certain state
of affairs ϕ, if he believes that ¬ϕ. Thus, for any i ∈ AGT and w ∈ W the following
semantic constraint over L models is supposed:

S6 ∃w′ such that (w,w′) ∈ Bi and (w,w′) ∈ Gi

The constraintS6 corresponds to the following Axiom WR (weak realism) of our logic.

WR Goal iϕ→ ¬Bel i¬ϕ
In this work we assume positive and negative introspection over (chosen) goals, that is:

PIntrGoal Goal iϕ→ Bel iGoal iϕ
NIntrGoal ¬Goal iϕ→ Bel i¬Goal iϕ

Axioms PIntrGoal and NIntrGoal correspond to the following semantic constraints
over L models. For any i ∈ AGT and w ∈W :

S7 if (w,w′) ∈ Bi and (w′, v) ∈ Gi then (w, v) ∈ Gi

S8 if (w,w′) ∈ Bi and (w, v) ∈ Gi then (w′, v) ∈ Gi

Beliefs and actions. We suppose that agents satisfy the property of no forgetting (NF)2,
that is, if an agent i believes that after agent j does α, it is the case that ϕ, and agent i
does not believe that j cannot do action α, then after agent j does α, i believes that ϕ.
This is also called property of perfect recall.

NF (Bel iAfter j:αϕ ∧ ¬Bel i¬Can j(α)) → After j:αBel iϕ

Axiom NF corresponds to the following semantic constraint over L models. For any
i, j ∈ AGT , α ∈ ACT , and w ∈W :

S9 if (w,w′) ∈ Rj:α ◦ Bi and ∃v such that (w, v) ∈ Bi ◦ Rj:α then (w,w′) ∈
Bi ◦Rj:α

where ◦ is the standard composition operator between two binary relations. In accepting
the Axiom NF, we suppose that events are always uninformative, that is, i should not
forget anything about the particular effects of j’s action α that starts at a world w. What
an agent i believes at a world w′, only depends on what i believed at the previous world
w and on the action which has occurred and which was responsible for the transition

2 See also [13,15,18,33] for a discussion of this property.



from w to w′. Besides, Axiom NF relies on an additional assumption of complete and
correct information. It is supposed that j’s action α occurs if and only if every agent is
informed of this fact. Hence all action occurrences are supposed to be public.

We also have specific properties for informative actions. We suppose that if an agent
i is informed (resp. not informed) by another j that some fact P is true then i is aware
of being informed (resp. not being informed) by j.

PIntrInf Infj,i(P ) → Bel iInfj,i(P )
NIntrInf ¬Infj,i(P ) → Bel i¬Infj,i(P )

Axioms PIntrInf and NIntrInf correspond to the following semantic constraints over
L models. For any i, j ∈ AGT , infi(P ) ∈ INFO , and w ∈W :

S10 if ∃w′ such that (w,w′) ∈ Dj:infi(P ) then
∀(w, v) ∈ Bi, ∃w′′ such that (v, w′′) ∈ Dj:infi(P )

S11 if ∃w′, w′′ such that (w,w′) ∈ Bi and (w′, w′′) ∈ Dj:infi(P ) then ∃v such that
(w, v) ∈ Dj:infi(P )

We call L the logic axiomatized by the axioms and rules of inference presented above.
We write � ϕ if formula ϕ is a theorem of L (i.e. ϕ is the derivable from the axioms
and rules of inference of the logic L). We write |= ϕ if ϕ is valid in all L models, i.e.
M,w |= ϕ for every L modelM and worldw inM . Finally, we say that ϕ is satisfiable
if there exists a L model M and world w in M such that M,w |= ϕ. We can prove that
the logic L is sound and complete with respect to the class of L models. Namely:

Theorem 1. � ϕ if and only if |= ϕ.

Proof. It is a routine task to check that all the axioms of the logic L correspond to their
semantic counterparts. It is routine, too, to check that all of axioms of the logic L are in
the Sahlqvist class, for which a general completeness result exists [2]. ��

3 A General Definition of Trust

In this work trust is conceived as a complex configuration of mental states in which
there is both a motivational component and a doxastic component. More precisely, we
assume that i’s trust in agent j necessarily involves a goal of the truster: if i trusts agent
j then necessarily i trusts j with respect to some of his goals. The core of trust is a
belief of the truster about some properties of the trustee, that is, if i trusts agent j then
necessarily i trusts j because i has some goal and believes that j has the right properties
to ensure that such a goal will be achieved.

The concept of trust formalized in this work is similar to the concept of trust defined
by Castelfranchi & Falcone [5,14]. We agree with them that trust should not be seen as
an unitary and simplistic notion as other models implicitly suppose. For instance, there
are computational models of trust in which trust is conceived as an expectation of the
truster about a successful performance of the trustee sustained by the repeated direct
interactions with the trustee (under the assumption that iterated experiences of success
strengthen the truster’s confidence) [23,37]. More sophisticated models of social trust



have been developed in which reputational information is added to information obtained
via direct interaction (e.g. [20,32]). All these models are in our view over-simplified
since they do not consider the beliefs supporting the truster’s expectation which enter
into play in the truster’s evaluation of the trustee.

On this point we agree with Castelfranchi & Falcone on the fact that: trust is based on
the truster’s ascription of specific properties to the trustee (e.g. abilities, competencies,
dispositions, etc.) and to the environment in which the trustee is going to act, which are
together sufficient to ensure that the truster will achieve one of his goals. In this per-
spective, trust is nothing more than the truster’s evaluation of certain relevant properties
of the trustee.3

Here we just focus on a particular form of trust that can be called trust in the trustee’s
action. According to the proposed definition, agent i trusts agent j to do a certain action
α if and only if i has a certain goal and thinks that j will perform action α in such a
way that his goal will be achieved.4

The concept of trust we are interested in here is the following.

Definition 1. TRUST IN THE TRUSTEE’S ACTION. Agent i trusts agent j to do α
with regard to the achievement of ϕ if and only if i has the achievement goal that ϕ and
i believes that:

1. j, by doing α, will ensure ϕ AND
2. j has the capacity to do α AND
2. j intends to do α.

The three conditions 1, 2 and 3 can reformulated in formal terms as follows.

– Condition C1: Afterj:αϕ
– Condition C2: Canj(α)
– Condition C3: Intj(α)

Condition C1 concerns the trustee’s power to satisfy the truster’s goal that ϕ by means
of the performance of action α. ConditionsC2 andC3 are about the trustee’s properties
which are necessary and sufficient for him to perform action α.

The formal translation of Definition 1 is:

Trust(i, j, α, ϕ) def= AGoal iϕ ∧ Bel i(After j:αϕ ∧ Canj(α) ∧ Intj(α))

where Trust(i, j, α, ϕ) stands for “i trusts j to do α with regard to the achievement of
ϕ”, and formula AGoal iϕ, expressing agent i’s achievement goal that ϕ, is defined as
follows:

AGoal iϕ
def= GoaliXϕ ∧ ¬Bel iϕ

3 In this paper we do not consider a related notion of decision to trust, that is, the truster’s
decision to bet and wager on the trustee and to rely on him for the accomplishment of a given
task. For a distinction between trust as an evaluation and trust as a decision, see [14,31].

4 In a complementary work [28] we have provided a richer typology of trust by distinguishing
trust in the trustee’s action from trust in the trustee’s inaction. This opposition is symmetrical
to the opposition between doing and refraining (or forbearing) which has been studied in the
philosophy of action [1,36].



Our concept of achievement goal is similar to the concept studied in [7]. We say that an
agent i has the achievement goal that ϕ if and only if, i wants ϕ to be true in the next
state and does not believe that ϕ is true now.

It is worth noting that in our logic the conditions Canj(α) and Intj(α) together
are equivalent to Doesj:α� (by Axioms IncAct,PAct, IntAct1 and IntAct2), so the
definition of trust in the trustee’s action can be simplified as follows:

Trust(i, j, α, ϕ) def= AGoal iϕ ∧ Bel i(After j:αϕ ∧Doesj:α�)

This formalization of definition 1 better expresses a fundamental aspect of the concept
of trust, namely the fact that the truster has an achievement goal that ϕ and believes that
the trustee will ensure ϕ by doing action α.

Example 1. Suppose that Bill trusts Mary to shoot Bob with regard to his goal that Bob
will die in the next state:

Trust(Bill,Mary, shoot,¬BobAlive).
This means that Bill has the achievement goal that Bob will die in the next state:

AGoalBill¬BobAlive.
Moreover, according to Bill’s beliefs, Mary, by shooting Bob, will ensure that Bob is
dead in the next state, and Mary is going to shoot Bob:

BelBill(AfterMary:shoot¬BobAlive ∧ DoesMary:shoot�).

The following theorems highlight some interesting properties of the previous notion of
trust.

Theorem 2. Let i, j ∈ AGT and α ∈ ACT . Then:

1. � Trust(i, j, α, ϕ) → Bel iXϕ
2. � Trust(i, j, α, ϕ) ↔ Bel iTrust(i, j, α, ϕ)
3. � (Trust(i, j, α, ϕ) ∧ Trust(i, j, α, ψ)) → Trust(i, j, α, ϕ ∧ ψ)
4. � ¬Trust(i, j, α,�)

Proof. We prove Theorems 2.1 and 2.2 as examples. We start with Theorem 2.1.
Trust(i, j, α, ϕ) implies Bel i(After j:αϕ∧Doesj:α�) (by definition of Trust(i, j, α,
ϕ)). After j:αϕ∧Doesj:α� impliesDoesj:αϕ (by Axiom IncAct,PAct and stardard prin-
ciples of the normal operator Doesj:α). Doesj:αϕ implies Xϕ (by definition of Xϕ).
We conclude that Bel i(After j:αϕ ∧Doesj:α�) implies Bel iXϕ (by Axiom KBel).

