Skip to main content

DNA Memory

  • Reference work entry
  • 10k Accesses

Abstract

This chapter summarizes the efforts that have been made so far to build a huge memory using DNA molecules. These efforts are targeted at increasing the size of the address space of a molecular memory and making operations on a specified word in the address space more efficient and reliable. The former issue should be solved by careful design of the base sequences of the address portions. The latter issue depends on the architecture of a molecular memory and the available memory operations. Concrete examples of molecular memories described in this chapter are classified into in vitro DNA memory, DNA memory on surfaces, and in vivo DNA memory. This chapter also describes the technology for designing base sequences of DNA molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aboul-ela F, Koh D, Tinoco I, Martin F (1985) Base-base mismatches. Thermodynamics of double helix formation for dCA3XA3G + dCT3YT3G (X, Y = A,C,G,T). Nucleic Acids Res 13:4811–4824

    Article  Google Scholar 

  • Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Article  Google Scholar 

  • Allawi H, SantaLucia J (1997) Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry 36:10581–10594

    Article  Google Scholar 

  • Allawi H, SantaLucia J (1998a) Nearest-neighbor thermodynamics of internal A.C mismatches in DNA: sequence dependence and pH effects. Biochemistry 37:9435–9444

    Article  Google Scholar 

  • Allawi H, SantaLucia J (1998b) Thermodynamics of internal C.T mismatches in DNA. Nucleic Acids Res 26:2694–2701

    Article  Google Scholar 

  • Allawi H, SantaLucia J (1998c) Nearest neighbor thermodynamic parameters for internal G.A mismatches in DNA. Biochemistry 37:2170–2179

    Article  Google Scholar 

  • Andronescu M, Aguirre-Hernandez R, Condon AE, Hoos HH (2003) RNAsoft: a suite of RNA secondary structure prediction and design software tools. Nucleic Acids Res 31:3416–3422

    Article  Google Scholar 

  • Andronescu M, Fejes AP, Hutter F, Hoos HH, Condon AE (2004) A new algorithm for RNA secondary structure design. J Mol Biol 336:607–624

    Article  Google Scholar 

  • Arita M, Kobayashi S (2002) DNA sequence design using templates. New Gen Comput 20:263–277

    Article  MATH  Google Scholar 

  • Arita M, Ohashi Y (2004) Secret signatures inside genomic DNA. Biotechnol Prog 20:1605–1607

    Article  Google Scholar 

  • Arita M, Nishikawa A, Hagiya M, Komiya K, Gouzu H, Sakamoto K (2000) Improving sequence design for DNA computing. In Proceedings of the genetic and evolutionary computation conference (GECCO-2000) Orlando, pp 875–882

    Google Scholar 

  • Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2:275–284

    Article  Google Scholar 

  • Baum EB (1995) Building an associative memory vastly larger than the brain. Science 268:583–585

    Article  Google Scholar 

  • Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423–429

    Article  Google Scholar 

  • Bommarito S, Peyret N, SantaLucia J (2000) Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res 28:1929–1934

    Article  Google Scholar 

  • Borer P, Dengler B, Tinoco I, Uhlenbeck O (1974) Stability of ribonucleic acid double-stranded helices. J Mol Biol 86:843–853

    Article  Google Scholar 

  • Braich RS, Chelyapov N, Johnson C, Rothemund PWK, Adleman L (2002) Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296:499–502

    Article  Google Scholar 

  • Braich RS, Johnson C, Rothemund PWK, Hwang D, Chelyapov N, Adleman L (2000) Solution of a satisfiability problem on a gel-based DNA computer. Proceedings of the 6th International Workshop on DNA-Based Computers, LNCS 2054: Berlin, pp 27–42

    Google Scholar 

  • Brenneman A, Condon AE (2002) Strand design for bio-molecular computation. Theor Comput Sci 287:39–58

    Article  MathSciNet  MATH  Google Scholar 

  • Clelland CT, Risca V, Bancroft C (1999) Hiding messages in DNA microdots. Nature 399:533–534

    Article  Google Scholar 

  • Crick FH, Griffith JS, Orgel LE (1957) Codes without commas. Proc Natl Acad Sci USA 43:416–421

    Article  MathSciNet  Google Scholar 

  • Cukras A, Faulhammer D, Lipton R, Landweber L (1999) Chess games: a model for RNA based computation. Biosystems 52:35–45

