
Memory Locality Exploitation Strategies

for FFT on the CUDA Architecture

Eladio Gutierrez, Sergio Romero, Maria A. Trenas, and Emilio L. Zapata

Department of Computer Architecture
University of Malaga
29071 Malaga, Spain

{eladio,sromero,maria,ezapata}@ac.uma.es

Abstract. Modern graphics processing units (GPU) are becoming more
and more suitable for general purpose computing due to its growing
computational power. These commodity processors follow, in general,
a parallel SIMD execution model whose efficiency is subject to a right
exploitation of the explicit memory hierarchy, among other factors. In
this paper we analyze the implementation of the Fast Fourier Transform
using the programming model of the Compute Unified Device Architec-
ture (CUDA) recently released by NVIDIA for its new graphics plat-
forms. Within this model we propose an FFT implementation that takes
into account memory reference locality issues that are crucial in order
to achieve a high execution performance. This proposal has been exper-
imentally tested and compared with other well known approaches such
as the manufacturer’s FFT library.

Key words: Graphics Processing Unit (GPU), Compute Unified De-
vice Architecture (CUDA), Fast Fourier Transform, memory reference
locality.

1 Introduction

The Fast Fourier Transform (FFT) nowadays constitutes a keystone for many
algorithms and applications in the context of signal processing. Basically, the
FFT follows a divide and conquer strategy in order to reduce the computational
complexity of the discrete Fourier transform (DFT), which provides a discrete
frequency-domain representation X[k] from a discrete time-domain signal x[n].
For a 1-dimensional signal of N samples, DFT is defined by the following pair
of transformations (forward and inverse):

X = DFT (x) : X[k] =
N−1∑

n=0

x[n]Wnk
N , 0≤k<N

x=IDFT (X) : x[n]=
1

N

N−1∑

k=0

X[k]W−kn
N , 0≤n<N



0

1

2

3

4

5

6

7

8

9

10

15

14

13

12

11

x[12]

x[10]

x[14]

x[13]

x[11]

x[15]

x[0]

x[8]

x[4]

x[2]

x[6]

x[1]

x[9]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

X[8]

X[9]

X[10]

X[11]

X[12]

X[13]

X[14]

X[15]

16

16

16

16

16W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

16

W16

16

8

8

8

8

8

8

8

8

4

4

4

4

4

4

4

4

W2

W2

W2

W2

W2

W2

W2

W2

W
1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

8

9

10

15

14

13

12

11

0

2

3

0

1

3

2

1

0

0

0

2

2

0

1

0

1

0

0

0

0

0

0

0

0

X+Y·W

X−Y·W

X

Y WN
b

N
b
N
b

Fig. 1. Radix-2 decimation-in time FFT in terms of butterfly operators.

where the powers of WN = e−j 2π

N are the so-called twiddle factors.

The FFT organizes the DFT computations, as shown in Fig. 1, in terms of
basic blocks, known as butterflies. The computation is carried out along log2 N
stages being computed N coefficients per stage. This way, the computational
complexity is reduced to O(N log2(N)) instead of O(N×N) as inferred directly
from the DFT definition.

Several configurational issues have been preset in Fig. 1. This configuration
is known as radix two because butterflies operate on two inputs generating two
transformed coefficients. Before the first stage, input coefficients are permuted
in bit reversal order with the purpose of obtaining the right output arrangement.
Such a rearrangement in time domain gives rise to the denomination decimation-

in-time algorithm. This configuration is used the rest of the paper.

From the viewpoint of memory reference locality, we can observe that if the
input coefficients are located into consecutive memory positions, the reference
patterns of higher stages will exhibit poorer locality features than the lower
ones. In addition, we must remark that if the input coefficients are permuted
properly, it is possible to carry out one of the stages using the access pattern of
another, simply by using the corresponding twiddle factors. Such an equivalence
is depicted in Fig. 2 showing how 5th and 6th stages can be performed with the
access pattern of the 3rd and 4th ones, after permuting the coefficients.