Let us consider Theorem 2.2. Trust(i, j, α, ϕ) is equivalent toGoaliXϕ∧¬Bel iϕ∧
Bel i(After j:αϕ ∧ Doesj:α�), by definition of Trust(i, j, α, ϕ). The latter implies
Bel i(GoaliXϕ∧¬Bel iϕ∧Bel i(After j:αϕ∧Doesj:α�)) (by Axioms 4Bel, 5Bel and
PIntrGoal) which in turn implies Bel iTrust(i, j, α, ϕ) (by definition of Trust(i, j, α,
ϕ)). The other direction of Theorem 2.2 is provable by the same principles. ��
According to Theorem 2.1, if i trusts j to do α with regard to ϕ then i has a positive
expectation that ϕ will be true in the next state. Theorem 2.2 highlights the fact that
trust is under the focus of the truster’s awareness: i trusts j to do α with regard to ϕ if



and only if i is aware of this. Finally, Theorem 2.3 shows that trust aggregates under
conjunction: if i trusts j to do α with regard to ϕ and i trusts j to do α with regard to
ψ then, i trusts j to do α with regard to ϕ ∧ ψ. As Theorem 2.4 shows, in our logical
model there is no trust about tautologies. This is for us an intuitive property of trust.

In the following sections 4 and 5 we will study the properties of information sources
and show how these properties can be evaluated by the truster in order to assess the
trustworthiness of an information source.

4 Basic Properties of an Information Source

We suppose that the properties of an information source can be defined in terms of the
relationships between three facts:

– an information source j informs an agent i that a certain fact P is true;
– an information source j believes that P is true;
– the fact P is true.

The properties of information sources can be all expressed in a conditional form. The
systematic analysis of these relationships between the previous three facts leads to six
different properties of information sources.

Definition 2. INFORMATION SOURCE VALIDITY. Agent j is a valid information
source about P with regard to i if and only if, after j does the action of informing i
about P , it is the case that P .

Formally: V alid(j, i, P ) def= After j:infi(P )P
Note that Afterj:infi(P )P can be read in an explicit conditional form: if j has the

capacity to do the action of informing i about P then, P is true after every occurrence
of this action. Indeed, After j:infi(P )P is logically equivalent to Canj(infi(P )) →
After j:infi(P )P .

Definition 3. INFORMATION SOURCE COMPLETENESS. Agent j is a complete
information source about P with regard to i if and only if, if P is true then j does the
action of informing i about P .

Formally: Compl(j, i, P ) def= P → Infj,i(P )

Definition 4. INFORMATION SOURCE SINCERITY. Agent j is a sincere informa-
tion source about P with regard to i if and only if, after j does the action of informing
i about P , it is the case that j believes P .

Formally: Sinc(j, i, P ) def= After j:infi(P )Bel jP
Note that After j:infi(P )Bel jP too can be read in an explicit conditional form: if

j has the capacity to do the action of informing i about P then, j believes P after
every occurrence of this action. Indeed, Afterj:infi(P )Bel jP is logically equivalent to
Canj(infi(P )) → After j:infi(P )Bel jP .



Definition 5. INFORMATION SOURCE COMPETENCE. Agent j is a competent
information source about P if and only if, if j believes P then P is true.

Formally: Compet(j, P ) def= Bel jP → P

Definition 6. INFORMATION SOURCE VIGILANCE. Agent j is a vigilant infor-
mation source about P if and only if, if P is true then j believes P .

Formally: V igil(j, P ) def= P → Bel jP

Definition 7. INFORMATION SOURCE COOPERATIVITY. Agent j is a coopera-
tive information source about P with regard to i if and only if, if j believes that P then
j informs i about P . 5

Formally: Coop(j, i, P ) def= Bel jP → Infj,i(P )
The previous properties of information sources are not independent. For instance, as

the following Theorems 3.1 and 3.2 show, validity can be derived from sincerity and
competence, and completeness can be derived from vigilance and cooperativity.

Theorem 3. Let i, j ∈ AGT and infi(P ) ∈ INFO , then:

1. � (Sinc(j, i, P ) ∧ Afterj:infi(P )Compet(j, P )) → V alid(j, i, P )
2. � (V igil(j, P ) ∧ Coop(j, i, P )) → Compl(j, i, P )

Proof. We give the proof of Theorem 3.1 as an example.
Sinc(j, i, P )∧ After j:infi(P )Compet(j, P ) is equivalent to After j:infi(P )Bel jP∧

After j:infi(P )(Bel jP → P ) (by definitions of Compet(j, P ) and Sinc(j, i, P )). The
latter imply After j:infi(P )P (by Axiom KPAct) which is equivalent to V alid(j, i, P ).

��
Note that in Theorem 3.1, the derivation of V alid(j, i, P ) requires j’s competence at
the instant where the action infi(P ) has been performed by j. This is the reason why
we have After j:infi(P )Compet(j, P ) in the antecedent.