    Article  Google Scholar 

  • Deaton R, Murphy RC, Rose JA, Garzon M, Franceschetti DT, Stevens SEJ (1996) Genetic search for reliable encodings for DNA-based computation. In First genetic programming conference, Stanford, pp 9–15

    Google Scholar 

  • Deaton R, Murphy RC, Garzon M, Franceschetti DR, Stevens SEJ (1998) Good encodings for DNA-based solutions to combinatorial problems. Proceedings of the second annual meeting on DNA based computers, DIMACS: series in discrete mathematics and theoretical computer science, vol 44, Princeton, pp 247–258

    Google Scholar 

  • Dirks RM, Lin M, Winfree E, Pierce NA (2004) Paradigms for computational nucleic acid design. Nucleic Acids Res 32:1392–1403

    Article  Google Scholar 

  • Faulhammer D, Cukras A, Lipton R, Landweber L (2000) Molecular computation: RNA solutions to chess problems. Proceedings of the Natl Acad Sci USA 97:1385–1389

    Article  Google Scholar 

  • Feldkamp U, Saghafi S, Rauhe H (2001) DNASequenceGenerator – a program for the construction of DNA sequences. Proceedings 7th International workshop on DNA-based computers, LNCS 2340, Tampa, pp 23–32

    Google Scholar 

  • Frutos A, Liu Q, Thiel A, Sanner A, Condon AE, Smith L, Corn RM (1997) Demonstration of a word design strategy for DNA computing on surfaces. Nucleic Acids Res 25:4748–4757

    Article  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  Google Scholar 

  • Garzon M, Deaton R, Neather P, Franceschetti DR, Murphy RC (1997) A new metric for DNA computing. In Proceedings of the 2nd Genetic Programming Conference, San Mateo, pp 472–478

    Google Scholar 

  • Garzon M, Deaton R, Nino L, Stevens SEJ, Wittner M (1998) Encoding genomes for DNA computing. In Proceedings of the 3rd Genetic Programming Conference, San Mateo, pp 684–690

    Google Scholar 

  • Golomb S, Gordon B, Welch L (1958) Comma-free codes. Can J Math 10:202–209

    Article  MathSciNet  MATH  Google Scholar 

  • Goodman RP, Heilemann M, Doose S, Erben CM, Kapanidis AN, Turberfield AJ (2008) Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol 3:93–96

    Article  Google Scholar 

  • Hagiya M, Arita M, Kiga D, Sakamoto K, Yokoyama S (1999) Towards parallel evaluation and learning of boolean μ-formulas with molecules. DIMACS Series Discrete Math Theor Comput Sci 48:57–72

    Google Scholar 

  • He Y, Ye T, Su M, Zhang C, Ribbe AE, Jiang W, Mao C (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–201

    Article  Google Scholar 

  • Head T, Gal S (2001) Aqueous computing: writing into fluid memory. Bull EATCS 75:190–198

    MathSciNet  MATH  Google Scholar 

  • Heider D, Barnekow A (2007) DNA-based watermarks using the DNA-crypt algorithm. BMC Bioinformatics 8:176

    Article  Google Scholar 

  • Heider D, Barnekow A (2008) DNA watermarks: a proof of concept. BMC Mol Biol 9:40

    Article  Google Scholar 

  • Heider D, Kessler D, Barnekow A (2008) Watermarking sexually reproducing diploid organisms. Bioinformatics 24:1961–1962

    Article  Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  Google Scholar 

  • Kameda A, Kashiwamura S, Yamamoto M, Ohuchi A, Hagiya M (2008a) Combining randomness and a high-capacity DNA memory. 13th International meeting on DNA computing, DNA13, LNCS 4848, Berlin, pp 109–118

    Google Scholar 

  • Kameda A, Yamamoto M, Ohuchi A, Yaegashi S, Hagiya M (2008b) Unravel four hairpins! Nat Comput 7:287–298

    Article  MathSciNet  Google Scholar 

  • Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SPA, Gingeras TR (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919

    Article  Google Scholar 

  • Kashiwamura S, Kameda A, Yamamoto M, Ohuchi A (2004) Two-step search for DNA sequence design. IEICE TRANSACTIONS Fundam Electron Commun Comput Sci E87-A:1446–1453

    Google Scholar 

  • Kawashimo S, Ng YK, Ono H, Sadakane K, Yamashita M (2009) Speeding up local-search type algorithms for designing DNA sequences under thermodynamical constraints. Proceedings of the 14th International meeting on DNA computing, LNCS 5347, Prague, pp 168–179

    Google Scholar 

  • Kawashimo S, Ono H, Sadakane K, Yamashita M (2008) Dynamic neighborhood searches for thermodynamically designing DNA sequence. 13th International meeting on DNA computing, DNA13, LNCS 4848, Memphis, pp 130–139

    Google Scholar 

  • Kitajima T, Takinoue M, Shohda K, Suyama A (2008) Design of code words for DNA computers and nanostructures with consideration of hybridization kinetics. 13th International meeting on DNA computing, DNA13, LNCS 4848, Berlin, pp 119–129

    Google Scholar 

  • Kobayashi S, Kondo T, Arita M (2003) On template method for DNA sequence design. Proceedings of the 8th International workshop on DNA-based computers, LNCS 2568, Berlin, pp 205–214

    Google Scholar 

  • Komiya K, Sakamoto K, Kameda A, Yamamoto M, Ohuchi A, Kiga D, Yokoyama S, Hagiya M (2006) DNA polymerase programmed with a hairpin DNA incorporates a multiple-instruction architecture into molecular computing. Biosystems 83:18–25

    Article  Google Scholar 

  • Kubota M, Hagiya M (2005) Minimum basin algorithm: an effective analysis technique for DNA energy landscapes. Proceedings of the 10th International workshop on DNA computing, LNCS 3384, New York, pp 202–214

    Google Scholar 

  • Leier A, Richter C, Banzhaf W, Rauhe H (2000) Cryptography with DNA binary strands. Biosystems 57:13–22

    Article  Google Scholar 

  • Li M, Lee HJ, Condon AE, Corn RM (2002) DNA word design strategy for creating sets of non-interacting oligonucleotides for DNA microarrays. Langmuir 18:805–812

    Article  Google Scholar 

  • Li Y, Agrawal S (1995) Oligonucleotides containing G.A pairs: effect of flanking sequences on structure and stability. Biochemistry 34:10056–10062

    Article  Google Scholar 

  • Li Y, Zon G, Wilson W (1991) Thermodynamics of DNA duplexes with adjacent G.A mismatches. Biochemistry 30:7566–7572

    Article  Google Scholar 

  • Lipton RJ (1995) DNA solution of hard computational problems. Science 268:542–545

    Article  Google Scholar 

  • Liu W, Wang S, Gao L, Zhang F, Xu J (2003) DNA sequence design based on template strategy. J Chem Inf Comput Sci 43:2014–2018

    Article  Google Scholar 

  • Lyngso R, Zuker M, Pedersen C (1999) Fast evaluation of internal loops in RNA secondary structure prediction. Bioinformatics 15:440–445

    Article  Google Scholar 

  • Marathe A, Condon AE, Corn RM (2001) On combinatorial DNA word design. J Comput Biol 8:201–219

    Article  Google Scholar 

  • Pancoska P, Moravek Z, Moll UM (2004) Rational design of DNA sequences for nanotechnology, microarrays and molecular computers using Eulerian graphs. Nucleic Acids Res 32:4630–4645

    Article  Google Scholar 

  • Peyret N, Seneviratne P, Allawi H, SantaLucia J (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. Biochemistry 38:3468–3477

    Article  Google Scholar 

  • Rinker S, Ke Y, Liu Y, Chhabra R, Yan H (2008) Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat Nanotechnol 3:418–422

    Article  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  Google Scholar 

  • Ruben AJ, Freeland SJ, Landweber LF (2001) PUNCH: An evolutionary algorithm for optimizing bit set selection. Proceedings of the 7th International workshop on DNA-based computers, LNCS 2340, Tampa, pp 150–160

    Google Scholar 

  • SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95:1460–1465

    Article  Google Scholar 

  • SantaLucia J, Allawi H, Seneviratne P (1996) Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35:3555–3562

    Article  Google Scholar 

  • Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588

    Article  Google Scholar 

  • Seeman N (1990) De novo design of sequences for nucleic acid structural engineering. J Biomol Struct Dyn 8:573–581

    Article  Google Scholar 

  • Seeman NC, Lukeman PS (2005) Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale. Rep Prog Phys 68:237–270

    Article  Google Scholar 

  • Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366

    Article  Google Scholar 

  • Sen D, Gilbert W (1990) A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature 344:410–414

    Article  Google Scholar 

  • Senior M, Jones R, Breslauer K (1988) Influence of dangling thymidine residues on the stability and structure of two DNA duplexes. Biochemistry 27:3879–3885

    Article  Google Scholar 

  • Shin JS, Pierce NA (2004) Rewritable memory by controllable nanopatterning of DNA. Nano Lett 4:905–909

    Article  Google Scholar 

  • Simmel FC, Dittmer WU (2005) DNA nanodevices. Small 1:284–299

    Article  Google Scholar 

  • Stemmer WP, Crameri A, Ha KD, Brennan TM, Heyneker HL (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164:49–53

    Article  Google Scholar 

  • Sugimoto N, Nakano S, Yoneyama M, Honda K (1996) Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res 24:4501–4505

    Article  Google Scholar 

  • Takinoue M, Suyama A (2006) Hairpin-DNA memory using molecular addressing. Small 2:1244–1247

    Article  Google Scholar 

  • Takinoue M, Suyama A (2004) Molecular reactions for a molecular memory based on hairpin DNA. Chem-Bio Inform J 4:93–100

    Article  Google Scholar 

  • Takinoue M, Kiga D, Shohda K, Suyama A (2008) Experiments and simulation models of a basic computation element of an autonomous molecular computing system. Phys Rev E 78:041921

    Article  Google Scholar 

  • Tanaka F, Kameda A, Yamamoto M, Ohuchi A (2004) Thermodynamic parameters based on a nearest-neighbor model for DNA sequences with a single-bulge loop. Biochemistry 43:7143–7150

    Article  Google Scholar 

  • Tanaka F, Kameda A, Yamamoto M, Ohuchi A (2005) Design of nucleic acid sequences for DNA computing based on a thermodynamic approach. Nucleic Acids Res 33:903–911

    Article  Google Scholar 

  • Tulpan D, Hoos H (2003) Hybrid randomised neighbourhoods improve stochastic local search for DNA code design. In: Advances in artificial intelligence: 16th conference of the Canadian society for computational studies of intelligence, Berlin, vol 2671, pp 418–433

    Google Scholar 

  • Tulpan D, Hoos H, Condon A (2003) Stochastic local search algorithms for DNA word design. Proceedings of the 8th International workshop on DNA-based computers, LNCS 2568, Berlin, pp 229–241

    Google Scholar 

  • Uejima H, Hagiya M (2004) Secondary structure design of multi-state DNA machines based on sequential structure transitions. Proceedings of the 9th International workshop on DNA-based computers, LNCS 2943, Berlin, pp 74–85

    Google Scholar 

  • Venkataraman S, Dirks RM, Rothemund PWK, Winfree E, Pierce NA (2007) An autonomous polymerization motor powered by DNA hybridization. Nat Nanotechnol 2:490–494

    Article  Google Scholar 

  • Watson J, Crick F (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  Google Scholar 

  • Wong P, Wong K-K, Foote H (2003) Organic data memory using the DNA approach. Commun ACM 46(1):95–98

    Article  Google Scholar 

  • Yachie N, Sekiyama K, Sugahara J, Ohashi Y, Tomita M (2007) Alignment-based approach for durable data storage into living organisms. Biotechnol Prog 23:501–505

    Article  Google Scholar 

  • Yamamoto M, Kashiwamura S, Ohuchi A, Furukawa M (2008) Large-scale DNA memory based on the nested PCR. Nat Comput 7:335–346

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshida H, Suyama A (2000) Solution to 3-SAT by breadth first search. DIMACS Ser Discrete Math Theor Comput Sci 54:9–22

    MathSciNet  Google Scholar 

  • Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    Article  Google Scholar 

  • Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318:1121–1125

    Article  Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Article  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masanori Arita , Masami Hagiya , Masahiro Takinoue or Fumiaki Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Arita, M., Hagiya, M., Takinoue, M., Tanaka, F. (2012). DNA Memory. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_38

Download citation

Publish with us

Policies and ethics