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Abstract. We are interested in making use of Multiclusters to execute parallel
applications.The present work is developed within the M-CISNE project. M-
CISNE is a non-dedicated and heterogeneous Multicluster environment which
includes MetaLoRaS, a two-level MetaScheduler that manages the appropriate
job allocation to available resources.
In this paper, we present a new resource-matching model for MetaLoRaS, which
is aimed at mitigating the degraded turnaround time of co-allocated jobs, caused
by the contention on shared inter-cluster links. The model is linear program-
ming based and considers the availability of computationalresources and the
contention of shared inter and intra-cluster links. Its goal is to minimize the av-
erage turnaround time of the parallel applications withoutdisturbing the local
applications excessively and maximize the prediction accuracy.
We also present a parallel job model that takes both computation and communi-
cation characterizations into account. By doing this, greater accuracy is obtained
than in other models only focused on one of these characteristics.
Our preliminary performance results indicate that the linear programming model
for on-line resource matching is efficient in speed and accuracy and can be suc-
cessfully applied to co-allocate jobs across different clusters.

1 Introduction

A Multicluster system has a network topology made up of interconnected clusters, lim-
ited to a campus- or organization-wide network. There are collections of several clusters
formed by commodity workstations in many laboratories, Universities, and research
centers. The main goal of the present work is to make use of wasted computational
resources of non-dedicated and heterogeneous Multiclusters to execute parallel appli-
cations efficiently without disturbing the local applications excessively.

In order to manage the collective computational power of a Multicluster efficiently,
special scheduling mechanisms are required to select and map jobs to available resour-
ces. We refer to these schedulers as MetaSchedulers. In general, we consider a Me-
taScheduler to be the software that decides where, when, andhow to schedule jobs in
a Multicluster. In previous works [13,12], we presented MetaLoRaS, an efficient Me-
taScheduler made up of a queuing system with two-level hierarchical architecture for
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a non-dedicated Multicluster. The most important contribution was the effective clus-
ter selection mechanism, based on the estimation of the job turnaround time. Parallel
applications were assigned to the clusters where the minimum turnaround time was ob-
tained. MetaLoRaS was globally aware of the state of the Multicluster and worked in
conjunction with each individual cluster’s local schedulers.

A Multicluster is distinguished from a traditional computational grid in that the
Multicluster utilizes a dedicated interconnection network between cluster resources
with a known topology and predictable performance characteristics. This kind of net-
working infrastructure allows for the possibility of mapping jobs across cluster bound-
aries in a process known as co-allocation or multisite scheduling.Co-allocation of par-
allel jobs is considered in this paper, as is minimizing their execution time, this being
the desired goal.

Previous work in the area of job co-allocation has tended to characterize jobs based
only on communication or computation models. In [6,7] only thecomputationtime is
penalized for co-allocated jobs. In [5,10,4,11] only communication models are pointed
out. Ernemann and Jones [7,11] describe how schedulers designed to allocate node re-
sources across cluster boundaries can result in rather pooroverall performance over
a wide range of workload characterizations and Multicluster configurations when co-
allocated jobs contend for inter-cluster network bandwidth.In order to overcome these
situations, our model is based on co-allocating job tasks toavoid both the communica-
tion saturation of inter-cluster links and the overloadingof Multicluster nodes.

This research aims to extend the works presented in [11,15] and [13,12,9], creating
a MetaScheduling model which takes into account the effect of co-allocation on both
computing and communication time.By doing so, we are able to mitigate the negative
effect on co-allocated jobs, improving the prediction accuracy of the turnaround time
estimation of parallel jobs. This in turn increase the system performance by improving
the prediction-like scheduling system. Furthermore, the model takes into account the
resource occupancy and capacity of the forming non-dedicated Multicluster nodes. This
fact guarantees low impact on the performance of local user applications.

The essence of our MetaScheduling model is to solve the resource matching as an
integer-programming problem. Previous work [3,14] illustrates the benefits of using in-
teger programming techniques to solve scheduling problems. However, our model tries
to fit computation and communication parallel job requirements to resource capacity,
and considers the sharing of the resources between paralleland local applications.

The rest of the paper is organized as follows. In section 2, wepresent the char-
acterization of both, the Multicluster environment and parallel jobs. In section 3, the
integer programming model for matching parallel applications in Multicluster systems
is presented.The applicability of the model and the goodness when appliedin a real
Multicluster system is evaluated in Section4. Finally, the conclusions and future work
are detailed.