For subsequent use, we will denote L(N,j,i)(x) as the computation of j-th
stage of a N -sample signal, but using the access pattern of the i-th stage (ex-
cluding the permutation) and L(N,i)(x) = L(N,i,i)(x) the computation of the i-th
stage with the proper pattern and twiddle factors. This way we can write the full
FFT computation as X = FFT (x) = L(N,s−1)(...(L(N,1)(L(N,0)(P (x))))...), as-
suming that the number of samples is N = 2s, and P represents the bit reversal
permutation of the signal.



0

1

2

3

4

5

6

7

8

9

10

16

15

14

13

12

11

17

18

19

20

22

21

23

24

0

1

2

3

4

5

6

7

8

9

10

16

15

14

13

12

11

17

18

19

20

22

21

23

24

1
W 16

2
W 8

3
W 16

W 16
4

5
W 16

W 16
6

7
W 16

0
W 8

1
W 8

2
W 8

3
W 8

W 16
0

0
W 8

1
W 8

2
W 8

3
W 8

W 16
0

0
W 8

1
W 8

2
W 8

3
W 8

0

1

2

3

16

17

18

19

32

33

34

35

48

49

50

51

64

65

66

67

80

81

82

83

96

0

1

2

3

16

17

18

19

32

33

34

35

48

49

50

51

64

65

66

67

80

81

82

83

96

1
W 64

2
W 64

3
W 64

W 64
4

5
W 64

W 64
6

7
W 64

4
W 32

5
W 32

6
W 32

7
W 32

W 64
8

8
W 32

9
W 32

10
W 32

11
W 32

W 64
0

0
W

1
W 32

2
W 32

3
W 32

32

(a) (b)
Fig. 2. Computing 3rd and 4th stages of the FFT (a); computing 5th and 6th stages of
the FFT using the pattern of 3rd and 4th stages over a properly permuted input (b).

2 CUDA Programming Model

The Compute Unified Device Architecture (CUDATM) from NVIDIAr, is both
a hardware and software architecture for issuing and managing computations on
the GPU, making it to operate as a truly generic data-parallel computing device.
An extension to the C programming language is provided in order to develop
source codes.

From the hardware viewpoint, the GPU device consists of a set of SIMD
(Single Instruction Multiple Data) multiprocessors each one containing several
processing elements (processors), as shown in Fig. 3. Different memory spaces

PROCESSOR N−1

PROCESSOR 0

S
H

A
R

E
D

 M
E

M
O

R
Y

PROCESSOR 1

MULTIPROCESSOR 0

MULTIPROCESSOR 1

MULTIPROCESSOR M−1

G
L

O
B

A
L

 D
E

V
IC

E
 M

E
M

O
R

Y

Fig. 3. Organization of processors and memory spaces in CUDA.



(0,1)

(2,0) (2,1)

(1,1)(1,0) (1,2)

(2,2)

(0,2)(0,0)

BLOCK(0,0)

(0,1)

(2,0) (2,1)

(1,1)(1,0) (1,2)

(2,2)

(0,2)(0,0)

BLOCK(1,0)

(0,1)

(2,0) (2,1)

(1,1)(1,0) (1,2)

(2,2)

(0,2)(0,0)

BLOCK(1,1)

(0,1)

(2,0) (2,1)

(1,1)(1,0) (1,2)

(2,2)

(0,2)(0,0)

BLOCK(0,1)

GRID

Thread

Warp

Fig. 4. Thread-based execution model in CUDA.

are available. The global device memory is a unique space accessible by all mul-
tiprocessors, acting as the main device memory with a large capacity. Besides,
each multiprocessor owns a private on-chip memory, called shared memory or
parallel data cache, of a smaller size and lower access latency than the global
memory. A shared memory can be only accessed by the multiprocessor that
owns it. In addition, there are other addressing spaces, omitted in the figure, for
specific purposes: texture and constant memories.