Example 2. Consider an example in the field of stocks and bonds market. The agent
BUG is the Bank of Union of Groenland. Sue Naive (SN) and Very Wise (VW) are
two BUG’s customers. BUG plays the role of an information source for the customers,
for instance for the facts p: “it is recommended to buy MicroHard stocks”, and q:
“Microhard stocks are dropping”. SN believes that BUG is sincere with regard to her
about p and BUG is competent about p, because SN believes that BUG wants to help
its customers and BUG has a long experience in the domain. SN also believes that
BUG is cooperative with regard to her about q because q is a relevant information
for customers in order to make decisions. VW too believes that BUG is competent
about p. But VW does not believe that BUG is sincere with regard to him about p.
Indeed, VW believes that BUG wants that VW buys Microhard stocks, even if this is
not profitable for VW. This example is formally represented by the following formula:
BelSNSinc(BUG,SN , p) ∧ BelSNCompet(BUG , p) ∧ BelSNCoop(BUG ,SN , q)∧

BelVWCompet(BUG , p) ∧ ¬BelVWSinc(BUG,VW , p).

5 This definition of cooperativity does not exclude that i does not want to be informed about P ,
like in spamming.



5 Trust in Information Sources

We conceive trust in information sources as a specific instance of the general notion of
trust in the trustee’s action defined in Section 3. In our view, the relevant aspect of trust
in information sources is the content of the truster’s goal. In particular, we suppose that
an agent i trusts the information source j to inform him whether the fact P is true only
if i has the epistemic goal of knowing whether P is true and believes that, due to the
information transmitted by j, he will achieve this goal. In this sense, trust in information
sources is characterized by an epistemic goal of the truster and an informative action of
the trustee. The concept of epistemic goal can be defined from the following standard
definitions of knowing that (i.e. as having the correct belief that something is the case)
and knowing whether:

Kiϕ
def= Bel iϕ ∧ ϕ KWiϕ

def= Kiϕ ∨Ki¬ϕ
where Kiϕ stands for “agent i knows that ϕ is true” and, KWiϕ stands for “i knows
whether ϕ is true”. An epistemic goal of an agent i is i’s achievement goal of knowing
the truth value of a certain formula. Formally, AGoal iKWiϕ denotes i’s epistemic goal
of knowing whether ϕ is true.

Our aim in this section of the paper is to investigate the relationships between trust
in information sources and the properties of information sources defined above. The
following Theorem 4 highlights the relationship between trust in information sources
and the properties of validity and completeness of information sources. It says that: if i
believes that j is a valid information source about p and ¬p with regard to i and that j is
a complete information source about p and ¬p with regard to i, and i has the epistemic
goal of knowing whether p is true, then i trusts the information source j to inform him
that p is true or i trusts the information source j to inform him that ¬p is true (with
respect to his epistemic goal of knowing whether p is true).

Theorem 4. Let i, j ∈ AGT and infi(p), infi(¬p) ∈ INFO , then:
� (Bel i(V alid(j, i, p) ∧ V alid(j, i,¬p))∧ Bel i(Compl(j, i, p) ∧ Compl(j, i,¬p))∧
AGoal iKWip) → (Trust(i, j, infi(p),KWip)∨ Trust(i, j, infi(¬p),KWip))

Proof. Bel i(Compl(j, i, p)∧Compl(j, i,¬p)) implies Bel i((p → Infj,i(p))∧(¬p →
Infj,i(¬p))) (by definitions of Compl(j, i, p) and Compl(j, i,¬p)). The latter im-
plies Bel i((p → Infj,i(p)) ∧ (¬p → Infj,i(¬p)) ∧ (p ∨ ¬p)) which in turn implies
Bel i(Infj,i(p) ∨ Infj,i(¬p)) (by standard principles of propositional calculus). Since
Infj,i(P ) is equivalent to Bel iInfj,i(P ) (by Axioms PIntrInf, NIntrInf and DBel),
Bel i(Infj,i(p) ∨ Infj,i(¬p)) is equivalent to Bel i(Bel iInfj,i(p) ∨ Bel iInfj,i(¬p)).
Let us now prove that Bel i(Bel iInfj,i(p) ∨ Bel iInfj,i(¬p)) implies Bel iInfj,i(p) ∨
Bel iInfj,i(¬p). Bel i(Bel iInfj,i(p)∨Bel iInfj,i(¬p)) implies ¬Bel i(¬Bel iInfj,i(p)
∧ ¬Bel iInfj,i(¬p)) (by Axiom DBel). By standard principles of the normal operator
Bel i, the latter implies ¬Bel i¬Bel iInfj,i(p) ∨ ¬Bel i¬Bel iInfj,i(¬p) which in turn
implies Bel iInfj,i(p) ∨ Bel iInfj,i(¬p) (by Axiom 5Bel).

We can conclude that Bel i(Compl(j, i, p) ∧ Compl(j, i,¬p)) implies
Bel iInfj,i(p) ∨ Bel iInfj,i(¬p). Thus, Bel i(V alid(j, i, p) ∧ V alid(j, i,¬p))∧
Bel i(Compl(j, i, p)∧Compl(j, i,¬p))∧ AGoal iKWip implies Bel i(V alid(j, i, p)∧



V alid(j, i,¬p))∧ (Bel iInfj,i(p) ∨ Bel iInfj,i(¬p))∧ AGoal iKWip which
in turn implies (Bel iV alid(j, i, p) ∧ Bel iInfj,i(p) ∧ AGoal iKWip)∨
(Bel iV alid(j, i,¬p) ∧ Bel iInfj,i(¬p) ∧ AGoal iKWip). Now, let us prove that
the latter implies Trust(i, j, infi(p),KWip)∨ Trust(i, j, infi(¬p),KWip).