2 Multicluster Environment

In [13] weproposed a Multicluster platform. The jobs arriving in the Multicluster enter
the Upper-level Queue awaiting scheduling by the MetaScheduler, namedMetaLoRaS.



Fig. 1. Multicluster Architecture

MetaLoRaS assigns jobs to the cluster with the minimum estimate of turnaround time.
The estimation is obtained by each local cluster or Low-level scheduler, namedLo-
RaS (Long Range Scheduler).LoRaS [8] is a space-sharing scheduler with an efficient
turnaround predictor [9].

MetaLoRaS is made up of five components (see Fig. 1). These are theUpper-level
Queue (a queuing system), the Multicluster scheduler (namedMetaLoRaS), theAdmis-
sion system, theResource Manager and theMulticluster Controller.

MetaLoRaS is the Multicluster scheduling system. It is responsible for selecting the
next job to be executed from theInput Queue (the entry point of parallel jobs), and
also the cluster where this job will be executed. The part ofMetaLoRaS responsible for
assigning jobs to clusters is denoted asResource Matcher (RM).

TheAdmission System is responsible for admitting new jobs into the system. This
module will accept the new job whenever its required resources are satisfied. If not, the
job is discarded. The specified resources are the number of workstations, the Memory
size and the per-node bandwidth. It is possible to specify different resource limits in
each cluster.

The Multicluster Controller collects real time information about the state of each
cluster. If an event occurs in one cluster (job start, finish), theMulticluster Controller is
notified of such a change. TheLoRaS system is responsible for notifying theMulticlus-
ter Controller about the cluster state changes.

The Resource Matcher (RM) has been designed as an Integer programming ap-
proach. The RM is responsible for obtaining a snapshot of thestate of the resources
from the Multicluster Controller and for generating a mapping solution that will be
used by the MetaScheduler(MetaLoRaS). To do this, the RM performs the following
functions: (1) it accepts a job matching request through theMetaScheduler, (2) requests
the current status of the Multicluster from theMulticluster Controller, (3) obtains the
parallel application information, (4) submits the parallel application and the Multiclus-



Fig. 2.Multicluster topology

ter status information to a mixed integer programming solver and (5) maps the job
accordingly to the results obtained in step 4.

Job co-allocation consists of mapping jobs across cluster boundaries. Co-allocation
is necessary when a job requires more nodes than the ones available on each particular
cluster, but collectively there may be enough available nodes elsewhere in the Multi-
cluster to accommodate such a job. There are situations where despite having enough
available nodes in a particular cluster, it may be better to take advantage of remote re-
sources, because they are more powerful or they are the more appropriate for the nature
of the parallel job. TheResource Matcher (RM) is responsible for deciding if the job
will be co-allocated across multiple clusters or mapped exclusively onto one cluster.
Scheduling decisions are based on minimizing the job execution time, despite the jobs
are exclusively assigned to an unique cluster or across multiple clusters.

2.1 Problem statement

We are interested on Multiclusters defined as a collection ofarbitrary sized clusters
with heterogeneous resources. Each cluster has its own internal switch. Clusters are
connected to each other by single dedicated links by means ofa central switch.

Formally, a MulticlusterM={C1..Cα } can be defined as a system comprised ofα
heterogeneous clusters interconnected by means of dedicated links (see Fig. 2). Each
ClusterCi (1 ≤i≤ α) is also made up byβi nodes, this isCi={N1

i ..Nβi
i }. L is the set

of inter-cluster links (L ={L1..Lα}), and L={Li}={Lk
i , 1≤ i ≤α and 1≤k ≤βi}, is the

set of intra-cluster links, whereLk
i denote the intra-cluster link between nodek and the

switch of ClusterCi. We suppose that network bandwidth and latency of inter-cluster
links are better than the intra-cluster ones.

The model assumes that thejobsfollow a BSP (Bulk Synchronous Parallel) model.
A BSP job is comprised of coarse or medium grained tasks that require a fixed number
of processors (one per task) during their lifetime. The sizeof their component tasks
is generally similar.In addition, each task is comprised of various iterationsin which



Fig. 3. Execution Slowdown

computation alternates with communication and synchronization phases. The job as-
signment is static, that is, once the job is mapped into a particular set of nodes, no more
re-allocations are performed. Additionally, jobs can be co-allocated in a Multicluster
by allocating nodes from different clusters to the same job in order to better meet the
collective needs across the Multicluster.

