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Bell’s Inequalities: Foundations and Quantum
Communication

Časlav Brukner and Marek̇Zukowski

Abstract For individual events quantum mechanics makes only probabilistic pre-
dictions. Can one go beyond quantum mechanics in this respect? This question
has been a subject of debate and research since the early daysof the theory. Ef-
forts to construct deeper, realistic, level of physical description, in which individ-
ual systems have, like in classical physics, preexisting properties revealed by mea-
surements are known as hidden-variable programs. Demonstrations that a hidden-
variable program necessarily requires outcomes of certainexperiments to disagree
with the predictions of quantum theory are called “no-go theorems”. The Bell theo-
rem excludes local hidden variable theories. The Kochen-Specker theorem excludes
noncontextual hidden variable theories. In local hidden-variable theories faster-that-
light-influences are forbidden, thus the results for a givenmeasurement (actual, or
just potentially possible) are independent of the settingsof other measurement de-
vices which are at space-like separation. In noncontextualhidden-variable theories
the predetermined results of a (degenerate) observable areindependent of any other
observables that are measured jointly with it.

It is a fundamental doctrine of quantum information sciencethat quantum com-
munication and quantum computation outperforms their classical counterparts. If
this is to be true, some fundamental quantum characteristics must be behind better-
than-classical performance of information processing tasks. This chapter aims at
establishing connections between certain quantum information protocols and foun-
dational issues in quantum theory. After a brief discusion of the most common mis-
interpretations of Bell’s theorem and a discussion of what its real me aning is, it
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will be demonstratedhow quantum contextuality and violations of local realism can
be used as useful resourcesin quantum information applications. In any case, the
readers should bear in mind that this chapter is not a review of the literature of the
subject, but rather a quick introduction.

1 Introduction

Which quantum states are useful for quantum information processing? All non-
separable states? Only distillable non-separable states?Only those which violate
constraints imposed by local realism? Entanglement is the most distinct feature of
quantum physics with respect to the classical world [1]. On one hand, entangled
states violate Bell inequalities, and thus rule out local realistic explanation of quan-
tum mechanics. On the other hand, they enable certain communication and com-
putation tasks to have an efficiency not achievable by the laws of classical physics.
Intuition suggests that these two aspects, the fundamentalone, and the one associ-
ated with applications, are intimately linked. It is natural to assume that the quantum
states which allow the no-go theorems of quantum theory, such as Kochen-Specker,
Bell’s or Greenberger-Horne-Zeilinger theorem should also be useful for quantum
information processing. If this were not true, one might expect that the efficiency of
quantum information protocols could be simulatable by classical, essentially local
realistic or noncontextual models, and thus achievable already via classical means.
This intuitive reasoning is supported by the results of, forexample, Acinet. al [2]:
violation of a Bell’s inequality is a criterium for the security of quantum key distri-
bution protocols. Also it was shown that violation of Bell’sinequalities by a quan-
tum state implies that pure-state entanglement can be distilled from it [3] and that
Bell’s inequalities are related to optimal solutions of quantum state targeting [4].
In this overview we will give other examples that demonstrate the strong link be-
tween fundamental features of quantum states and their applicabilities in quantum
information protocols, such as in quantum communication complexity problems,
quantum random access, or certain quantum games.

2 Quantum predictions for two qubits systems

To set the stage for our story let us first describe two-qubitssystems in full detail.
We shall present predictions for all possible local yes-no experiments on two

spin-1/2 systems(in modern terminology, qubits) for all possible quantum states,
i.e. from the pure maximally entangled singlet state (or theBohm-EPR state), via
factorizable (i.e. non-entangled) states, up to any mixed state. This will enable us
to reveal the distinguishing traits of the quantum predictions for entangled states of
the simplest possible compound quantum system. The formalism can be applied to
any system consisting of two subsystems, such that each of them is described by a
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two dimensional Hilbert space. We choose the spin-1/2 convention to simplify the
description.

2.1 Pure states

An important tool simplifying the analysis of the pure states of two subsystems is
the so-called Schmidt decomposition.

2.1.1 Schmidt decomposition

For any nonfactorizable (i.e., entangled) pure state,|ψ〉 of pair of quantum sub-
systems, one described by a Hilbert space of dimensionN, the other by space of
dimensionM, N ≤ M, it is always possible to find preferred bases, one basis for
the first system, another one for the second, such that the state becomes a sum of
bi-orthogonal terms, i.e.

|ψ〉=
N

∑
i=1

ci |ai〉1 |bi〉2 (1)

with n〈xi |x j〉n = δi j , for x= a,b andn= 1,2. It is important to stress that the appro-
priate single subsystem bases, here|ai〉1 and

∣

∣b j
〉

2, depend upon the state that we
want to Schmidt-decompose.

The ability to Schmidt decompose the state is equivalent to awell known fact
form matrix algebra, that anyN×M matrix Â can be always put into a diagonal
form D̂, by applying a pair of unitary transformations:∑N

j=1 ∑M
k=1Ui j A jkUkl = Dl δil .

The interpretation of the above formula could be put as follows. If the quantum
pure state of two systems is non-factorizable, then there exist a pair of local observ-
ables (for system 1 with eigenstates|ai〉, and for system 2 with eigenstates|bi〉) such
that the results of their measurement are perfectly correlated.

The method of Schmidt decomposition allows one to put every pure normalized
state of two spins into

|ψ〉= cosα/2|+〉1 |+〉2+ sinα/2|−〉1 |−〉2 . (2)

Schmidt decomposition generally allows the coefficients tobe real. This is achiev-
able via trivial phase transformations of the preferred bases.

2.2 Arbitrary states

Systems can be in mixed states. Such states describe situations in which there does
not exist anynondegenerateobservable for which measurement result is determin-
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istic. This is the case when the system can be with various probabilitiesP(x) ≥ 0
in some non-equivalent states|ψ(x)〉, with ∑x P(x) = 1. Mixed states are repre-
sented by self adjoint density non-negative operatorsρ = ∑x P(x)|ψ(x)〉〈ψ(x)|. As
Tr|ψ(x)〉〈ψ(x)|= 1 one has Trρ = 1.

Let us present in detail properties of mixed states of the twospin-1/2 systems.
Any self adjoint operator for one spin-1/2 particle is a linear combination of the
Pauli matricesσi , i = 1,2,3 and the identity operator,σ0 = 1, with real coefficients.
Thus, any self adjoint operator in the tensor product of the two spin-1/2 Hilbert
spaces, must be a real linear combination of all possible products of the operators
σ1

µσ2
ν , where the Greek indices run from 0 to 3, and the superscriptsdenote the

particle. As the trace ofσi is zero we arrive at the following form of the general
density operator for two spin 1/2 systems:

ρ =
1
4

(

σ (1)
0 σ (2)

0 + r ·σ (1)σ (2)
0 +σ (1)

0 s·σ (2) +
3

∑
m,n=1

Tnmσ (1)
n σ (2)

m

)

, (3)

where,r , sare real three dimensional vectors andr ·σ ≡ ∑3
i=1 r iσi . We shall use the

tensor product symbol⊗ only sparingly, only whenever it is deemed necessary. The
condition Trρ = 1 is satisfied thanks to the first term.

Since the average of any real variable which can have only twovalues+1 and−1
cannot be larger than 1 and less than−1, the real coefficientsTmn satisfy relations

−1≤ Tmn= Trρσ (1)
n σ (2)

m ≤ 1, (4)

and they form a matrix which will be denoted byT̂. One also has

−1≤ rn = Trρσ (1)
n ≤ 1, (5)

and
−1≤ sm = Trρσ (2)

m ≤ 1. (6)

2.2.1 Reduced density matrices for subsystems

A reduced density matrix represents the local state of a compound system. If we
have two subsystems, then the average of any observable which pertains to the first
system only, i.e. of the formA⊗ 1, where1 is the identity operation for system
2, can be expressed as follows Tr12(A⊗1ρ) = Tr1[A(Tr2ρ)]. Here Tri represents a
trace with respect to systemi. As trace is a basis independent notion, one can always
choose a factorizable basis, and therefore split the trace calculation into two stages.