We distinguish two cases. First, we prove that Bel iV alid(j, i, p) ∧ Bel iInfj,i(p) ∧
AGoal iKWip implies Trust(i, j, infi(p),KWip). Bel iV alid(j, i, p)∧Bel iInfj,i(p)
∧AGoal iKWip implies Bel iAfter j:infi(P )P ∧Bel iInfj,i(p)∧AGoal iKWip (by def-
inition of V alid(j, i, p)) which in turn implies Bel iAfter j:infi(P )P ∧ Bel iInfj,i(p) ∧
¬Bel i¬Canj(infi(P )) ∧ AGoal iKWip (by Axioms IncAct,PAct, KBel, DBel, and
definitions of Infj,i(p) and Canj(infi(P ))). From the latter and by Axioms 4Bel and
5Bel, we can infer Bel iAfterj:infi(P )P ∧Bel iInfj,i(p)∧Bel i¬Bel i¬Canj(infi(P ))
∧Bel iBel iAfter j:infi(P )P ∧AGoal iKWip. The latter implies Bel iAfter j:infi(P )P ∧
Bel iInfj,i(p) ∧ Bel iAfter j:infi(P )Bel iP ∧ AGoal iKWip (by standard principles of
the normal operator Bel i, Axioms KBel and NF) which in turn implies Bel iInfj,i(p)∧
Bel iAfter j:infi(P )KWip∧AGoal iKWip (by Axiom KBel, definition ofKWip, stan-
dard principles of the normal operators Bel i and After j:infi(P )). The latter is equivalent
to Trust(i, j, infi(p),KWip). In a similar way we can prove that Bel iV alid(j, i,¬p)
∧ Bel iInfj,i(¬p) ∧ AGoal iKWip implies Trust(i, j, infi(¬p),KWip).

This is sufficient to prove Theorem 4. ��
From Theorems 3.1 and 3.2, similar theorems can be proved by substituting V alid(j, i,
p) with (Sinc(j, i, p) ∧ After j:infi(p)Compet(j, p)), V alid(j, i,¬p) with (Sinc(j, i,
¬p)∧After j:infi(¬p)Compet(j,¬p)), Compl(j, i, p) with V igil(j, p)∧Coop(j, i, p)
and, Compl(j, i,¬p) with V igil(j,¬p) ∧ Coop(j, i,¬p) in the antecedent of
Theorem 4.

Theorem 5 is a particular instantiation of Theorem 2. It says that: if i trusts the
information source j to inform him that p or i trusts the information source j to inform
him that ¬p with regard to his epistemic goal of knowing whether p is true, then i
believes that in the next state he will achieve his epistemic goal of knowing whether p
is true.

Theorem 5. Let i, j ∈ AGT and infi(p), infi(¬p) ∈ INFO , then:

� (Trust(i, j, infi(p),KWip)∨ Trust(i, j, infi(¬p),KWip)) → Bel iXKWip

Example 3. Let us consider again the example of stocks and bonds market. SN has the
epistemic goal of knowing whether q (“Microhard stocks are dropping”) is true:

AGoalSN KWSN q.

SN believes that BUG is a valid information source with regard to her both about q and
about ¬q and that BUG is a complete information source with regard to her both about
q and about ¬q:

BelSN (V alid(BUG,SN , q) ∧ V alid(BUG,SN ,¬q))∧
BelSN (Compl(BUG,SN , q) ∧ Compl(BUG,SN ,¬q)).

Then, by Theorem 4, we can infer that either SN trusts the information source BUG to
inform her that q is true or SN trusts the information source BUG to inform her that ¬q
is true (with regard to her epistemic goal of knowing whether q is true):



Trust(SN ,BUG , infSN (q),KWSN q) ∨ Trust(SN ,BUG , infSN (¬q),KWSN q).

Finally, by Theorem 5, we can infer that SN believes that in the next state she will
achieve her goal of knowing whether q is true:

BelSNX KWSN q.

6 The Graded Aspect of Trust

In this section we show how the logic presented in Section 2 can be appropriately mod-
ified by substituting the doxastic operators of type Bel i with operators of graded beliefs
which enable to express that an agent believes some fact ϕ with strength k. We will
exploit these operators in order to enrich Definition 1 of trust in the trustee’s action,
moving from binary trust (i.e. either i trusts j or i does not trust j) to graded trust (i.e.
agent i trusts agent j with a certain strength k).