We define the job’s execution time,T e (see Fig. 3), as follows:

T e = T p ·SP+ T c ·SC, (1)

whereT p andT c are the processing and communicating times in a dedicated envi-
ronment. In a real situation, due to the heterogeneity and the non-dedicated property of
the resources,T p andT c may be lengthened bySP andSC, the processing and commu-
nication slowdown respectively.

2.2 Processing Characterization

In a heterogeneous and non-dedicated environment, the computing power and its avail-
ability can provoke different processing capabilities of the constituent nodes. The cur-
rent work presents solutions for measuring these factors and studying their effect on the
execution time of the co-allocated jobs.

In a heterogeneous environment, we must take into account the computing power
differences between the processor units that form the Multicluster. According to [5], we
define the relative Power weight(Pk

i ) of the clusteri nodek (1≤ i ≤α and 1≤k ≤βi), as
the computing power ratio of such node with respect to the most powerful node of the
Multicluster. ThePk

i range is 0< Pk
i ≤ 1. Pk

i = 1 means that clusteri nodek is the most
powerful node in the Multicluster. We obtain the relative computing power of each node
by averaging various relative power measurements with different applications.

Local and even parallel jobs executing on the cluster lower the performance of new
parallel jobs.The model takes this situation into account by sampling the availability of
the computing resources. As was shown in [15], we can obtain an effective measurement
of the CPU availability by relating the average of the numberof process in the system
and the CPU occupancy. We define the Availability of the cluster i nodek (Ak

i ) as
the percentage of CPU occupancy.Ak

i ≃ 0 when 100% of the CPU is occupied and
0 < Ak

i ≤ 1 otherwise.
We define the Effective Power weight of clusteri nodek (Γ k

i ) as the product between
the relative Power weight and the Availability of such a node. Formally,Γ k

i is defined
as follows:

Γ k
i = Pk

i ·A
k
i , (2)



whereΓ k
i = 1 means that clusteri nodek has the full capacity to run the tasks

at full speed. When 0< Γ k
i < 1, the nodek of clusteri is unable to execute the task

at full speed. Therefore, the processing slowdown of such a node (SPk
i ) is inversely

proportional to its Effective Power weight,SPk
i = (Γ k

i )−1.
As in our model we assume that each job task is generally similar in size and they

are executing separately, the job execution time is defined as the elapsed execution
time of the slowly task.Thus, the processing slowdown can be obtained by taking the
node with the lowest Effective Power weight into account, orin other words, the node
with the maximum slowdown. According to this, we formally define the slowdown of
processing time (SP) in function of the slowdown obtained by each allocated nodeas
follows:

SP = max{SPk
i ,1≤ i ≤ α and 1≤ k ≤ βi} (3)

2.3 Communication Characterization

Communication characterization is based on the model described by Jones in [11] for
homogeneous and dedicated environments. We provide resource heterogeneity to Jone’s
model. Furthermore, we add the ability to take into account the effect of the local work-
load on the co-allocated applications.

We assume that the parallel jobs follow an all-to-all communication pattern periodi-
cally throughout their execution, one of the most frequently used in parallel processing.
Each task of a given jobj is characterized by an average per-node bandwidth metric,
PNBW j, consisting of the communication needs for jobj.

In co-allocation cases, nodes can communicate across cluster boundaries. This com-
munication will require a certain amount of bandwidth on theinter-cluster network
links. Saturation of inter-cluster links reduces job performance drastically. In order to
determine when the inter-cluster links become saturated, we must identify how much
bandwidth a job will require, and more precisely, each forming task job.

We defineBW j
i (equation 4) as the amount of bandwidth required by jobj on inter-

cluster linki (1≤ i ≤ α). Formally:

BW j
i =

(

n j
i ·PNBW j

)

·

(

n j
T −n j

i

n j
T −1

)

, (4)

wheren j
T is the total number of nodes required by jobj, andn j

i is the number of
nodes allocated to jobj on the clusterCi. The first factor of the equation is the total
bandwidth required by all the nodes associated with jobj on clusterCi. The second
factor represents the communication percentage of jobj with other cluster nodes(not
in Ci), that will use the inter-cluster linki.

Each communication linki is characterized by a maximum bandwidth rating,BW max
i .