The reduced one particle matrices for spins 1/2, are of the following form:

ρ1 ≡ Tr2ρ =
1
2
(1+ r ·σ (1)), (7)

ρ2 ≡ Tr1ρ =
1
2
(1+ s·σ (2)). (8)
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with r ands the two local Bloch vectors of the spins.
Let us denote the eigenvectors of the spin projection along directiona of the first

spin as:|ψ(±1,a)〉1. They are defined by the relation

a ·σ (1) |ψ(±1,a)〉1 =±1|ψ(±1,a)〉1 , (9)

wherea is a real vector of unit length (i.e.a ·σ1 is a Pauli operator in the direction
of a). The probability of a measurement of this Pauli observableto give a result±1
is given by

P(±1|a)1 = Tr1ρ1π (1)
(a,±1) =

1
2
(1±a · r), (10)

and it is positive for arbitrarya, if and only if, the norm ofr satisfies

|r | ≤ 1. (11)

Hereπ (1)
(a,±1) is the projector|ψ(±1,a)〉11〈ψ(±1,a)|.

2.3 Local measurements on two spins

The probabilities for local measurements to give the resultl =±1 for particle 1 and
the resultm=±1 for particle 2, under specified local settings,a andb respectively,
of the quantization axes are given by:

P(l ,m|a,b)1,2 = Trρπ (1)
(a,l)π

(2)
(b,m)

=
1
4

(

1+ la· r +mb ·s+ lma· T̂b
)

, (12)

whereT̂b denotes the transformation of the column vectorb by the matrixT̂ (we
treat here Euclidean vectors as column matrices).

One can simplify all these relations by performing suitablelocal unitary trans-
formations upon each of the subsystems, i.e. via factorizable unitary operators
U (1)U (2). It is well known that any unitary operation upon a spin 1/2 is equiva-
lent to a three dimensional rotation in the space of Bloch vectors. In other words,
for any real vectorw

U(Ô)w ·σU(Ô)† = (Ôw)·σ , (13)

whereÔ is the orthogonal matrix of the rotation. If the density matrix is subjected to
such a transformations on either spins subsystem, i.e. to theU1(Ô1)U2(Ô2) trans-
formation, the parametersr ,sandT̂ transform themselves as follows

r ′ = Ô1r ,

s′ = Ô2s,

T̂′ = Ô1T̂ÔT
2 . (14)
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Thus, for an arbitrary state, we can always choose such factorizable unitary trans-
formation that the corresponding rotations (i.e. orthogonal transformations) will di-
agonalize the correlation tensor (matrix)T̂. This can be seen as another application
of Schmidt’s decomposition, this time in case of second ranktensors.

The physical interpretation of the above is that one can always choose two (local)
systems of coordinates, one for the first particle, the otherfor the second particle, in
such a way that thêT matrix will be diagonal.

Let us note that one can decompose the two spin density matrixinto:

ρ = ρ1⊗ρ2+
1
4

3

∑
m,n=1

Cnmσ1
n ⊗σ2

m, (15)

i.e., it is a sum of the product of the two reduced density matrices and a term̂C =
T̂ − rsT which is responsible for correlation effects.

Any density operator satisfies the inequality1
d < Trρ2 ≤ 1, whered is the di-

mension of the Hilbert space in which it acts, i. e. of the system it describes. The
value of Trρ2 is a measure of the purity of the quantum state. It is equal to 1only
for single dimensional projectors, i.e. the pure states. Inthe studied case one must
have

|r |2+ |s|2+ ||T̂||2 ≤ 3. (16)

For pure states, represented by Schmidt decomposition (2),T̂ is diagonal with
entriesTxx =−sinα, Tyy = sinα andTzz= 1, whereasr = s, and theirzcomponent
is non-zero:sz = mz = cosα. Thus in case of a maximally entangled statesT̂ has
only diagonal entries equal to+1 and−1. In the case of the singlet state,

|ψ〉= 1√
2
(|+〉1 |−〉2−|−〉1 |+〉2) , (17)

which can be obtained from eq. (2), by puttingα = − π
2 and rotating one of the

subsystems such that|+〉 and|−〉 interchange (This is equivalent to a 180 degrees
rotation with respect to the axisx; See above (14)), the diagonal elements of the
correlation tensor are all−1.

3 Einstein-Podolsky-Rosen Experiment

In their seminal 1935 paper [5] entitled”Can quantum-mechanical description of
physical reality be considered complete?”Einstein, Podolsky and Rosen (EPR) con-
sider quantum systems consisting of two particles such that, while neither position
nor momentum of either particle is well defined, both the difference of their posi-
tions and the sum of their momenta are both precisely defined.It then follows that
measurement of either position or momentum performed on, say, particle 1 immedi-
ately implies for particle 2 a precise position or momentum respectively even when
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the two particles are separated by arbitrary distances without any actual interaction
between them.

We shall present the EPR argumentation for incompleteness of quantum mechan-
ics in the language of spins 1/2. This has been done by Bohm in 1952. A two qubit
example of an EPR state is the singlet state (17). Propertiesof a singlet can be in-
ferred without mathematical considerations given above. This is a state of zero total
spin. Thus measurements of the same component of the two spins must always give
opposite values - this is simply the conservation of angularmomentum at work. In
terms of the language od Pauli matrices the product of the local results is then al-
ways−1. We have (infinitely many)prefect (anti-)correlations. We assume that the
two spins are very far away, but nevertheless in the singlet state.

After the translation into the Bohm’s example EPR argument runs as follows.
Here are their premises:

1. Perfect correlationsIf whatever spin components of particles 1 and 2, then with
certainly the outcomes will be found to be perfectly anti-correlated.

2. Locality: ”Since at the time of measurements the two systems no longerinteract,
no real change can take place in the second system in consequence of anything
that may be done to the first system.”

3. Reality: ”If, without in any way disturbing a system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical quantity, then there
exists an element of physical reality corresponding to thisphysical quantity.”

4. Completeness: ”Every element of the physical reality must have a counterpart in
the [complete] physical theory.”

In contrast to the last three premises which, thought they are quite plausible, are
still indications of a certain philosophical viewpoint, the first premise is a statement
about a well established property of a singlet state.

The EPR argument is as follows. Because of the perfect anti-correlations (1.), we
can predict with certainty the result of measuring eitherxcomponent orycomponent
of spin of particle 2 by previously choosing to measure the same quantity of particle
1. By locality (2.), the measurement of particle 1 cannot cause any real change in
particle 2. This implies that by the premise (3.), both thex andthe y components
of spin of particle 2 are elements of reality. This is also thecase for particle 1 by
a parallel argument where particle 1 and 2 interchange theirroles. Yet, (according
to Heisenberg’s uncertainty principle) there is no quantumstate of a single spin in
which bothx andy spin components have definite values. Therefore, by premise(4.)
quantum mechanics cannot be a complete theory.