6.1 A Logic of Graded Beliefs

We introduce a a non-empty set of n integers I = {1, . . . , n}. For every integer x ∈ I

and agent i ∈ AGT we suppose a corresponding operator Bel≥x
i . Operators of type

Bel≥x
i substitute the doxastic operators Bel i in Hintikka’s style [19] introduced in Sec-

tion 2. A formula Bel≥x
i ϕ is meant to stand for “agent i believes ϕ at least with strength

x”. We sketch the semantics of these operators and the corresponding axiomatization.
Every operator Bel≥x

i is interpreted according to a binary relationP x
i between possi-

ble worlds in W . These binary relations are used to specify the degree of exceptionality
of a certain world according to a given agent.6 The binary relations P x

i substitute the
binary relations Bi as defined in Section 2. Thus, the definition of L models has to
be modified accordingly. Given an arbitrary world w ∈ W , if (w,w′) ∈ P x

i then w′

is a world that at world w is exceptional for agent i at most with degree x. For every
i ∈ AGT and x ∈ I , we note P x

i (w) = {w′ : (w,w′) ∈ P x
i } the set of worlds that at

world w are exceptional for agent i at most with degree x.
The truth definition of formula Bel≥x

i ϕ is given as follows.

– M,w |= Bel≥x
i ϕ iff M,w′ |= ϕ for all w′ such that (w,w′) ∈ P x

i

As far as the semantic constraints are concerned, we suppose that, for any x, y ∈ I such
that y < x, the set of worlds that at world w are for agent i exceptional at most with
degree y is a subset of the set of worlds that are for agent i exceptional at most with
degree x. Formally, for any w ∈W , i ∈ AGT and x, y ∈ I such that y < x:

S12 if (w,w′) ∈ P y
i then (w,w′) ∈ P x

i .

6 Note that the exceptionality degree of a certain world should be considered as the opposite of
its possibility degree. That is, the exceptionality degree of a certain world decreases when its
possibility degree increases.



Fig. 1.

In this sense, worlds in a model are ordered according to their exceptionality degrees
and form a “system of spheres” [26]. In particular, an ordinal conditional function
(OCF) κw

i : W �−→ I in Spohn’s sense [34] can be associated with every agent i
and every world w in a model M , where κw

i (w′) corresponds to the degree of excep-
tionality of world w′ for agent i at world w.7 Every function κw

i can be defined from
the relation Pi as follows:

– κw
i (w′) = 1 if and only if w′ ∈ P 1

i (w);
– for every x ∈ I such that x > 1, κw

i (w′) = x if and only if w′ ∈ P x
i (w) and

w′ �∈ P x−1
i (w).

By way of example, suppose that there are four different exceptionality degrees as in
Fig. 1, that is, I = {1, 2, 3, 4}. The eight worlds v1-v8 are ordered as follows:

– P 4
i (w) = {v1, v2, v3, v4, v5, v6, v7, v8};

– P 3
i (w) = {v3, v4, v5, v6, v7, v8};

– P 2
i (w) = {v5, v6, v7, v8};

– P 1
i (w) = {v7, v8}.

This means that worlds v1-v8 are the worlds that are exceptional for agent i at most
with maximal degree 4; worlds v3-v8 are the worlds that are exceptional for agent i at
most with degree 3; worlds v5-v8 are the worlds that are exceptional for agent i at most
with degree 2; worlds v7 and v8 are the two worlds that are exceptional for agent i at
most with minimal degree 1.

7 On this issue, see also [25].



The previous four items contain even more information. Worlds v1 and v2 belong to
P 4

i (w) and do not belong to P 3
i (w), hence they are worlds that are for agent i excep-

tional with degree 4. That is, κw
i (v1) = κw

i (v2) = 4. Worlds v3 and v4 belong to P 3
i (w)

and do not belong to P 2
i (w), hence they are worlds that are for agent i exceptional with

degree 3. That is, κw
i (v3) = κw

i (v4) = 3. Worlds v5 and v6 belong to P 2
i (w) and do

not belong to P 1
i (w), hence they are worlds that are for agent i exceptional with degree

2. That is, κw
i (v5) = κw

i (v6) = 2. Finally, v7 and v8 belong to P 1
i (w), hence they are

worlds that are for agent i exceptional with degree 1. That is, κw
i (v7) = κw

i (v8) = 1.
The following is the logical axiom which corresponds to the previous semantic con-

straint S12. For any, x, y ∈ I such that y < x:

Incx,y Bel≥x
i ϕ→ Bel≥y

i ϕ

According to Axiom Incx,y, if agent i believes ϕ at least with strength x and y < x
then, agent i believes ϕ at least with strength y.

Additional reasonable principles for operators of type Bel≥x
i are the following. Sup-

pose that x is the bigger number in I , that is, x, y ∈ I and ∀z ∈ I , z ≥ x. Then:

Dmax ¬(Bel≥x
i ϕ ∧ Bel≥x

i ¬ϕ)
PIntrPoss Bel≥z

i ϕ→ Bel≥x
i Bel≥z

i ϕ

NIntrPoss ¬Bel≥z
i ϕ→ Bel≥x

i ¬Bel≥z
i ϕ

According to Axiom Dmax, it is never the case that an agent believes both ϕ and ¬ϕ
with maximal strength x. According to Axiom PIntrPoss and Axiom NIntrPoss, if an
agent believes (resp. does not believe) ϕ at least with strength z then, he believes with
maximal strength x that he believes (resp. does not believe) ϕ at least with strength z.