CUDA execution model is based on a hierarchy of abstraction layers: grids,
blocks, warps and threads (Fig. 4). The thread is the basic execution unit that is
actually mapped onto one processor. A block is a batch of threads cooperating
together on one multiprocessor and therefore all threads in a block share the par-
allel data cache. A grid is composed by several blocks, and because there can be
more blocks than multiprocessors, different blocks of a grid are scheduled among
the set of multiprocessors. In turn, a warp is a group of threads executing in an
SIMD way, so threads of a same block are scheduled in a given multiprocessor
warp by warp.

Two kinds of codes are considered in the CUDA programming model: those
executed by the CPU (host side) and those executed by the GPU, called ker-
nel codes. The CPU is responsible of transferring data between host and device
memories as well as invoking the kernel code, setting the grid and block dimen-
sions. Such kernels are intended to be executed in an SIMD fashion over the
processors.

Memory accesses and synchronization scheme are the most important aspects
to take into account. Warp addresses issued by SIMD memory access instructions
may be grouped thus obtaining a high memory bandwidth. This is known as
coalescing condition. Otherwise, access will be serialized and the resulting latency
will be difficult to hide with the execution of other warps of the same block.
Global synchronization is not provided at the device side, only threads in a block
can be waiting one to each other. Thus block synchronization mechanism must
be explicitly implemented by the host through consecutive kernel invocations.



Device

Global

MemoryStrideInit Chunk size

Shared Memory

Fig. 5. Data transfer pattern between device and shared memory of copy in/copy out

operations.

3 Implementation Strategies for the FFT

In this section we analyze an FFT implementation using the programming model
previously described. The goal is to obtain a high degree of parallelism taking
into account system constrains, specifically those related to the memory hier-
archy. The basic idea consists of mapping coefficients placed in global (device)
memory into the data parallel cache (shared memory), performing all possible
computations with these local data and then copying the updated coefficients
back to the global memory. This process may be repeated with different mapping
functions until all stages are done.

In order to be more precise we firstly introduce some useful functions de-
scribing the FFT implementations under study. These functions represent data
transfers and transformations accomplished in a single shared memory.

Function copy in(ii,nc,sz,st) copies a subset of signal coefficients from
the device memory into consecutive positions of the shared memory, adding
a padding when necessary to avoid memory bank conflicts. Its behaviour is de-
picted in Fig. 5. It starts from the ii-th coefficient and copies nc chunks of size
sz coefficients separated by a stride st. Symmetrically, copy out(ii,nc,sz,st)

copies coefficients from shared memory back to the device memory. During the
SIMD execution of these functions, each thread is in charge of transferring only
a pair of coefficients. Observe that threads in a warp must access consecutive
memory locations with the purpose of coalescing global memory accesses. Thus,
the arguments of such functions describes how coefficients are accessed and hence
if this transference fulfills coalescing criteria. In general, the chunk size must be
a multiple of the warp size for an optimal transfer. Accesses are serialized when
the chunk size is smaller.

The function fft level(i,j) corresponds to the application of the operator
L(N,i,j)(x) as described in section 1. Such a function is intended to be applied to
the coefficient vector x, previously transferred to shared memory, and it operates
in-place. The number of blocks of threads is N

2r , where 2r is the number of
coefficients copied into shared memory. Executing this function in an SIMD
way on a butterfly-per-thread basis, the b-th thread computes the b-th butterfly
transformation, so a block performs 2r−1 butterflies, one per thread. Twiddle
factors for this case are determined by the b-th butterfly of the j-th FFT stage,
whereas the coefficients to be transformed are those involved in the b-th butterfly
of the i-th FFT stage.



Let us analyze the naive case when the whole input signal fits into the shared
memory of one SIMD multiprocessor (N ≤ 2r), whose implementation is shown
in Fig. 6. After a bit reversal permutation, coefficients are transferred to the
shared memory, then s invocations of fft level are executed and finally coeffi-
cients are returned to the device memory. Note that as all the threads belong
to the only block, global synchronization can be performed among threads. Be-
sides, the original FFT scheme is applied locally (both fft level arguments are
equal).

GPU side, one single block

copy_in(0,1,N,1);

for (i=0; i<s; i++) {

syncthreads();

fft_level(i,i);

}

copy_out(0,1,N,1);

Fig. 6. FFT of a signal fitting the shared memory.