In his answer [6], published in the same year and under the same title as of the
EPR paper, Bohr criticized the EPR concept of ”reality” as assuming the systems
having intrinsic properties independently of whether theyare observed or not and
he argued for ”the necessity of a final renunciation of the classical ideal of causality
and a radical revision of our attitude towards the problem ofphysical reality.” Bohr
pointed out that the wording of the criterion of physical reality (3.) proposed by
EPR contains an ambiguity with respect to the expression ”without in any way dis-
turbing the system”. And, while, as Bohr wrote, there is ”no question of mechanical
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disturbance of the system”, there is ”the question ofan influence on the very con-
ditions which define the possible types of predictions regarding the future behavior
of the system.” Bohr thus pointed out that the results of quantum measurements, in
contrast to these of classical measurements, depend on the complete experimental
arrangement (context), which can even be non-local as in theEPR case. Before any
measurement is performed only the correlations between thespin components of
two particles, but not spin components of individual particles are defined. Thex or
y component (but never both) of an individual particle becomes defined only when
the respective observable of the distant particle is measured.

Perhaps the most clear way to see how strongly the philosophical viewpoints
of EPR and Bohr differ is in their visions of the future development of quantum
physics. While EPR wrote: ”We believe that such [complete] atheory is possible”,
Bohr’s opinion is that (his) complementarity ”provides room for new physical law,
the coexistence of which might at first sight appear irreconcilable with the basic
principles of science.”

4 Bell’s theorem

Bell’s theorem can be thought of as a disproof of the validityof EPR ideas. Elements
of physical reality cannot be an internally consistent notion. A broader interpretation
of this result is that a local and realistic description of nature, at the fundamental
level, is untenable. Further consequences are that there exist quantum processes
which cannot be medelled by any classical ones, not necessarily physical processes,
but also some classical computer simulations with a communication constraint. This
opened the possibility of development of quantum communication.

We shall present now a derivation of Bell’s inequalities. The stress will be put
on clarification of the underlying assumptions. These will be presented in the most
reduced form.

4.1 Thought experiment

At two measuring stationsA andB, which are far away from each other, two char-
acters Alice and Bob observe simultaneous flashy appearances of numbers+1 or
−1 at the displays of their local devices (or the monitoring computers). The flashes
appear in perfect coincidence (with respect to a certain reference frame). In the
middle between the stations is something that they call “source”. When it is ab-
sent, or switched off, the numbers±1’s do not appear at the displays. The activated
source always causes two flashes, one atA, one atB. They appear slightly after a
relativistic retardation time with respect to the activation of the source, never be-
fore. Thus there is enough “evidence” for Alice and Bob that the source causes the
flashes. The devices at the stations have a knob which can be put in two positions:
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Bob
Entangled

pairs

outcomes settings

Alice

1

1       2

-1

1

1       2

-1

1

outcomessettings

Fig. 1 Test of Bell’s inequalities. Alice and Bob are two separatedparties who share entangled
particles. Each of them is free to choose two measurement settings 1 and 2 and they observe
flashes in their detection station which indicate one of the two possible measurement outcomes +1
or -1.

m= 1 or 2 atA station, andn= 1 or 2 atB. Local procedures used to generate ran-
dom choices of local knob positions are equivalent toindependent, fair coin tosses.
Thus, each of the four possible values of the pairn,m are equally likely, i.e. the
probabilityP(n,m) = P(n)P(m) = 1

4. The “tosses”, and knob settings, are made at
random times, and often enough, so that the information on these is never avail-
able at the source during its activation periods (the tossesand settings cannot have
a causal influence on the workings of source). The local measurement data (setting,
result, moment of measurement) are stored and very many runsof the experiment
are performed.

4.1.1 Assumptions leading to Bell’s inequalities

A conciselocal realisticdescription of such an experiment would use the following
assumptions [7]:

1. We assumerealism, which is any logically self-consistent model that allows one
to useeightvariables in the theoretical description of the experiment: Am,n, Bn,m,
wheren,m= 1,2. The variableAm,n gives the value,±1, which could be obtained
at stationA, if the knob settings, atA andB, were at positionsn,m, respectively.
Similarly, Bn,m plays the same role for stationB, under the same settings. This
is equivalent to the assumption that a joint (non-negative,properly normalized)
probability distribution of these variables,P(A1,1,A1,2,A2,1,A2,2;B1,1,B1,2,B2,1B2,2),
is always allowed to exist.1

2. The assumption oflocality does not allow influences to go outside the light cone.

1 Note, that no hidden variables appear, beyond these eight. However, given a (possibly stochas-
tic) hidden variables theory, one will be able to define our eight variables as (possibly random)
functions of the variables in that theory.
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3. Alice and Bob are free to choose their settings “at the whim”. This thefreedom,
or “free will” , often only a tacit assumption [8]. A less provocative version of this
assumption:There exists stochastic processes which could be used to choose the
values of the local settings of the devices which are independent of the workings
of the source, that is they neither influence it or are influenced by it. By the
previous assumptions the events of activation of the sourceand of the choice and
fixing of the local settings must be space-like separated.

Note that when setting labelsm, n are sent to the measurement devices, they will
likely cause some unintended disturbance: by these assumptionsany disturbance at
A, as far as it influences the outcome at A, is not related to thecoin toss nor to the
potential outcomes at B, and vice versa.

Note further, thatAn,m andBn,m are not necessarily actual properties of the sys-
tems. The only thing that is assumed it that there is a theoretical description which
allows one to use these alleightvalues.

4.1.2 First consequences

Let us write down the immediate consequences of these assumptions:

• By locality: for all n,m:

Am,n = Am, Bn,m = Bn (18)

That is, the outcome which would appear at A does not depend onwhich setting
might be chosen at B, and vice versa.Thus P(A1,1, . . . ,B2,2) can be reduced to
P(A1,A2,B1,B2).

• By freedom

(n,m) is statistically independent of(A1,A2,B1,B2). (19)

Thus, theoverall probability distributions for potential settings and potential out-
comes satisfy

P(n,m,A1,A2,B1,B2) = P(n,m)p(A1,A2,B1,B2) (20)

The choice of settings in the two randomizes,A andB, is causally separated from
the local realistic mechanism, which produces the potential outcomes.

4.1.3 Lemma: Bell’s inequality

The probabilities, Pr, of the four logical propositions,An = Bm, satisfy

Pr{A1 = B2}−Pr{A1 = B1}−Pr{A2 = B1}−Pr{A2 = B2} ≤ 0. (21)
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Proof: only four, or two, or none of the propositions, in the left hand side of the
inequality can be true, thus (21). QED.

Now, if the observation settings are totally random (dictated by “coin tosses”),
P(n,m) = 1

4. Then, according to all our assumptions

P(An = Bm|n,m) = P(n,m)Pr{An = Bn}=
1
4

Pr{An = Bm}. (22)

Therefore, we have a Bell inequality: under theconjunctionof the assumptions for
theexperimentally accessibleprobabilities one has

P(A1 = B2 | 1,2)−P(A1 = B1 | 1,1)−P(A2 = B1 | 2,1)−P(A2 = B2 | 2,2) ≤ 0.
(23)

This is the well-known Clauser-Horne-Shimony-Holt (CHSH)inequality [9].

4.2 The Bell theorem

Quantum mechanics predicts for some experiments satisfying all the features of the
thought experiment the left hand side of inequality (23) to be as high as

√
2−1,

which is larger that the local realistic bound 0.Hence, one has Bell’s theorem [10]:
if quantum mechanics holds, local realism, defined by the full set of the above as-
sumptions, is untenable.But, how does nature behave – according to local realism
or quantum mechanics? It seems that we are approaching the moment, in which one
could have as perfect as possible laboratory realization ofthe thought experiment
(locality loophole was closed in [11, 12], detection loophole in [13] and in recent
experiment measurement settings were space-like separated from the photon pair
emission [14]). Hence local realistic approach to description of physical phenom-
ena is close to be shown untenable too.