The three axioms correspond to the following three first-order properties of Kripke
models. Suppose that x, y ∈ I and ∀z ∈ I , z ≥ x. Then, for any w ∈ W , i ∈ AGT
and z ∈ I:

S13 ∃w′ ∈W such that (w,w′) ∈ P x
i

S14 if (w,w′) ∈ P x
i and (w′, v) ∈ P z

i then (w, v) ∈ P z
i

S15 if (w,w′) ∈ P x
i and (w, v) ∈ P z

i then (w′, v) ∈ P z
i

It is straightforward to prove that every operator Bel≥x
i satisfies Axioms 4 and 5. In-

deed, the following two formulas are derivable from Axioms Incx,y, PIntrPoss and
NIntrPoss, for every x ∈ I and i ∈ AGT :

– Bel≥x
i ϕ→ Bel≥x

i Bel≥x
i ϕ

– ¬Bel≥x
i ϕ→ Bel≥x

i ¬Bel≥x
i ϕ.

The operators of type Bel≥x
i introduced above enable to specify a concept of graded

belief of the form “agent i has a belief with strength x that ϕ is true” (or “agent i
believes with strength x that ϕ is true”) in which the exact strength of the agent’s belief
is specified. This concept is a fundamental building block for a characterization of the
concept of graded trust.

We assume that “agent i has a belief with strength x that ϕ is true” (or “agent i
believes with strength x that ϕ is true”), noted Belxi ϕ, if and only if “agent i believes ϕ



at least with strength x and, there is no y > x such that agent i believes ϕ at least with
strength y”. Formally:

Belxi ϕ
def= Bel≥x

i ϕ ∧
∧

y∈I,x<y

¬Bel≥y
i ϕ

We can prove that every operator Belxi satisfies Axioms 4 and 5. Indeed, the following
two formulas are derivable from Axioms Incx,y, PIntrPoss and NIntrPoss, for every
x ∈ I and i ∈ AGT :

– Belxi ϕ→ Belxi Belxi ϕ
– ¬Belxi ϕ→ Belxi ¬Belxi ϕ.

6.2 A Definition of Graded Trust

The concept of graded trust we are interested in here is the following.

Definition 8. GRADED TRUST IN THE TRUSTEE’S ACTION. Agent i trusts agent
j to do α with respect to the achievement of ϕ with a certain strength x if and only if i
has the achievement goal that ϕ and i believes with strength x that:

1. j, by doing α, will ensure that ϕ AND
2. j has the capacity to do α AND
3. j intends to do α.

Definition 8, which is the variant of Definition 1 for graded trust, can be formally trans-
lated by means of the operator Belxi :

Trustx(i, j, α, ϕ) def=

AGoal iϕ ∧ Belxi (After j:αϕ ∧ Canj(α) ∧ Intj(α))

Trustx(i, j, α, ϕ) is meant to stand for: i trusts j to do α with respect to the achieve-
ment of ϕ with a certain strength x.

Given the logical equivalence between the formula Canj(α) ∧ Intj(α) and formula
Doesj:α�, the definition of graded trust can be simplified as follows:

Trustx(i, j, α, ϕ) def= AGoal iϕ ∧ Belxi (After j:αϕ ∧Doesj:α�)

Starting from this concept of graded trust, it is interesting to study how the graded
beliefs of the truster about different properties of the trustee are combined in order to
assess the trustworthiness of the trustee with respect to a certain task. For instance,
suppose that i (the truster) has the achievement goal that ϕ. Furthermore, i believes
with strength x that j (the trustee) has the capacity to do α; i believes with strength y
that j, by doing α, will ensure that ϕ; and i believes with strength z that j intends to
do α. Finally, suppose that z < y < x. Which is the resulting strength of i’s trust in j?
From our definition of graded trust, it follows that the strength of i’s trust in j is equal
to the strength of i’s belief with the lowest strength, that is, i’s belief that j intends to
do α. Indeed, the following formula is derivable in our logic, for every x, y, z ∈ I such
that z < y < x:

– (AGoal iϕ∧Belxi After j:αϕ∧Belyi Canj(α)∧Bel zi Intj(α)) → Trustz(i, j, α, ϕ).



This is a consequence of the more general theorem, derivable from Axiom Incx,y and
the definition of the operator Belxi , stating that, for every x1, x2, ..., xm ∈ I such that
x1 < x2 < ... < xm:

– (Belx1
i ϕ1 ∧ ... ∧ Belxm

i ϕm) → Belx1
i (ϕ1 ∧ ... ∧ ϕm).

This means that. under the condition x1 < x2 < ... < xm, if agent i believes ϕ1

with strength x1, agent i believes ϕ2 with strength x2,..., and agent i believes ϕm with
strength xm then, agent i believes ϕ1 ∧ ... ∧ ϕm with minimal strength x1.

It is worth noting that, starting from the previous concept of graded trust, the analysis
of information sources given in Sections 4 and 5 can be refined by investigating the re-
lationships between graded trust and graded beliefs about the properties of information
sources. For instance, it would be interesting to study variants of Theorem 4 in which
formulas expressing graded beliefs about properties of information sources appear in
the antecedent and formulas expressing graded trust in the information source appear
in the consequent of the implication. We postpone this kind of analysis to future work.