We define the saturation degree of an inter-cluster linki (BW sat
i ) as the ratio between

the maximum bandwidth and the total bandwidth required by the jobs that share the
link i. Formally:

BW sat
i =

BW max
i

BW consumed
i + BW j

i

, (5)



whereBW consumed
i is the bandwidth occupied by other local or parallel applications

in the linki. WhenBW sat
i ≥ 1, the linki is not saturated. Otherwise, when 0≤BW sat

i < 1
the link i is saturated.

A job j using a saturated inter-cluster linki will experience a communicating slow-
down inversely proportional to the saturation degree of such a link i. Formally:

SCi =
(

BW sat
i

)−1 (6)

If any, the most saturated inter-cluster link will determine the communication slow-
down of the co-allocated job. We define the communication slowdown of a job j (SC)
as the maximum communication slowdown of such job in each allocated inter-cluster
link. Formally:

SC = maxi{SCi, 1≤ i ≤ α} (7)

3 IP Matching Model

Integer Programming (IP) is a technique for solving certainkinds of problems: maxi-
mizing or minimizing the value of an objective function subject to some constraints. The
objective function and constraints are linear expressions. In the following, we describe
our resource-matching approach based on mixed-integer programming techniques.

The problem to be solved in the IP model is the matching of jobsin a Multicluster
environment, while avoiding the negative effects of sharing the communication links
and processing resources. To do this, the IP model must represent thejob matching re-
quest (specifying their resource requirements) and the state of the Multicluster resources
(Multicluster State) in order to search for an optimal solution.

The job matching request specifies the job requirements as the number of tasks,
amount of Memory, per-node bandwidth and the ratio between computation and total
execution time. Multicluster nodes without enough Memory are discarded.

TheMulticluster State comprises the following information of every node: CPU and
Memory availability, and both maximum capacity and availability of the intra-cluster
communication links. The corresponding inter-cluster information is obtained from the
intra-cluster one and the previous job assignments. Only periodic samples of the Multi-
cluster nodes is necessary.

The Resource Matcher maps the jobs by minimizing the job execution time. Jobs
can be mapped across cluster boundaries. The obtaining of this minimum is performed
by means of the Integer Programming solver of CPLEX [1], by using the “Branch and
Bound” algorithm. Obviously, this is a well known NP-complete problem. The interest
of this work is centered in the definition of heuristics and constraints which delay the
exponential time-cost with the number of Multicluster nodes as much as possible.

3.1 Model Definition

An integer-programmingmodel includes input parameters, variables, a set of constraints
on the value of the variables, and an objective function. Thegoal of the model is to find



Input arguments:
1. j: job to be matched.
2. τ j: number of tasks making up jobj.
3. PNBW j: per-node bandwidth requirement for the jobj.
4. M = C..Cα : Multicluster composition.
5. L andL={Li}={Lk

i , 1≤ i ≤α and 1≤k ≤βi}: set of inter- and intra- cluster links.
6. Γ k

i : Effective Power weight for the clusteri nodek (1≤ i ≤α and 1≤k ≤βi).
7. BW av

i : available bandwidth for each inter-cluster linkLi, 1≤i≤ α.
8. BW max

i : maximum bandwidth for each inter-cluster linkLi, 1≤i≤ α.
Output parameters:

9. Xk
i , 1≤ i ≤α and 1≤k ≤βi: boolean variable associated to clusteri nodek. Xk

i =1 if job j is
matched to clusteri nodek, and 0 otherwise.

10. SP: processing slowdown.SP = max{SPk
i ,1≤ i ≤ α and 1≤ k ≤ βi}.

11. SC: inter-cluster link communication slowdown.SC = maxi{SCi, 1≤ i ≤ α}.
Objective Function:

12. min{T e}
Constraints:

13. Gang matching.
14. Non inter-cluster link saturation.

Fig. 4. Model Definition

values for every variable so that all constraints are satisfied and the value of the objective
function is maximized or minimized.

The input parameters, objective function and constraints of the model presented in
this work, are shown in figure 4.

Given a job j, this model finds the best feasible match between the job and the
resources taking the heterogeneity and the availability ofthe resources into account
along with the requirements of the jobj.