4.2.1 The assumptions as a communication complexity problem

Assume that we heave two programmersPk, wherek= 1,2, each possessing an enor-
mously powerful computer. They share certain joint classical information strings of
arbitrary lengths and/or some computer programs. All thesewill be collectively de-
noted asλ . But, once they both possesλ , no communication whatsoever between
them is allowed. After this initial stage, each one of them gets from a Referee a
one bit random numberxk ∈ {0,1}, known only to him/her (P1 knows onlyx1, P2

knows onlyx2). The individual task of each of them is to produce, via whatever
computational program, a one bit numberIk(xk,λ ), and communicate only this one
bit to a Referee, who just compares the received bits. There is no restriction on the
form and complication of thepossibly stochasticfunctionsIk, or any actions taken
to define the values, but any communication between the partners is absolutely not
allowed. Thejoint task of the partners is to devise a computer code which under the
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constraints listed above, and without any cheating, allowsto have after very many
repetitions of the procedures (each starting with establishing a new sharedλ ) the
following functional dependence of the probability that their bits sent back to the
Referee are equal:

P{I1(x1) = I2(x2)}=
1
2
+

1
2

cos
[

−π/4+(π/2)(x1+ x2)
]

. (24)

This is a variant of communication complexity problems. Thecurrent task is abso-
lutely impossible to achieve with the classical means at their disposal, and without
communication. Simply because whatever is the protocol

Pr{I1(1)= I2(1)}−Pr{I1(0)= I2(0)}−Pr{I1(1)= I2(0)}−Pr{I1(0)= I2(1)} ≤ 0.
(25)

whereas, the value of this expression in quantum strategyPQ can be as high as
√

2−
1. If the programmers use entanglement as resource and receive their respective
qubits from an entangled pair (e.g. singlet) during the communication stages (when
λ is established), one can obtain on averagePQ. Instead of computing, the partners
make a local measurement on their qubits. They measure Pauliobservablesn ·σ ,
where||n|| = 1. Since the probability for them to get identical results,r1, r2, for
observation directionsn1,n2 is

PQ{r1 = r2|n1,n2}=
1
2
− 1

2
n1 ·n2, (26)

for suitably chosenn1(x1),n2(x2) they get values ofPQ equal to those in (24). The
messages sent back to the Referee encode the local results ofmeasurements ofn1 ·
σ ⊗ n2 ·σ , and the local measurement directions are suitably chosen as functions
of x1 and x2. We will come back to the relation between Bell’s inequalities and
quantum communication complexity problems in more detailsin Sec. 6.

4.2.2 Philosophy or physics? Which assumptions?

The assumptions behind Bell inequalities are often criticized as being “philosophi-
cal”. If one reminds oneself on Mach’s influence on Einstein,philosophical discus-
sions related to physics may be very fruitful.

For those who are, however, still skeptical one can argue as follows. The whole
(relativistic) classical theory of physics is realistic (and local). Thus we have an
important exemplary realization of the postulates of localrealism. Philosophical
propositions could be defined as those whichare notobservationally or experimen-
tally falsifiable at the given moment of the development of human knowledge, or in
pure mathematical theory are not logically derivable. Therefore, theconjunctionof
all assumptions of Bell inequalities is not a philosophicalstatement, as it istestable
both experimentally and logically (within, known at the moment, mathematical for-
mulation of fundamental laws of physics). Thus, Bell’s theorem removed the ques-
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tion of possibility of local realistic description from therealm of philosophy. Now
this is just a question of a good experiment.

The other criticism is formulated in the following way. Bellinequalities can be
derived using a single assumption of existence of joint probability distribution for
the observables involved in them, or that the probability calculus of the experimen-
tal propositions involved in the inequalities is of Kolmogorovian nature, and nothing
more. But if we want to apply these assumptions to the thoughtexperiment we stum-
ble on the following question:does the joint probability take into account full ex-
perimental context or not?. The experimental context is in our case (at least) the full
state of the settings(m,n). Thus if we use the same notation as above for the realistic
values, this time applied to the possible results of measurements of observables, ini-
tially we can assume existence of onlyp(A1,1,A1,2,A2,1,A2,2;B1,1,B1,2,B2,1,B2,2).
Note that such a probability could be e.g. factorizable into∏n,mP(An,m,Bn,m). That
is one could in such a case have different probability distributions pertaining to
different experimental contexts (which can even be defined through the choice of
measurement settings in space-like separated laboratories!)

Let us discuss this from the quantum mechanical point of view, only because
such considerations have a nice formal description within this theory, familiar to all
physicists. Two observables, sayÂ1⊗ B̂1 andÂ2⊗ B̂2, as well as other possible pairs
are functions of two differentmaximalobservables for the whole system (which are
non-degenerate by definition). If one denotes such a maximalobservable linked with
Âm⊗ B̂n by M̂m,n and its eigenvalues byMm,n the existence of the aforementioned
joint probability is equivalent to the existence of ap(M1,1,M1,2,M2,1,M2,2) in form
of a proper probability distribution. Only if one assumes additionally context inde-
pendence, this can be reduced to the question of existence of(non-negative) prob-
abilitiesP(A1,A2,B1,B2), whereAm andBn are eigenvalues of̂Am⊗1 and1⊗ B̂n,
where it turn1 is the unit operator for the given subsystem. While context indepen-
dence is physically doubtful, when the measurements are notspatially separated,
and thus one can have mutual causal dependence, it is well justified for spatially
separated measurements. I.e.,locality enters our reasoning, whether we like it or
not. Of course one cannot derive any Bell inequality of the usual type if the ran-
dom choice of settings is not independent of the distribution of A1,A2,B1,B2, that is
without (20).

There is yet another challenge to the set of assumptions presented above. It is
often claimed, that realism can be derived, once one considers the fact that maxi-
mally entangled quantum systems reveal perfect correlations, and one additionally
assumes locality. Therefore it would seem that the only basic assumption behind
Bell inequalities is locality, with the other auxiliary ones of freedom. Such a claim
is based on the ideas of EPR, who conjectured that one can introduce “elements of
reality” of a remote system, provided this system is perfectly correlated with another
system. To show the fallacy of such a hope, let us now discuss three particle correla-
tions, in the case of which consideration of just few “elements of reality” reveals that
they are a logically inconsistent notion. Therefore, they cannot be a starting point
for deriving a self-consistent realistic theory. The threeparticle reasoning is used
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here because of its beauty and simplicity, not because one cannot reach a similar
conclusion for two particle correlations.

4.3 Bell’s theorem without inequalities: three entangled particles
or more

As the simplest example, take a Greenberger-Horne-Zeilinger [15] (GHZ) state of
N = 3 particles (fig.2):

|GHZ〉= 1√
2

(

|a〉|b〉|c〉+ |a′〉|b′〉|c′〉
)

(27)

where〈x|x′〉 = 0 (x = a,b,c, and kets denoted by one letter pertain to one of the
particles). The observers, Alice, Bob and Cecil measure theobservables:̂A(φA),
B̂(φB), Ĉ(φC), defined by

X̂(φX) = |+,φX〉〈+,φX |− |−,φX〉〈−,φX | (28)

where

|±,φX〉=
1√
2

(

±i|x′〉+exp(iφX)|x〉
)

. (29)

andX̂ = Â, B̂,Ĉ. The quantum prediction for the expectation value of the product of
the three local observables is given by

E(φA,φB,φc) = 〈GHZ|Â(φA)B̂(φB)Ĉ(φC)|GHZ〉= sin(φA+φB+φc). (30)

Therefore, ifφA+ φB+ φc = π/2+ kπ , quantum mechanics predicts perfect corre-
lations. For example, forφA = π/2, φB = 0 andφc = 0, whatever may be the results
of local measurements of the observables, for say the particles belonging to thei-
th triple represented by the quantum state|GHZ〉, their product must be unity. In a
local realistic theory one would have

Ai(π/2)Bi(0)Ci(0) = 1, (31)

whereXi(φ), X = A,B or C is the local realistic value of a local measurement of
the observablêX(φ) that would have beenobtained for thei-th particle triple if
the setting of the measuring device isφ . By locality Xi(φ) depends solely on the
local parameter. The eq. (31) indicates that we can predict with certainty the result
of measuring the observable pertaining to one of the particles (sayc) by choosing
to measure suitable observables for the other two. Hence thevalueXi(φ) are EPR
elements of reality.

