Skip to main content

Minimizing Average Flow Time in Sensor Data Gathering

  • Conference paper
Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS 2008)

Abstract

Building on previous work [Bonifaci et al., Minimizing flow time in the wireless gathering problem, STACS 2008] we study data gathering in a wireless network through multi-hop communication with the objective to minimize the average flow time of a data packet. We show that for any the problem is NP-hard to approximate within a factor better than , where m is the number of data packets. On the other hand, we give an online polynomial time algorithm that we analyze using resource augmentation. We show that the algorithm has average flow time bounded by that of an optimal solution when the clock speed of the algorithm is increased by a factor of five. As a byproduct of the analysis we obtain a 5-approximation algorithm for the problem of minimizing the average completion time of data packets.

Research supported by EU FET-project under contract no. FP6-021235-2 ARRIVAL and by the EU COST-action 293 GRAAL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop radio networks: an exponential gap between determinism and randomization. Journal of Computer and Systems Sciences 45(1), 104–126 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bar-Yehuda, R., Israeli, A., Itai, A.: Multiple communication in multihop radio networks. SIAM Journal on Computing 22(4), 875–887 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bender, M.A., Chakrabarti, S., Muthukrishnan, S.: Flow and stretch metrics for scheduling continuous job streams. In: Proc. 9th Symp. on Discrete Algorithms, pp. 270–279. SIAM, Philadelphia (1998)

    Google Scholar 

  4. Bermond, J., Galtier, J., Klasing, R., Morales, N., Pérennes, S.: Hardness and approximation of gathering in static radio networks. Parallel Processing Letters 16(2), 165–183 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: An approximation algorithm for the wireless gathering problem. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 328–338. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: Minimizing flow time in the wireless gathering problem. In: Proc. 25th Symp. on Theoretical Aspects of Computer Science, pp. 109–120. IBFI Dagstuhl (2008)

    Google Scholar 

  7. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  8. Chan, H.-L., Lam, T.W., Liu, K.-S.: Extra unit-speed machines are almost as powerful as speedy machines for competitive flow time scheduling. In: Proc. 17th Symp. on Discrete Algorithms, pp. 334–343. SIAM, Philadelphia (2006)

    Google Scholar 

  9. Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor scheduling to minimize flow time with epsilon resource augmentation. In: Proc. 36th Symp. on Theory of Computing, pp. 363–372. ACM, New York (2004)

    Google Scholar 

  10. Duckworth, W., Manlove, D., Zito, M.: On the approximability of the maximum induced matching problem. Journal of Discrete Algorithms 3(1), 79–91 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Florens, C., Franceschetti, M., McEliece, R.J.: Lower bounds on data collection time in sensory networks. IEEE Journal on Selected Areas in Communications 22, 1110–1120 (2004)

    Article  Google Scholar 

  12. Gargano, L., Rescigno, A.A.: Optimally fast data gathering in sensor networks. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 399–411. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of the ACM 47(4), 617–643 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Korteweg, P.: Online gathering algorithms for wireless networks. PhD thesis, Technische Universiteit Eindhoven (2008)

    Google Scholar 

  15. Anil Kumar, V.S., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: End-to-end packet-scheduling in wireless ad-hoc networks. In: Munro, J.I. (ed.) Proc. 15th Symp. on Discrete Algorithms, pp. 1021–1030. SIAM, Philadelphia (2004)

    Google Scholar 

  16. Lageweg, B.J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Computer-aided complexity classification of combinatorial problems. Communications of the ACM 25, 817–822 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. Journal of Computer and Systems Sciences 73(6), 875–891 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leung, J.Y.-T. (ed.): Handbook of Scheduling. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  19. McCullough, J., Torng, E.: SRPT optimally utilizes faster machines to minimize flow time. In: Munro, J.I. (ed.) Proc. 15th Symp. on Discrete Algorithms, pp. 350–358. SIAM, Philadelphia (2004)

    Google Scholar 

  20. Pelc, A.: Broadcasting in radio networks. In: Handbook of Wireless Networks and Mobile Computing, pp. 509–528. Wiley and Sons, Chichester (2002)

    Chapter  Google Scholar 

  21. Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. In: Proc. 20th Int. Parallel and Distributed Processing Symposium. IEEE, Los Alamitos (2006)

    Google Scholar 

  22. Schrage, L.: A proof of the optimality of the shortest remaining processing time discipline. Operations Research 16(3), 687–690 (1968)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L. (2008). Minimizing Average Flow Time in Sensor Data Gathering. In: Fekete, S.P. (eds) Algorithmic Aspects of Wireless Sensor Networks. ALGOSENSORS 2008. Lecture Notes in Computer Science, vol 5389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92862-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92862-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92861-4

  • Online ISBN: 978-3-540-92862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics