Skip to main content

Nonlinear Process Modelling and Control Using Neurofuzzy Networks

  • Reference work entry
Book cover Handbook of Natural Computing

Abstract

This chapter presents neurofuzzy networks for nonlinear process modeling and control. The neurofuzzy network uses local linear models to model a nonlinear process and the local linear models are combined using center of gravity (COG) defuzzification. In order to be able to provide accurate long-range predictions, a recurrent neurofuzzy network structure is developed. An advantage of neurofuzzy network models is that they are easy to interpret. Insight about the process characteristics at different operating regions can be easily obtained from the neurofuzzy network parameters. Based on the neurofuzzy network model, nonlinear model predictive controllers can be developed as a nonlinear combination of several local linear model predictive controllers that have analytical solutions. Applications to the modeling and control of a neutralization process and a fed-batch process demonstrate that the proposed recurrent neurofuzzy network is very effective in the modeling and control of nonlinear processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automatic Control 19:716–723

    Article  MathSciNet  MATH  Google Scholar 

  • Astrom KJ, Wittenmark B (1989) Adaptive control, 2nd edn. Addison-Wesley, Reading, MA

    Google Scholar 

  • Barron AR (1984) Predicted squared error: a criterion for automatic model selection. In: Farlow SJ (ed) Self organising methods. Marcel Dekker, New York, pp 87–103

    Google Scholar 

  • Bhat NV, McAvoy TJ (1990) Use of neural nets for dynamical modelling and control of chemical process systems. Comput Chem Eng 14:573–583

    Article  Google Scholar 

  • Billings SA, Voon WSF (1986) Correlation based model validity tests for non-linear models. Int J Control 44:235–244

    Article  MATH  Google Scholar 

  • Blanco A, Delgado M, Pegalajar MC (2001a) A real-coded genetic algorithm for training recurrent neural networks. Neural Netw 14:93–105

    Article  Google Scholar 

  • Blanco A, Delgado M, Pegalajar MC (2001b) Fuzzy automaton induction using neural networks. Int J Approx Reasoning 27:1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Brown M, Harris CJ (1994) Neurofuzzy adaptive modelling and control. Prentice Hall, Hemel Hempstead

    Google Scholar 

  • Bulsari AB (ed) (1995) Computer-aided chemical engineering. Neural networks for chemical engineers, vol 6. Elsevier, Amsterdam

    Google Scholar 

  • Clarke DW, Mohtadi C, Tuffs PS (1987) Generalised predictive control, Parts 1 and 2. Automatica 23:859–875

    Google Scholar 

  • Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signal Syst 2:303–314

    Article  MathSciNet  MATH  Google Scholar 

  • Eaton JW, Rawlings JB (1990) Feedback control of chemical processes using on-line optimization techniques. Comput Chem Eng 14:469–479

    Article  Google Scholar 

  • Elman JL (1990) Finding structures in time. Cogn Sci 14:179–211

    Article  Google Scholar 

  • Frasconi P, Gori M, Soda G (1992) Local feedback multilayered networks. Neural Comput 4:120–130

    Article  Google Scholar 

  • Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17

    Article  Google Scholar 

  • Gembicki FW (1974) Vector optimisation for control with performance and parameter sensitivity indices, Ph.D. Thesis, Case Western Reserve University

    Google Scholar 

  • Girosi F, Poggio T (1990) Networks and the best approximation property. Biol Cybern 63:169–179

    Article  MathSciNet  MATH  Google Scholar 

  • Harris CJ, Brown M, Bossley KM, Mills DJ, Ming F (1996) Advances in neurofuzzy algorithms for real-time modelling and control. Eng Appl Artif Intell 9:1–16

    Article  Google Scholar 

  • Hernandez E, Arkun Y (1993) Control of nonlinear systems using polynomial ARMA models. AIChE J 39:446–460

    Article  Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67

    Article  MATH  Google Scholar 

  • Horikawa S, Furuhashi T, Uchikawa Y (1992) On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. IEEE Trans Neural Netw 3:801–806

    Article  Google Scholar 

  • Jang JSR (1992) Self-learning fuzzy controllers based on temporal back propagation. IEEE Trans Neural Netw 3:714–723

    Article  Google Scholar 

  • Jang JSR, Sun CT (1995) Neuro-fuzzy modeling and control. Proc IEEE 83:378–406

    Article  Google Scholar 

  • Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Johansen TA, Foss BA (1993) Constructing NARMAX models using ARMAX models. Int J Control 58:1125–1153

    Article  MathSciNet  MATH  Google Scholar 

  • Kuipers B, Astrom K (1994) The composition and validation of heterogeneous control laws. Automatica 30:233–249

    Article  MATH  Google Scholar 

  • Leonard JA, Kramer MA (1990) Improvement of the back-propagation algorithm for training neural networks. Comput Chem Eng 14:337–341

    Article  Google Scholar 

  • Leontaris IJ, Billings SA (1987) Model selection and validation methods for nonlinear systems. Int J Control 45:311–341