However, if the local apparatus settings are different onewould have had, e.g.

Ai(0)Bi(0)Ci(π/2) = 1, (32)
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Fig. 2 Test of the GHZ theo-
rem. Alice, Bob and Cecil are
three separated parties who
share three entangled parti-
cles in the GHZ state. Each
of them are free to choose
between two measurement
settings 1 and 2 and they ob-
serve flashes in their detection
station which indicate one of
the two possible measurement
outcomes +1 or -1.
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Ai(0)Bi(π/2)Ci(0) = 1, (33)

Ai(π/2)Bi(π/2)Ci(π/2) =−1. (34)

Yet, the four statements (31-34) are inconsistent within local realism. SinceXi(φ) =
±1, if one multiples side by side the eqs. (31-34), the result is

1=−1. (35)

This shows that the mere concept of existence of ”elements ofphysical reality” as
introduced by EPR is in a contradiction with quantum mechanical predictions. We
have a “Bell’s theorem without inequalities” [15].

Some people still claim that EPR correlations together withthe assumption of
locality allow one to derive realism. The above example clearly shows that such a
realism would allow one to infer that 1=−1.

4.4 Implications of Bell’s theorem

Violations of Bell’s inequalities imply that the underlying conjunction of assump-
tions of realism, locality and “free will”is not valid, andnothing more.

It is often said that the violations indicate “(quantum) non-locality”. However if
one wantsnon-localityto betheimplication, one has to assume “free will” and real-
ism. But this is only at this moment a philosophical choice (it seems that there is no
way to falsify it). It is not a necessary condition for violations of Bell’s inequalities.

The theorem of Bell shows that even a local inherently probabilistic hidden-
variable theory cannot agree with all predictions of quantum theory (we base our
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considerations onp(A1,A2,B1,B2) without assuming its actual structure, or whether
the distribution for a single run is essentially deterministic, all we require is a joint
“co-existence” of the variablesA1, ...,B2 in a theoreticaldescription). Therefore the
above statements cover theories that treat probabilities as irreducible, and for which
one can definep(A1,A2,B1,B2). Such theories contradict quantum predictions. This,
for some authors indicates that nature is non-local. While the mere existence of
Bohm’s model [16] demonstrates that non-local hidden-variables are a logically
valid option, we now know that there are plausible models, such as Leggett’s crypto-
nonlocal hidden-variable model [17], that are in disagreement with both quantum
predictions and experiment [18]. But, perhaps more importantly, if one is ready to
consider inherently probabilistic theories, then there isno immediate reason to re-
quire the existence of (non-negative and normalized) probabilities p(A1,1...,B2,2).
Violation of this condition on realism, together with locality, which allows one to
reduce the distribution top(A1, ...,B2), is not in adirect conflict with the theory
of relativity, as it does not necessarily imply the possibility of signalling superlu-
minally. To the contrary, quantum correlations cannot be used for direct commu-
nication between Alice to Bob, but still violate Bell’s inequalities. It is therefore
legitimate to consider quantum theory as a probability theory subject to, or even
derivable from more general principles, such as non-signaling condition [19, 20] or
information theoretical principles [21, 22].

Note that complementarity, inherent in quantum formalism2, completely contra-
dicts the form of realism defined above. So why quantum-non-locality?

To put it short, Bell’s theorem does not implyanyproperty of quantum mechan-
ics. It just tells what it is not.

5 All Bell’s inequalities for two possible settings on each side

We shall now present a general method of derivingall standard Bell inequalities
(that is Bell’s inequalities involving two-outcome measurements and with two set-
tings per observer). Although these will not be spelled out explicitly, all the as-
sumptions discussed above are behind the algebraic manipulations leading to the
inequalities. We present in detail a derivation for two-observer problem, because
the generalization to more observers is, surprisingly, obvious.

Consider pairs of particles (say, photons) simultaneouslyemitted in well defined
opposite directions. After some time the photons arrive at two very distant measur-
ing devices A and B operated by Alice and Bob. Alice, chooses to measure either
observablêA1 or Â2, and Bob either̂B1 or B̂2. The hypothetical results that they may
get for thej-th pair of photons areA j

1 andA j
2, for Alice’s two possible choices, and

B j
1 andB j

1, for Bob’s. The numerical values of these results (+1 or−1) are defined
by the two eigenvalues of the observables.

2 Which can be mathematically expressed as non-existence of joint probabilities for non-
commuting, i.e. non-commeasurable, observables.
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Since, always either|B j
1−B j

2|= 2 and|B j
1+B j

2|= 0, or |B j
1−B j

2|= 0 and|B j
1+

B j
2|= 2, with a similar property of Alice’s hypothetical results the following relation

holds

|A j
1±A j

2| · |B
j
1±B j

2|= 0 (36)

for all possible sign choices within (36) except one, for which one has 4. Therefore

1

∑
k,l=0

|(A j
1+(−1)kA j

2)(B
j
1+(−1)lB j

2)|= 4, (37)

or equivalently one has the set of identities

1

∑
s1,s2=−1

S(s1,s2)[(A
j
1+ s1A j

2)(B
j
1+ s2B j

2)] =±4, (38)

with anyS(s1,s2) =±1. There are 22
2
= 16 suchS functions.

Imagine now thatN pairs of photons are emitted, pair by pair (N is sufficiently
large, such that

√

1/N ≪ 1). The average value of the products of the local values
is given by

E(An,Bm) =
1
N

N

∑
j=1

A j
nB j

m, (39)

wheren,m= 1,2.
Therefore after averaging, the following single Bell-typeinequality emerges:

1

∑
k,l=0

|E(A1,B1)+ (−1)lE(A1,B2)+ (−1)kE(A2,B1)+ (−1)k+lE(A2,B2)| ≤ 4,

(40)
or equivalently a series of inequalities:

1

∑
s1,s2=−1

S(s1,s2)[E(A1,B1)+ s2E(A1,B2)+ s1E(A2,B1)+ s1s2E(A2,B2)]≤ 4.

(41)
As the choice of measurement settings is assumed to be statistically independent of
the working of the source, i.e of the distribution ofA1’s, A2’s, B1’s andB2’s, the
averagesE(An,Bm) cannot differ much, for highN, from theactually observedones
in the subsets of runs for which the given pair of settings wasselected.
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5.1 Completeness of the inequalities

The inequalities form a complete set. That is, they define thefaces of the convex
polytope formed out of all possible local realistic models for the given set of mea-
surements. Whenever local realistic model exists inequality (40) is satisfied by its
predictions. To prove the sufficiency of condition (40) we construct a local realistic
model for any correlation functions which satisfy it, i.e. we are interested in the local
realistic models forELR

k1k2
such that they fully agree with the measured correlations

E(k1,k2) for all possible observablesk1,k2 = 1,2.
One can introducêE which is a “tensor” or matrix built out ofEi j , with i, j = 1,2.

If all its components can be derived from local realism, one must have

ÊLR =
1

∑
A,B=−1

P(A,B)A ⊗B, (42)

with A = (A1(n1),s1A1(n2)), B = (A2(n1),s2A2(n2)), wheres1,s2 ∈ {−1,1} and
nonnegative normalized probabilitiesP(A,B).