The model accepts as input argument a jobj, defined by the number of tasks (τ j)
and the per-node bandwidth (PNBW j). Another group of input arguments are the ones
characterizing the Multicluster (M). The variableΓ k

i defines the Effective Power weight
of each node, and the variablesBW av

i andBW max
i are the available and maximum band-

widths respectively of the inter-cluster links (L ).
The output parameterX k

i is a boolean variable informing about the mapping of the
job j. Other outputs areSP andSC, defined in sections 2.2 and 2.3 respectively. The
constraints and the objective function are defined below.

3.2 Constraints

The IP model comprises two constraints, the Gang matching and the non-saturation
of inter-cluster links. As major network performance is supposed to inter-cluster links,
their constraints also includes the saturation of the intra-cluster ones. Next the two con-
straints are studied separately.



Gang matching This constraint ensures that we allocate all the required resources of
the parallel jobj. In other words, each task is allocated to one processor. Thegang
matching constraint is formalized with the linear equation8.

∑
1≤i≤α ,1≤k≤βi

X k
i = τ j

, (8)

whereτ j is the number of tasks making up jobj andX k
i is equal to 1 if a task in job

j is assigned to clusteri nodek. This constraint guarantees the assignment of every task
making up jobj.

Non inter-cluster link saturation Non-saturation of the inter-cluster links ensures that
the bandwidth consumed by the mapping does not exceed the total available bandwidth
capacity of the inter-cluster links. This constraint avoids the saturation of inter-cluster
links. We formalize this constraint with the equation 9.

SC ≤ 1, (9)

whereSC = maxi{SCi, 1 ≤ i ≤ α} is the maximum slowdown of the inter-cluster
links used by jobj. The inter-cluster link slowdown,SCi, was calculated by means of
equation 6, explained in section 2.3.

3.3 Objective Function

The objective function defines the quality of a solution whenmultiple feasible solutions
exist. The matching solver uses the objective function to select the best matching solu-
tion. In the present work, we are interested in obtaining theminimum execution time for
parallel jobs (T e), defined in section 2.1 equation 1. Accordingly, the objective function
is formalized by equation 10.

min{T e} (10)

4 Experimentation

To study the efficiency of the proposed model we made a great range of tests modifying
the amount of resources, their utilization, and the parallel applications characterization.
Moreover, we tested the prediction accuracy of the execution time executing parallel
applications in a real environment.

The real environment was a Multicluster made up of 2 non-dedicated clusters (CLUS-
TER1 and CLUSTER2). CLUSTER1 was made up of ten 3-GHz uni-processor work-
stations with 1GB of RAM, interconnected by a 1-Gigabit network. CLUSTER2 was
a heterogeneous cluster made up of ten workstations, five 3-GHz uni-processor with
1GB of RAM and 1-Gigabit network link, and five 3-GHz multiprocessor with 512MB
of RAM and 100Megabit network link.



To carry out the experimentation, local and parallel applications need to be defined.
The local workload was represented by a synthetic benchmark(namedlocal_bench)
that can emulate the usage of 3 different resources: CPU, Memory and Network traffic.
The use of these resources was parametrized in a real way. According to the values
obtained by collecting the user activity in an open laboratory over a couple of weeks,
local_bench was modeled to use 15% CPU, 35% Memory and a 0.5KB/sec LAN, in
each node where it was executed.

We selected two parallel applications, which follows the BSP model, from the NAS
parallel benchmarks suite [2]: MG (Multigrid) and IS (Integer Sort). However, the two
jobs had different communication patterns and processing/communicationneeds at each
iteration. These parallel jobs were characterized by the number of tasks, the computa-
tion time, and the size of their communications.

To study the effect of the constraints on the efficiency of ourproposal we defined
three different models with different constraint specifications:

Optimal. This approach obtains the optimal solution, looking for theminimum effec-
tive slowdown of parallel applications. This model allows the utilization of satu-
rated links. It aims to obtain the best mapping by taking the characterization of
parallel jobs and the resource availability into account.

Non-Saturated. In this model the non inter-cluster link saturation constraint was ap-
plied. The solver attempts to minimize the execution time ofthe mapping solutions
that will not saturate any inter-cluster link.

Non-Saturated with Non-Optimization. This model does not looks for the optimal
solution. Thus, the first solution that avoids the inter-cluster links saturation is re-
turned. This model is thought to be useful with Multiclusters with a high number
of resources, where the obtaining of the optimal solution isexcessively expansive.