6.3 Discussion: Regularity Levels

The solution to the characterization of graded trust sketched in the previous two sections
is aimed at capturing the truster’s uncertainty in the attribution of certain properties to
a given target j (Definition 8). Let us briefly discuss a different solution which consists
in specifying the truster’s belief that a given property belongs more or less to a given
target j.

Consider for instance the analysis of the properties of information sources developed
in Section 4. All properties of information sources have been expressed in a conditional
form and have only been considered as binary properties (e.g. according to the defini-
tion of competence either j is competent about P or j is not competent about P ). A
refinement of the analysis of trust in information sources consists in supposing that the
properties of information sources are graded, i.e. the property that an agent i ascribes
to the information source j is satisfied with a certain degree h. For example, it may be
that agent i believes that the information source j is competent with a certain degree
h. In order to capture this graded aspect of the properties of an information source,
conditional operators of type ⇒h should be introduced.

A formula ϕ ⇒h ψ can be interpreted as the fact that there is no strict regularity in
the relationship between the fact ϕ and the fact ψ, i.e. the set of circumstances where
ϕ holds is included with a certain degree h in the set of circumstances where ψ holds.8

For example, the formula BeljP ⇒h P denotes that the inclusion level of the set of
circumstances whereBeliP holds in the set of circumstances where P holds is h. Now,
the fact that i believes that the information source j is competent with a certain degree
h is represented by Beli(BeljP ⇒h P ).

8 Here the term “regularity” is taken with a similar meaning as A.J.I. Jones does in [21] when he
says: “there exists a regularity in y’s behavior, so that under particular kinds of circumstances
y exhibits a particular kind of behavior”. The only difference is that here the word “regularity”
is not restricted to behavior, but it can also be used for mental attitudes like competence or
sincerity.



We think that the basic principles of conditionals of the form ⇒h should be compat-
ible with an interpretation of a formula ϕ ⇒h ψ in terms of a conditional probability.
However, we leave open the possibility for other interpretations of this kind of formulas
(on this point, see also [10]).

In this probabilistic interpretation the meaning of the regularity level h in ϕ ⇒h ψ
is h = Pr(ψ|ϕ), that is, h is the probability that ψ holds when ϕ holds.

The most important rule to be defined in the axiomatization of the conditional op-
erators ⇒h is the rule of detachment. That is, assuming that ϕ ⇒h ψ holds and ϕ
holds, what can be inferred about ψ? In this paper we do not give an answer to this
question. However, it seems reasonable to accept the following rule for detachment

ϕ⇒h ψ → (ϕ→ ψh), after having adopted the notation ψh def= � ⇒h ψ.

7 Related Works and Conclusion

Although there are several comprehensive logical models of security in the recent liter-
ature in AI and computer science where the properties of a communication system such
as privacy, confidentiality, availability, integrity, authentication are modeled (e.g. [4]),
there is still a pressing need for elaborating more precise and general models of reason-
ing about trust. Indeed, the specification of trust reasoning is typically in the province
of this discipline. Logical models of trust have been focused almost exclusively on in-
formational trust, i.e. trust in information sources [8,9,22,27]. In these logics a certain
agent is said to trust another agent if the former agent believes what the other agent says
or that the information communicated to him by the other agent is reliable. Some au-
thors have introduced trust in information sources as a primitive concept [8,27] whereas
other authors have reduced it to a particular kind of belief of the truster [9,22].

In this work we have provided a more general logical analysis of trust and shown that
trust in information sources is only a particular instance of a more general concept of
trust. We have modeled the properties of information sources such as sincerity, validity,
competence, etc. and shown that some of them are epistemic supports of trust in an
information source, that is, they are sufficient conditions for trusting an information
source to inform whether a certain fact is true (e.g. Theorem 4).

We have devoted special emphasis to the formalization of the motivational aspect of
trust. In our perspective, a logic of trust must enable reasoning about goals of agents.
In fact, agent i’s trust in agent j necessarily involves a main and primary motivational
component which is a goal of the truster. If i trusts j then, necessarily i trusts j because i
has some goal and thinks that j has the right properties to ensure that such a goal will be
achieved. In this sense, our approach is different from the approach proposed in [21] in
which the motivational aspect of trust is ignored, and trust is characterized only in terms
of two beliefs of the truster: the truster’s belief that a certain rule or regularity applies
to the trustee (called “rule belief”), and the truster’s belief that the rule or regularity is
going to be followed by the trustee (called “conformity belief”).

Directions for future research are manifold. First of all, our future future works will
be devoted to better study the solution for the specification of graded beliefs and graded
trust presented in Section 6. Special emphasis will be devoted to compare our solu-
tion with existing logical approaches to graded beliefs (e.g. [12,16]) and graded trust



(e.g. [24]) based on probability theory. Secondly, our future works will be devoted to
improve over the formalization of information sources presented in this paper. For in-
stance, in our current definitions of the properties of information sources entailment
is formalized by a material implication. In the future we will substitute material im-
plication with some form of conditional which is more adequate for our purpose of
formalization.
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