Let us ascribe for fixeds1,s2, a hidden probability thatA j(n1) = sjA j(n2) (with
j = 1,2) in the form familiar from Eq. (40):

P(s1,s2) =
1
4
|

2

∑
k2,k2=1

sk1−1
1 sk2−1

2 E(k1,k2)|. (43)

Obviously these probabilities are positive. However they sum up to identity only
if inequality (40) is saturated, otherwise there is a “probability deficit”, ∆P. This
deficit can be compensated without affecting correlation functions.

First we construct the following structure, which is indeedthe local realistic
model of the set of correlation functions if the inequality is saturated:

1

∑
s1,s2=−1

Σ(s1,s2)P(s1,s2)(1,s1)⊗ (1,s2), (44)

whereΣ(s1,s2) is the sign of the expression within the modulus in Eq. (43).
Now if ∆P> 0, we add a “tail” to this expression given by:

∆P
16

1

∑
A1=−1

1

∑
A2=−1

1

∑
B1=−1

1

∑
B2=−1

(A1,A2)⊗ (B1,B2). (45)

This “tail” does not contribute to the values of the correlation functions, because it
represents the fully random noise. The sum of (44) is a valid local realistic model
for Ê = (E(1,1),E(1,2),E(2,1),E(2,2)). The sole role of the “tail” is to make all
hidden probabilities to add up to 1.

To give the reader some intuitive grounds for the actual formof, and the com-
pleteness of the derived inequalities, we shall now give some remarks. The gist is
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that the consecutive terms in the inequalities are just expansion coefficients of the
tensorÊ in terms of a complete orthogonal sequence of basis tensors.Thus the ex-
pansion coefficients represent the tensors in a one-to-one way.

In the four dimensional real space where bothÊLR and Ê are defined one can
find an orthonormal basis setŜs1s2 =

1
2(1,s1)⊗ (1,s2). Within these definitions the

hidden probabilities acquire a simple form:

P(s1,s2) =
1
2
|Ŝs1s2 · Ê|, (46)

where the dot denotes the scalar product inR4. Now the local realistic correlations,
ÊLR, can be expressed as:

ÊLR =
1

∑
s1,s2=−1

|Ŝs1s2 · Ê|Σ(s1,s2)Ŝs1s2. (47)

The modulus of any number|x| can be split into|x|= x sign(x), and we can always
demand the productA1(n1)A2(n1) to have the same sign as the expression inside
the modulus. Thus we have:

Ê =
1

∑
s1,s2=−1

(Ŝs1s2 · Ê)Ŝs1s2. (48)

The expression in the bracket is the coefficient of tensorÊ in the basisŜs1s2. These
coefficients are then summed over the same basis vectors, therefore the last equality
appears.

5.2 Two-qubit states that violate the inequalities

A general two qubit state can be put in the following concise form

ρ̂ =
1
4

3

∑
µ,ν=0

Tµν(σ̂1
µ ⊗ σ̂2

ν ). (49)

The two qubit correlation function for measurements of spin1 along directionn(1)
and of spin 2 alongn(2) is given by

EQM(n(1),n(2)) = Tr
[

ρ̂
(

n(1) · σ̂1⊗n(2) · σ̂2
)]

, (50)

and it reads

EQM(n(1),n(2)) =
3

∑
i, j=1

Ti j n(1)in(2) j . (51)
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Two particle correlations are fully defined once one knows the components ofTi j ,
i, j = 1,2,3, of the tensor̂T. Equation (51) can be put into a more convenient form:

EQM(n(1),n(2)) = T̂ •n(1)⊗n(2), (52)

where ”•” is the scalar product in the space of tensors, which in turn is isomorphic
with R3⊗R3.

Quantum correlationEQM(n(1),n(2)) can be described by a local realistic model
if, and only if, for anychoice of the settingsn(1)k1 andn(2)k2, wherek1,k2 = 1,2,
one has

1
4

2

∑
k,l=1

∣

∣

∣
T̂ • [n(1)1+(−1)kn(1)2]⊗ [n(2)1+(−1)ln(2)2)]

∣

∣

∣
≤ 1. (53)

Since there always exist two mutually orthogonal unit vectorsa(x)1 anda(x)2 such
that

n(x)1+(−1)kn(x)2 = 2α(x)ka(x)
k with k= 1,2 (54)

and withα(x)1 = cosθ (x), α(x)2 = sinθ (x), one obtains

2

∑
k,l=1

∣

∣

∣
α(1)kα(2)l T̂ •a(1)k⊗a(2)l

∣

∣

∣
≤ 1. (55)

Note thatT̂ •a(1)k⊗a(2)l is a component of the tensorT̂ after a transformation of
the local coordinate systems of each of the particles into such ones where the two
first basis vectors area(x)1 anda(x)2. We shall denote such transformed components
again byTkl .

The necessary and sufficient condition for a two-qubit correlation to be described
within a local realistic model is that in any plane of observations for each particle
(defined by the two observation directions) one must have

2

∑
k,l=1

|α(1)kα(2)l Tkl | ≤ 1. (56)

for arbitraryα(1)k, α(2)l .
Using the Cauchy inequality one obtains

2

∑
k,l=1

|α(1)kα(2)l Tkl | ≤

√

√

√

√

2

∑
k,l=1

T2
kl . (57)

Therefore, if
2

∑
k,l=1

T2
kl ≤ 1 (58)
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for any set of local coordinate systems, the two particle correlation functions of
the form of (51) can be understood within the local realism (in a two settings per
observer experiment).

This condition is both necessary and sufficient.

5.2.1 Sufficient condition for violation of the inequality

The full set of inequalities is derivable from the identity (38) where we put non-
factorable sign functionS(s1,s2) =

1
2(1+ s1)+ (1− s1)s2. In this case one obtains

the CHSH inequality in its standard form:
∣

∣

∣
〈(A1+A2)B1+(A1−A2)B2〉avg

∣

∣

∣
≤ 2, (59)

where 〈...〉arg denotes average. All other non-trivial inequalities are obtainable
by all possible sign changesXk → −Xk (with k = 1,2 andX = A,B). It is easy
to see that factorizable sign functions, such as e.g.S(s1,s2) = s1s2, lead to triv-
ial inequalities|E(An,Bm)| ≤ 1. As noted above the quantum correlation function
EQ(ak,bl ) is given by the scalar product of the correlation tensorT̂ with the ten-
sor product of the local measurement settings represented by unit vectorsak ⊗ bl ,
i.e. EQ(ak,bl ) = (ak ⊗ bl ) · T̂. Thus, the condition for a quantum state endowed
with the correlation tensor̂T to satisfy the inequality (59), is that for all directions
a1,a2,b1,b2 one has

∣

∣

∣

[

(
a1+a2

2
)⊗b1+(

a1−a2

2
)⊗b2

]

· T̂
∣

∣

∣
≤ 1, (60)

where both sides of (59) were divided by 2.
Next notice thatA± = 1

2(a1 ±a2) satisfy the following relations:A+ ·A− = 0
and ||A+||2 + ||A−||2 = 1. ThusA+ +A− is a unit vector, andA± represent its
decomposition into two orthogonal vectors. If one introduces unit vectorsa± such
that A± = a±a±, one hasa2

++ a2
− = 1. Thus one can put inequality (60) into the

following form:
|Ŝ· T̂| ≤ 1, (61)

whereŜ= a+a+⊗b1+a−a−⊗b2. Note that sincea+ ·a− = 0, one haŝS·Ŝ= 1, i.e.
Ŝ is a tensor of unit norm. Any tensor of unit norm,Û, has the following Schmidt
decompositionÛ = λ1v1 ⊗w1 + λ2v2 ⊗w2, wherevi · v j = δi j ,wi ·w j = δi j and
λ 2