To evaluate the efficiency of our mixed integer programming approach we compare the
elapsed time of theResource Matcher to obtain a feasible solution (by means of the
CPLEX solver [1]) for different types of parallel jobs and local activity requirements,
with different amount of computational resources and inter-cluster links. The per-node
bandwidth requirements of the parallel task (PNBW j) was varied from 25% to 75%.
The number of workstations with local activity was varied from 0 to 75%.

4.1 Performance Results

First or all, we want to compare the effect of different processing and communication
loads on the Optimal and Non-Saturated models.

Figure 5 shows the resulting communication slowdown obtained by the matching
solver. As can be seen in Figure 5(right), the Non-Saturatedmodel ensures the non inter-
cluster links saturation. Otherwise, in the Optimal model,figure 5(left), the slowdown
grows quickly with the network requirements of the parallelapplication (PNBW j). The
local activity has less effect in both models.

Figure 6 shows the effects ofPNBW j and the local activity in the obtaining of
the resource matching (by the solver). The behaviour of the models are opposed. The
Non-Saturated model is more time-costly than the Optimal one by increasing the nodes
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Fig. 5.Communication Slowdown varyingPNBW j and the local activity (LA).
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Fig. 6. Solver time varyingPNBW j and the local activity (LA).

with local activity and thePNBW j. We can observe as in the Optimal model, the band-
width requirements has a smooth effect on the solver behaviour. Meanwhile, for the
Non-saturation model, figure 6(right), the solver responsetime grows quickly with the
bandwidth requirements. This is produced because in the Non-saturated model there are
less valid solutions, an the obtaining of one of them is more difficult in time.

Figure 7 shows the solver response time of the Optimal model,by varying the num-
ber of nodes jointly withPNBW j (left) and the local activity (right). It can be appreci-
ated as the predominant parameter in this model is the numberof nodes. These results
corroborates the ones obtained in Fig. 6(left).
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Figure 8 shows the impact of the number of inter-cluster links on the solver response
time for different constraints. To study this relationshipwe fixed the number of nodes
per cluster (8 nodes) and ranged between 2 to 64 the number of clusters (inter-cluster
links). The number of constraints in the model have a direct impact on the solver re-
sponse time. The obtained results indicate that Optimal andNon-Saturated models have
a correct behavior for a reasonable number of resources. In our case, below 16 inter-
cluster links with 8 nodes per cluster (128 nodes), the response time never overtake one
minute. Above this threshold it is advisable the use of the Non-Saturated with Non-
Optimization model.

4.2 Prediction accuracy

In order to evaluate the prediction accuracy of the IP model,we compared the estima-
tions produced by the solver with the real execution of IS andMG. Both benchmarks
were executed multiple times with different number of tasksand different local activity
situations. Solver times were obtained by using the Optimalmodel.

The obtained results (see Fig. 9) are very hopeful. Despite the differences between
the estimated and real times, we thought that the estimated times can be corrected by



applying some sort of correction mechanism, because the twolines have a similar shape.
This is the most interesting field to be investigated in the future.

5 Conclusions and Future Work

In the present work we have presented a resource matching mechanism based on integer
programing, for non-dedicated and heterogeneous Mulsticluster systems. The model
fits efficiently both computation and communication parallel requirements to available
Mulsticluster resources by considering the sharing of resources between parallel and
local applications.

The results show that, using mixed integer programing, we can model different re-
source matching situations in a flexible way, and solve them efficiently. As we shows,
the number of resources has a great impact on the solver response time.It is important
to develop mechanismsto adapt dynamically to inter-arrival job rate, number of resour-
ces, etc.The IP model described in the present work allows to adapt thescheduling
system to these situations dynamically.

Future work is directed towards the search for a correction factor of the estimates.
We also will investigate regression models in the obtainingof the Multicluster State.
Due to the intrinsic dynamism of non-dedicated Multiclusters, their state change very
quickly, and the on-time monitoring used in this work does not reflect this situation
correctly.

In this study, we considered one job at a time. In a further work, we wish to consider
the matching problem for multiple jobs, in order to avoid solving large optimization
problems achieving a global optimal. Moreover, this matching scheme will allow the
matching solver to apply new objective functions based, forexample, on throughput or
load balancing.

On the other hand, we want to compare the benefits on the systemperformance
obtained with the use of the mixed-integer programing approach, with other meta-
scheduling mechanisms based only on partial information about the communications
or computation capabilities.
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