    Article  Google Scholar 

  • Li WC, Biegler LT (1989) Multistep, Newton-type control strategies for constrained, nonlinear processes. Chem Eng Res Des 67:562–577

    Google Scholar 

  • Mak MW, Ku KW, Lu YL (1999) On the improvement of the real time recurrent learning algorithm for recurrent neural networks. Neurocomputing 24:13–36

    Article  MATH  Google Scholar 

  • Maner BR, Doyle FJ III (1997) Polymerization reactor control using autoregressive-plus Volterra-based MPC. AIChE J 43:1763–1784

    Article  Google Scholar 

  • Marquardt D (1963) An algorithm for least squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  MathSciNet  MATH  Google Scholar 

  • McAvoy TJ, Hsu E, Lowenthal S (1972) Dynamics of pH in controlled stirred tank reactor. Ind Eng Chem Process Des Dev 11:68–70

    Article  Google Scholar 

  • Morris AJ, Montague GA, Willis MJ (1994) Artificial neural networks: studies in process modelling and control. Chem Eng Res Des 72:3–19

    Google Scholar 

  • Nie J, Linkens DA (1993) Learning control using fuzzified self-organising radial basis function networks. IEEE Trans Fuzzy Syst 1:280–287

    Article  Google Scholar 

  • Omlin CW, Thornber KK, Giles CL (1998) Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks. IEEE Trans Fuzzy Syst 6:76–89

    Article  Google Scholar 

  • Park J, Sandberg IW (1991) Universal approximation using radial basis function networks. Neural Comput 3:246–257

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed processing. MIT Press, Cambridge, MA

    Google Scholar 

  • Saint-Donat J, Bhat N, McAvoy TJ (1991) Neural net based model predictive control. Int J Control 54:1452–1468

    Article  Google Scholar 

  • Scott GM, Ray WH (1993) Creating efficient nonlinear network process models that allow model interpretation. J Process Control 3:163–178

    Article  Google Scholar 

  • Sistu PB, Gopinath RS, Bequette BW (1993) Computational issues in nonlinear predictive control. Comput Chem Eng 17:361–366

    Article  Google Scholar 

  • Sjoberg J, Zhang Q, Ljung L, Benveniste A, Delyon B, Glorennec P, Hjalmarsson H, Juditsky A (1995) Nonlinear black-box modelling in system identification: a unified overview. Automatica 31:1691–1724

    Article  MathSciNet  Google Scholar 

  • Su HT, McAvoy TJ, Werbos P (1992) Long term prediction of chemical processes using recurrent neural networks: a parallel training approach. Ind Eng Chem Res 31:1338–1352

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modelling and control. IEEE Trans Syst Man Cybern 15:116–132

    MATH  Google Scholar 

  • Terwiesch P, Ravemark D, Schenker B, Rippin DWT (1998) Semi-batch process optimization under uncertainty: theory and experiments. Comput Chem Eng 22:201–213

    Article  Google Scholar 

  • Tian Y, Zhang J, Morris AJ (2002) Optimal control of a batch emulsion copolymerisation reactor based on recurrent neural network models. Chem Eng Process 41:531–538

    Article  Google Scholar 

  • Tsoi AC, Back AD (1994) Locally recurrent globally feedforward networks: a critical review of architectures. IEEE Trans Neural Netw 5:229–239

    Article  Google Scholar 

  • Wang LX (1994) Adaptive fuzzy systems and control: design and stability analysis. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Werbos PJ (1990) Backpropagation through time: what it does and how to do it. Proc IEEE 78:1550–1560

    Article  Google Scholar 

  • Yager RR, Filev DP (1994) Essentials of fuzzy modelling and control. Wiley, New York

    Google Scholar 

  • Zhang J (2004) A reliable neural network model based optimal control strategy for a batch polymerisation reactor. Ind Eng Chem Res 43:1030–1038

    Article  Google Scholar 

  • Zhang J (2005) Modelling and optimal control of batch processes using recurrent neuro-fuzzy networks. IEEE Trans Fuzzy Syst 13:417–427

    Article  Google Scholar 

  • Zhang J (2006) Modelling and multi-objective optimal control of batch processes using recurrent neuro-fuzzy networks. Int J Automation Comput 3:1–7

    Article  Google Scholar 

  • Zhang J, Morris AJ (1994) On-line process fault diagnosis using fuzzy neural networks. Intell Syst Eng 3:37–47

    Article  Google Scholar 

  • Zhang J, Morris AJ (1995) Fuzzy neural networks for nonlinear systems modelling. IEE Proc, Control Theory Appl 142:551–561

    Article  MATH  Google Scholar 

  • Zhang J, Morris AJ (1999) Recurrent neuro-fuzzy networks for nonlinear process modelling. IEEE Trans Neural Netw 10:313–326

    Article  Google Scholar 

  • Zhang J, Morris AJ, Martin EB (1998) Long term prediction models based on mixed order locally recurrent neural networks. Comput Chem Eng 22:1051–1063

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Zhang, J. (2012). Nonlinear Process Modelling and Control Using Neurofuzzy Networks. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_12

Download citation

Publish with us

Policies and ethics