1 +λ 2
2 = 1. The (complete) freedom of the choice of the measurement directions

b1 andb2, allow one by choosingb2 orthogonal tob1 to putŜ in the form isomorphic
with Û, and the freedom of choice ofa1 anda2 allowsA+ andA− to be arbitrary
orthogonal unit vectors, anda+ anda− to be also arbitrary. ThuŝS can be equal
to any unit tensor. To get the maximum of the left hand side of (60), we Schmidt
decompose the correlation tensor, and take two terms of the decomposition which
have the largest coefficients. In this way we get a tensorT̂′, of Schmidt rank two.
We putŜ= 1

||T̂′|| T̂
′, and the maximum is||T̂′||=

√
T̂′ · T̂′. Thus, in other words,
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max
[

2

∑
k,l=1

T2
kl

]

≤ 1 (62)

is the necessary and sufficient condition for the inequality(40) to hold, provided the
maximization is taken over all local coordinate systems of two observers. The con-
dition is equivalent to the necessary and sufficient condition of Horodeccy Family
[27] for violation of the CHSH inequality.

5.3 Bell’s inequalities for N particles

Let us consider a Bell inequality test withN observers. Each of them chooses be-
tween two possible observables, determined by local parametersn1( j) andn2( j),
where j = 1, ...,N. Local realism implies existence of two numbersA j

1 andA j
2, each

taking values +1 or -1, which describe the predetermined result of a measurement
by the j-th observer for the two observables. The following algebraic identity holds:

1

∑
s1,...,sN=−1

S(s1, ...,sN)
N

∏
j=1

[A j
1+ sjA

j
2] =±2N, (63)

whereS(s1, ...,sN) is an arbitrary ”sign” function, i.e.S(s1, ...,sN) = ±1. It is a
straightforward generalization of the one for two observers as given in (41). The
correlation function is the average over many runs of the experimentEk1,...,kN =

〈∏N
j=1A j

kj
〉avg with k1, ...kN ∈ {1,2}. After averaging (63) over the ensemble of the

runs one obtains the Bell inequalities3

|
1

∑
s1,...,sN=−1

S(s1, ...,sN)
2

∑
k1,...,kN=1

sk1−1
1 ...skN−1

N Ek1,...,kN | ≤ 2N. (64)

Since there are 22
N

different functionsS, the above inequality represents a set of 22N

Bell inequalities.
All these boil down to just one inequality (!):

1

∑
s1,...,sN=−1

|
2

∑
k1,...,kN=1

sk1−1
1 ...skN−1

N Ek1,...,kN | ≤ 2N, (65)

The proof of this fact is trivial exercise with the use of the property that either|X|=1
or |X| = −1, whereX is a real number. This inequality was derived independently
in Refs [24] and [25]. The presented derivation follows mainly Ref. [26].

3 This set of inequalities is a sufficient and necessary condition for the correlation functions enter-
ing them to have a local realistic model. Compare it to the twoparticle case.
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5.4 N-qubit correlations

A general N-qubit state can be put in the form

ρ̂ =
1

2N

3

∑
µ1,···,µN=0

Tµ1···µN(⊗N
k=1σ̂k

µK
). (66)

Thus, theN qubit correlation function has the following structure

EQM(n(1),n(2), ...,n(N)) = T̂ •n(1)⊗n(2)...⊗n(N), (67)

whereT̂ stands for anN index tensor, with componentsTk1...kN , whereki = 1,2,3.
The necessary and sufficient condition for a description of the correlation function
within local realism in the general case reads

2

∑
k1,k2...,kN=1

∣

∣α(1)k1α(2)k2...α(N)kN Tk1k2...kN

∣

∣≤ 1. (68)

for any possible choice of local coordinate systems for individual particles. Again if

2

∑
k1,...,kN=1

T2
k1...kN

≤ 1 (69)

for any set of local coordinate systems, theN-qubit correlation function can be de-
scribed by a local realistic model. The proof of these fact are generalizations of the
ones presented earlier pertaining to two particles. The sufficient condition for vio-
lation of the general Bell’s inequality forN particles by a general state ofN qubits
can be found in Ref. [26].

5.5 Concluding remarks

The inequalities presented above represent the full set of standard “tight” Bell’s
inequalities for an arbitrary number of parties. Any non tight inequality is weaker
than tight ones. Such Bell’s inequalities can be used to detect entanglement, not
as efficiently as entanglement general witnesses. However,they have the advantage
over the witnesses that they are systems-independent. Theydetect entanglement no
matter what is the actual Hilbert space that describes the subsystems.

As we shall show below the Bell inequalities analyzed above also show that the
entanglement violating them is directly applicable in somequantum informational
protocols that beat any classical ones of the same kind. Thiswill be shown via an
explicit construction of such protocols.
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6 Quantum reduction of communication complexity

In his review paper entitled ”Quantum Communication Complexity (A Survey)”
Brassard [28] posed a question:”Can entanglement be used to save on classical
communication?”He continued that there are good reasons to believe at first that
the answer to the question is negative. Holevo’s theorem [29] states that no more
thann bits of classical information can be communicated between parties by the
transmission ofn qubits regardless of the coding scheme as long as no entanglement
is shared between parties. If the communicating parties share prior entanglement,
twice as much classical information can be transmitted (this is so called ”superdense
coding” [30]), but no more. It is thus reasonable to expect that even if the parties
share entanglement no savings in communication can be achieved beyond that of
the superdense coding (2n bits pern qubits transmitted).

It is also well known that entanglement alone cannot be used for communication.
Local operations performed on any subsystem of an entangledcomposite system
cannot have any observable effect on any other subsystem; otherwise it could be
exploited to communicate faster than light. One would thus intuitively conclude that
entanglement is useless for saving communication. Brassard, however, concluded
”... all the intuition in this paragraph is wrong.”

The topic of classical communication complexity was introduced and first stud-
ied by Andrew Yao in 1979 [31]. A typical communication complexity problem can
be formulated as follows. Let Alice and Bob be two separated parties who receive
some input data of which they know only their own data and not the data of the
partner. Alice receives an input stringx and Bob an input stringy and the goal is for
both of them to determine the value of a certain functionf (x,y). Before they start the
protocol Alice and Bob are evenallowed to share (classically correlated) random
stringsor any other data, which might improve the success of the protocols. They
are allowed to process their data locally in whatever way. The obvious method to
achieve the goal is for Alice to communicatex to Bob, which allows him to compute
f (x,y). Once obtained, Bob can then communicate the valuef (x,y) back to Alice.
It is the topic of communication complexity to address the questions:Could there
be more efficient solutions for some functions f(x,y)? What are these functions?

A trivial example that there could be more efficient solutions then the obvious
one given above is a constant functionf (x,y)=c, wherec is a constant. Obviously
here Alice and Bob do not need to communicate at all, as they can simply takec for
the value of the function. However there are functions for which the only obvious
solution is optimal, that is only transmission ofx to Bob warrants that he reaches the
correct result. For instance, it is shown thatn bits of communication are necessary
and sufficient for Bob to decide whether or not Alice’sn-bit input is the same as his
one [28, 32].

Generally one might distinguish the following two types of communication com-
plexity problems:

1. What is the minimal amount of communication (minimal number of bits) re-
quired for the parties to determine the value of the functionwith certainty?
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2. What is the highest possible probability for the parties to arrive at the correct
value for the function if only arestrictedamount of communication is allowed?