The generic case of a signal whose size exceeds the available shared memory
of a multiprocessor (N > 2r) is discussed in next subsections. In this case sev-
eral multiprocessors are involved, meaning that different blocks of threads must
collaborate to perform the FFT.

3.1 Straightforward Approach

The first approach to be analyzed is a straightforward solution, but it exploits
barely the locality features of the memory access pattern. As threads of differ-
ent blocks cannot be synchronized within kernel code, required synchronizations
must be carried out in the host side through successive kernel function invoca-
tions. Each kernel code invokes copy in and copy out. Between these two invoca-
tions, several fft level stages need to be performed. The larger the signal size,
the larger the number of butterflies operators and also the larger the number of
FFT stages. Due to the fixed size of shared memories, the input signal must be
distributed among the blocks of threads. Thus, a number of blocks of threads
equal to N

2r will work with their corresponding set of disjoint coefficients. Let
us consider each block with a set of 2r consecutive complex coefficients. This
way the first r FFT stages can be performed independently of the work of other
blocks. Nevertheless, threads within the block must be synchronized before every
stage in order to ensure that its input coefficients are updated by the previous
stage. The remainder FFT stages involve coefficients located at a distance larger
than 2r, that is, their copies are located on different shared memories, on differ-
ent multiprocessors. In order to proceed forward, coefficients must be properly



Host side

q=min(r,s);

FirstKernel〈〈〈2s−q,2q−1〉〉〉(q); --->

if (s>r) {

q=s-r;

NextKernel〈〈〈2r,2s−r−1〉〉〉(q);--->
}

GPU side, block j

copy_in(j*2q,1,2q,1);

for (i=1; i≤q; i++)

{

syncthreads();

fft_level(i,i);

}

copy_out(j*2q,1,2q,1);

copy_in(j,2q,1,2r);

for (i=1; i≤q; i++)

{

syncthreads();

fft_level(i,i+r);

}

copy_out(j,2q,1,2r);

FFT mapping

0

1

2

3

4

5

6

7

8

9

10

15

14

13

12

11

0

1

2

3

4

5

6

7

8

9

10

15

14

13

12

11

W

W

W

W

W

W

W

W4
0

4
0

4
2

4
2

0
4

2
4

4
0

2
4

W0
2

W0
2

W0
2

W0
2

W0
2

W0
2

W0
2

W0
2

0

4

8

12

1

5

9

13

2

6

15

11

7

3

14

10

0

4

8

12

1

5

9

13

2

6

15

11

7

3

14

10

W

W

W

W

W

W

W

W16
0

16

16
4

16
5

2
16

6

16
3

7
16

W0
8

W8

W1
8

W1
8

W2
8

W2
8

W3
8

W3
8

0

1

16

Fig. 7. Straightforward FFT implementation for large signals.

rearranged. This fact involves a copy out and a host synchronization prior to
continue with the next stages.

At this point, all output coefficients of the r-th FFT stage can be found in
the device memory. For the sake of a simplified discussion, let be 2r ≥ N/2r

(2s ≤ 22r), that is, the total number of FFT stages s is at most 2r. As these
r levels have been just computed, only r subsequent stages remain at most,
and therefore only a new kernel invocation is needed. In general, ⌈ s

r
⌉ kernel

invocations will be required. Assigning the 2r sequences of size 2s−r coefficients
with stride 2r to different blocks (one sequence per block), all the s−r remaining
stages can be performed as shown in Fig.7. This pictorial example shows how a
16-samples FFT (s = 4) is performed for r = 2, that is 4 coefficients per block.
Following the notation introduced by CUDA for its extended C language, the
numbers enclosed in the triple angle notation (〈〈〈nB,nTpB〉〉〉) stand for the total
number of blocks and the number of threads per block respectively.

Observe that an important fact affects adversely the performance of the sec-
ond kernel call (NextKernel). As threads are scheduled in warps behaving like
gangs of threads that execute the same SIMD instruction, the memory address-
ing mode must follow a specific pattern for an efficient execution. In the case
of global memory, threads of a same warp must access to consecutive memory
locations, otherwise accesses are serialized. This condition is called coalescing



Host side

q=min(r,s);

FFTKernel(q); ------------>

Transposition(); ------------>

if (s>r) {

q=s-r;

FFTKernel(q); ------------>

}

Transposition(); ------------>

GPU side, block j

copy_in(j*2q,1,2q,1);

for (i=1; i≤q; i++) {

syncthreads();

fft_level(i,i);

}

copy_out(j*2q,1,2q,1);

copy_in(...);

TranspositionCore();

copy_out(...);

copy_in(j*2q,1,2q,1);

for (i=0; i≤q; i++) {

syncthreads();

fft_level(i,i+r);

}

copy_out(j*2q,1,2q,1);

copy_in(...);

TranspositionCore();

copy_out(...);

Fig. 8. FFT implementation for large signals using matrix transpositions.

requirement. The approach of Fig. 7 suffers from this lack of coalescing because
memory locations accessed by copy operations do not contain chunks of consec-
utive coefficients. Observe that the third argument (size of chunks) of the copy
functions in NextKernel invocation is set to one. This way, the first block in the
example operates with vector (0, 4, 8, 12).

3.2 Transposition-based FFT

A well known solution to this problem is to store the input signal in a 2D matrix
(2s1×2s2 with s = s1+s2), 1D FFT is applied to every row (first s1 stages), then
the matrix is transposed and finally 1D FFT is again applied to every row (last
s2 stages). In order to apply correctly these last stages, a transformation of the
transposed matrix is required as described in [6]. This step can be avoided if these
1D FFT stages use the corresponding twiddle factors of the original FFT higher
stages as shown in Fig. 8. Note that input coefficients for the second invocation
to the FFTKernel are now located on consecutive positions satisfying memory
access coalescing demands, but this technique requires extra copy in/copy out

operations for each transposition stage.
Broadly, a matrix transposition can be carried out in a block fashion by

decomposing it into submatrices of size m × n fitting the shared memory. Sub-



matrix (i, j) can be copied-in fulfilling the coalescing requirements because the m
elements in the same row are consecutive. Once in the shared memory, the sub-
matrix is transposed. Finally, the transposed submatrix is efficiently copied-out
in its symmetrical position (j, i) as there are m chunks of n consecutive elements.
Source codes for an efficient implementation of the matrix transposition can be
found in the manufacturer’s website [8].

For signal size larger than 2r×2r this approach uses a higher dimensional ma-
trix representation of the coefficients. In general, for 2n×r coefficients a n−dimen-
sional matrix is required. For example, if 22r < N ≤ 23r, signal coefficients are
arranged in a 3D matrix. In this manner, 1D FFT is needed for each dimension,
being necessary to do and undo transpositions not only for the second dimension
but also for the third one.

3.3 Locality Improved FFT

With the purpose of improving the data locality in the higher levels of the FFT of
large signals, we propose the technique described as follows. The key idea consists
of transferring chunks of consecutive coefficients with a given stride among them,
allowing the application of higher FFT stages using lower FFT stage access
patterns. This technique is depicted in Fig. 9, where the left column corresponds
with the host side code for a generic signal size, which has been unrolled to the
particular case of two iterations matching a signal up to 22r samples. Observe
that invocations to NextKernel are not preceded by any transposition and, what is
more important, copy in/copy out operations meet the coalescing condition. This
way, on avoiding transposition stages, the number of memory transfer operations
is significatively reduced. The number of higher FFT stages that can be mapped
on lower ones depends on the number of chunks (nC), in particular log2(nC)
stages. Moreover, the number of chunks depends on the size of the chunks, which
is determined by the number of threads of a warp (coalescing condition). For this
reason, in the example of Fig. 9 the host invokes NextKernel two times, one half
of the higher stages are performed in each invocation. Observe that the third
argument (size of chunks) of the copy functions in NextKernel invocation is set
to 2r−q where q is the number of FFT stages to be computed. Therefore the
lower the number of stages the higher the number of kernel invocations and so
less reusability of data in the shared memory. Nevertheles if q is less than the
warp size the coalescing gets worse.

By way of illustration, let us consider the case of an FFT of an input signal
whose size is 256 coefficients (8 FFT radix-2 stages), running on a GPU with 8
threads per block assembled in 4 threads per warp and a shared memory with
room for 16 coefficients per block. With this configuration, the whole FFT can
be decomposed into 16 block of 16 consecutive coefficients (after a bit reversal
permutation) performing the four first FFT stages. Then, coefficients must be
rearranged in order to proceed with the next stages. As warps are made of 4
threads, the chunk size is fixed to 4 consecutive coefficients, but pairs of coeffi-
cients separated 24 are required, so the stride is 16. Function copy in(4j,4,4,16)

collects all coefficients for the j-th block, enabling it to perform 5th and 6th stages



Host side

q=min(r,s);

FirstKernel(q);

p=0;

while (q<s){

p=p+q;

q=min(r/2,s-p);

NextKernel(p,q);

}

Host side (unrolled)

q=min(r,s);

FirstKernel(q); --->

p=0;

/*1st iteration*/

if (s>r) {

p=p+q;

q=min(r/2,s-p);

NextKernel(p,q);--->

}

/*2nd iteration*/

if (s>r+r/2) {

p=p+q;

q=s-p-r/2;

NextKernel(p,q);--->

}

GPU side, block j

copy_in(j*2q,1,2q,1);

for (i=1; i≤q; i++) {

syncthreads();

fft_level(i,i);

}

copy_out(j*2q,1,2q,1);

copy_in((j+j/2q)*2q,2q,2r−q,2p);

for (i=1; i≤q; i++) {

syncthreads();

fft_level(r-q+i,p+i);

}

copy_out((j+j/2q)*2q,2q,2r−q,2p);

copy_in((j+j/2q)*2q,2q,2r−q,2p);

for (i=1; i≤q; i++) {

syncthreads();

fft_level(r-q+i,p+i);

}

copy_out((j+j/2q)*2q,2q,2r−q,2p);

Fig. 9. Improved-locality FFT implementation for large signals.

using the access patterns of 3rd and 4th stages by means of FFT LEVEL(3,5) and
FFT LEVEL(4,6). This is the same example shown in Fig. 2. Note that 5th and 6th

stages can not be remapped onto stages 1st and 2nd because of their shared mem-
ory access pattern. This involves that stages 7th and 8th must be performed after
a new rearrangement of the coefficients (copy in(4j,4,4,64); FFT LEVEL(3,7);

FFT LEVEL(4,8)).

According to the hardware specifications of the target platform, the maxi-
mum number of threads per block is 512, the maximum number of threads per
warp is 32 and the shared memory size is 8 Kbytes, so 1024 complex coefficients
fit. First 10 FFT stages (r=10) are performed in the invocation of FirstKernel.
In order to maximize the coalescing the chunk size should be a multiple of the
maximum number of threads per warp. Since there are 32 chunks of 32 coef-
ficients in 1024 coefficients, the 6th stage is the first one onto which a higher
stage can be mapped. This fact involves that only 5 higher stages can be done
in each invocation to NextKernel. A lower number of threads per warp allows
NextKernel to perform more stages, however the degree of fine-grained paral-
lelism will decrease. In Fig. 9 the invocation to FirstKernel performs r stages



whilst successive invocations to NextKernel perform at most r
2 stages. Although

this technique can double the number of NextKernel invocations compared with
the straightforward solution, that is, host side synchronizations, the improve-
ment of coalesced global memory accesses is worthwhile because non-coalesced
accesses are serialized (up to 32, the number of thread per warp).

4 Experimental Results

The locality improved strategy for the 1D complex FFT above discussed has
been implemented and tested. Experiments have been conducted on a NVIDIA
GeForcer8800GTX GPU, which includes 16 multiprocessors of eight processors,
working at 1.35GHz with a device memory of 768MB. Each multiprocessor has
a 8KB parallel data cache (shared memory). The latency for global memory is
about 200 clock cycles, whereas the latency for the shared memory is only one
cycle.

Codes have been written in C using the version 1.0 of NVIDIAr CUDATM,
recently released [8]. The manufacturer provides a platform–tuned FFT library
(CUFFT) which allows the users to easily run FFT transformations on the
graphic platform. The CUFFT library offers an API modelled after FFTW [2, 3],
for different kinds of transformations and dimensions. We have chosen CUFFT
to be used with the purpose of measurement comparisons. Since the manufac-
turer recommends the transposition strategy for signals exceeding the supported
signal size limit, CUFFT for supported signal sizes can be considered an upper
limit for the transposition technique.

We have executed the forward and inverse FFT measuring the number of
GigaFLOPS obtained in these two operations, including the scale factors of
inverse FFT. A common metric [2] considers that the number of floating point
operations required by a radix-2 FFT is 5Nlog2(N). Thus, if the number of
seconds spent by the forward and inverse FFT are tFFT and tIFFT, the number of

GFLOPS for a N -sample signal will be GFLOPS = 2 5Nlog2(N)
tFFT+tIFFT

10−9. According
to the CUFFT/FFTW interface, two dimensionality parameters are taken into
consideration: the signal size (N) and the number of signals (b) of the given size
to be processed. In literature that is known as a batch of b signals. For example,
the transformation of four 1024-sample signals (N = 1024) can be permormed
by one FFT call using an input vector of 4096 coefficients arranged in a 4-signal
batch (b = 4). Observe that in this case only 10 FFT levels are carried out.
Therefore the measured GFLOPS can be calculated as

GFLOPS = 2b
5Nlog2(N)

tFFT + tIFFT
10−9.

Tables 1, 2 and 3 show the experimental results, measured in GFLOPS, by
using the previous definition. Table 1 compiles results corresponding to single-
signal tranforms in function of the signal size (from 1Ksamples to 64Msam-
ples). The performance of the proposed locality improved FFT implementation
is compared with this one of the CUFFT library. A similar comparison is shown



Table 1. Measured GFLOPS for the CUFFT library and the proposed locality im-
proved FFT version (liFFT). N represents the number of coefficients of the transform
for a batch of one single signal (b = 1). Void entries correspond to unsupported con-
figurations due to memory constraints.

Single signal of N coefficients

log
2
(N) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

CUFFT 2.11 0.68 1.41 2.88 5.52 8.97 14.1 17.9 15.8 21.5 25.0 20.9 18.4 18.4 - - -

liFFT 0.48 0.75 1.59 3.37 6.81 10.6 12.3 15.4 17.9 20.9 20.5 19.6 20.0 19.1 20.7 21.1 19.4

Table 2. Measured GFLOPS for the CUFFT library and the proposed locality im-
proved FFT version (liFFT). N represents the number of coefficients of the transform
for a batch of 8 signals (b = 8). Void entry corresponds to CUFFT unsupported con-
figuration.

Batch of 8 signals, N coefficients per signal

log
2
(N) 10 11 12 13 14 15 16 17 18 19 20 21 22 23

CUFFT 16.9 5.0 8.3 12.3 11.8 15.5 19.9 21.9 17.1 22.8 26.0 21.7 19.1 -

liFFT 3.64 5.56 8.97 12.6 15.7 18.8 18.3 19.4 20.2 20.7 21.1 19.4 19.3 19.2

in Table 2, where 8-signal batch transforms are considered. Note that for our
locality-improved implementation, the upper limit for the total number of coeffi-
cients (b×N) is imposed by the size of the device memory, being 226 coefficients.

Results in table 3 show, by means of two series of experiments, the effect of the
number of signals in the batch. In both series, the total number of coefficients (b×
N) to be processed has been kept constant and equal to 220 and 226 respectively.
Observe that, for 226 coefficients, CUFFT library does not support batching with
more than 4096 signals although all the coefficients fit in the global memory.

The proposed implementation makes a good exploitation of memory locality,
allowing a good scalability with the signal size. In fact, although neither of the
two methods exhibits a clear advantage, for several interesting situations the
locality improved implementation is able to provide better results than CUFFT.
Examples of such situations are when there is a high number of signals in a batch
and for very large signal size.

This ability to manage large size signal constitutes an important feature
of the proposed implementation. The CUFFT library is unable to perform the
transform beyond 8 million elements (223) [8] whereas our implementation can
manage up to 226 coefficients (about 64 million samples), making a better ex-
ploitation of the available device memory.

5 Related Work

The FFT represents a computationally intensive floating-point algorithm whose
generalized application makes it adequate for being accelerated on graphics plat-
forms. Due to its interest, several contributions can be found in the literature of



Table 3. Measured GFLOPS for the CUFFT library and the proposed locality im-
proved FFT version (liFFT). N represents the number of coefficients of each signal in
the batch. The total number of coefficients to be processed is fixed to 220 coefficients
(upper table) and 226 coefficients (lower table). Void entries correspond to unsupported
memory configurations due to the large number of signals in the batch.

220 coefficients, batch of 220/N signals

log
2
(N) 10 11 12 13 14 15 16 17 18 19 20

CUFFT 40.7 22.9 22.3 22.1 13.7 16.8 20.6 22.0 16.8 22.2 25.0

liFFT 18.5 17.4 18.1 18.7 19.3 19.9 18.9 19.4 19.8 20.5 20.4

226 coefficients, batch of 226/N signals

log
2
(N) 10 11 12 13 14 15 16 17 18 19 20

CUFFT - - - - 14.1 17.3 21.3 22.8 17.2 23.1 26.2

liFFT 19.0 18.1 18.8 19.4 20.1 20.6 19.7 20.1 20.6 20.9 21.2

the last years focused on porting FFT algorithms to graphics processing units.
In [9] very basic ideas of how to implement the FFT algorithm are collected.
In [7], implementations of the FFT in the context of image processing appli-
cations are presented using GPU shader programming. Also in other specific
contexts FFT has been developed on graphics hardware, like [10, 1, 5]. A discus-
sion about the FFT implementation, together with other algorithms, is found
in [4]. This last work tries to exploit the GPU memory hierarchy in order to im-
prove the performance of the implementations but using programming models
prior to CUDA.

6 Conclusions

Locality features of some implementations of the Fast Fourier Transform using
the NVIDIA CUDA programming model are discussed in this work. A radix-two
decimation-in-time FFT implementation is proposed, that can take advantage
of the GPU memory organization. With this purpose, the proposed implemen-
tation intends to exploit memory reference locality, making an optimized use
of the parallel data cache of the target device. Compared to the FFT library
provided by the graphics processor manufacturer, our proposal exhibits a good
scalability and it is able to achieve a better performance for certain signal sizes.
Moreover, it is able to work with signals of larger size than the manufacturer’s
implementation.

References

1. Fialka, O., Cadik, M.: FFT and Convolution Performance in Image Filtering on
GPU. Information Visualization (2006)

2. Fastest Fourier Transform in the West (FFTW). Available at: http://www.fftw.
org/



3. Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings
of the IEEE 93, 216–231 (2005)

4. Govindaraju, N.K., Larsen, S., Gray, J., Manocha, D.: A Memory Model for Scien-
tific Algorithms on Graphics Processors. Conference on Supercomputing (2006)

5. Jansen, T., von Rymon-Lipinski, B., Hanssen, N., Keeve, E.: Fourier volume ren-
dering on the GPU using a split-stream FFT. Vision, Modeling, and Visualization
Workshop (2004)

6. Moler, C.: HPC Benchmark. Available at: http://www.hpcchallenge.org/

presentations/sc2006/moler-slides.pdf. Conference on Supercomputing (2006)
7. Moreland, K., Angel., E.: The FFT on a GPU. ACM Conference on Graphics

Hardware (2003)
8. NVIDIA CUDA Homepage. Available at: http://developer.nvidia.com/object/

cuda.html

9. Spitzer, J.: Implementing a GPU-Efficient FFT. SIGGRAPH GPGPU Course
(2003)

10. Sumanaweera, T., Liu, D.: Medical Image Reconstruction with the FFT. GPU
Gems 2, 765–784 (2005)