Here we will consider only the second class of problems. Notethat in this case one
does not insist on the correct value of the function to be obtained with certainty.
While an error in computing the function is allowed, the parties try to compute it
correctly with as high probability as possible.

From the perspective of the physics of quantum information processing the nat-
ural questions is:Are there communication complexity tasks for which the parties
could increase the success in solving the problem if they share prior entanglement?
In their original paper Cleve and Buhrman [33] showed that entanglement can in-
deed be used to save classical communication. They showed that to solve a certain
three-party problem with certainty the parties need to broadcast at least 4 bits of
information, in a classical protocol, whereas in the quantum protocol (with entan-
glement shared) it is sufficient for them to broadcast only 3 bits of information. This
was the first example of a communication complexity problem that could be solved
with higher success than it is be possible with any classicalprotocol. Subsequently,
Buhrman, Cleve and van Dam [34] found a two-party problem that can be solved
with a probability of success exceeding 85% and 2 bits of information communi-
cated if prior shared entanglement is available, whereas the probability of success in
a classical protocol could not exceed 75% with the same amount of communication.

The first problem whose quantum solution requires significantly smaller amount
of communication compared to classical solutions was discovered by Buhrman, van
Dam, Høyer and Tapp [35]. They considered ak-party task which requires roughly
k lnk bits of communication in a classical protocol, and exactlyk bits of classical
communication if the parties are allowed to share prior entanglement. The quan-
tum protocol of Ref. [34] is based on the violation of the CHSHinequality by
two-qubit maximally entangled state. Similarly, the quantum protocols of multi-
party problems [34, 33, 35] are based on an application of theGHZ-type argument
against local realism for multi-qubit maximally entangledstates. Galvao [36] has
shown an equivalence between the CHSH and GHZ tests for threeparticles and the
two- and three-party quantum protocols of Ref. [34], respectively. In a series of pa-
pers [37, 38, 39, 40] it was shown that entanglement violating a Bell inequality can
always be exploited to find a better-than-any-classical solution to some communi-
cation complexity problems. In this brief overview we mainly follow the approach
introduced in these papers. The approach has been further developed and applied in
Ref. [41, 42] (See also Ref. [43]).

6.1 The problem and its optimal classical solution

Imagine several spatially separated partners,P1 to PN, each of whom has some data
known to him/her only, denoted here asXi , with i = 1, ...,N. They face a joint task:
to compute the value of a functionT(X1, ...,XN). This function depends on all data.
Obviously they can get the value ofT by sending all their data to partnerPN, who
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does the calculation and announces the result. But are thereways to reduce the
amount of communicated bits, i.e. to reduce the communication complexity of the
problem?

Assume that every partnerPk receives a two bit stringXk = (zk,xk) wherezk,xk ∈
{0,1}. We shall consider specific task functions which have the following form

T = f (x1, ...,xN)(−1)∑N
k=1zk,

where f ∈ {0,1} the sum in the exponent is modulo 2. The partners know also
the probability distribution (“promise”) of the bit strings (“inputs”). There are two
constraints on the problem. Firstly, we shall consider onlydistributions, which are
completely random with respect tozk’s, that is a class of the formp(X1, ...,XN) =
2−Np′(x1, ...,xN). Secondly, communication between the partners is restricted to
N−1 bits. Assume that we ask the last partner to give his/her answerA(X1, ...,XN),
equal to±1, to the question what is functional valueT(X1, ...,XN) in each run for
the given set of inputsX1, ...,XN.

For simplicity, we shall introduce nowyk = (−1)zk, yk ∈ {−1,1}. We shall useyk

as a synonym ofzk. SinceT is proportional to∏k yk, the final answerA is completely
random if it does not depend onevery yk. Thus, information onzk’s from all N−1
partners must somehow reachPN. Therefore the only communication “trees” which
might lead to a success are those in which eachPk sends only a one-bit message
mk ∈ {0,1}. Again we introduce:ek = (−1)mk, ek ∈ {−1,1}, and will treat is as
synonym ofmk.

The average success of a communication protocol can be measured with the fol-
lowing fidelity function

F = ∑
X1,...,XN

p(X1, ...XN)T(X1, ...XN)A(X1, ...XN), (70)

or equivalently

F =
1

2N

1

∑
x1,...,xN=0

p′(x1, ...,xN) f (x1, ...,xN)
1

∑
y1,...yN=−1

N

∏
k=1

ykA(x1, ...,xN;y1, ...,yN).

(71)
The probability of success isP= (1+F)/2.

The first steps of a derivation of the reduced form of the fidelity function for
an optimal classical protocol will now be presented (the reader may reconstruct the
other steps or consult references [38, 39]). In a classical protocol the answerA of the
partnerPN can depend on the local inputyN, xN, and messages,ei1, ...,ei l , received
directly from a subset ofl partnersPi1, ...,Pi l :

A= A(xN,yN,ei1, ...,ei l ). (72)

Let us fixxN, and treatA as a functionAxN of the remainingl +1 dichotomic vari-
ables

yN,ei1, ...,ei l .
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That is, we treat nowxN as a fixed index. All such functions can be thought of as 2l+1

dimensional vectors, because the values of each such a function form a sequence of
the length equal to the number of elements in the domain. In the 2l+1 dimensional
space containing such functions one hasan orthogonal basisgiven by

Vj j1... j l (yN,ei1, ...,ei l ) = y j
N

l

∏
k=1

ejk
ik
, (73)

where j, j1, ..., j l ∈ {0,1}. Thus, one can expandA(xN,yN,ei1, ...,ei l ) with respect
to this basis and the expansion coefficients read

c j j1... j l (xN) =
1

2l+1

1

∑
yN,ei1 ,...,eil

=−1

A(xN,yN,ei1, ...,ei l )Vj j1... j l (yN,ei1, ...,ei l ). (74)

Since|A|= |Vj j1,... j l | = 1, one has|c j j1... j l (xN)| ≤ 1. We put the expansion into the
expression forF and obtain

F =
1

2N

1

∑
x1,...,xN=0

g(x1, ...,xN)
1

∑
y1,...,yN=−1

N

∏
h=1

yh

[

1

∑
j , j1,... j l=0

c j j1... j l (xN)y
j
N

l

∏
k=1

ejk
ik

]

,

(75)
whereg(x1, . . . ,xN) ≡ f (x1, . . . ,xN)p′(x1, . . . ,xN). Because∑1

yN=−1yNy0
N = 0, and

∑1
yk=−1yke0

k = 0, only the term with allj, j1, ..., j l equal to unity can give a non-zero
contribution toF . Thus,A in F can be replaced by

A′ = yNcN(xN)
l

∏
k=1

eik, (76)

wherecN(xN) stands forc11...1(xN). Next, notice that, for example,ei1, can depend
only on local dataxi1, yi1 and the messages obtained byPi1 from a subset of partners:
ep1, ...,epm. This set does not contain any of theeik ’s of the formula (76) above. In
analogy withA, the functionei1, for a fixedxi1, can be treated as a vector, and
thus can be expanded in terms of orthogonal basis functions (of a similar nature as
eq. (73)), etc. Again, the expansion coefficients satisfy|c′j j1... jm(xi1)| ≤ 1. If one puts
this intoA′, one obtains a new form ofF , which after a trivial summation overyN

andyi1 depends oncN(xN)ci1(xi)∏l
k=2eik, whereci1(xi) stands forc′11...1(xi1), and

its modulus is again bounded by 1. Note that,yN andyi1 disappear, asy2
k = 1.

As each message appears in the product only once, we continuethis procedure of
expanding those messages which depend on earlier messages,till it halts. The final
reduced form of the formula for the fidelity of an optimal protocol reads

F =
1

∑
x1,...,xN=0

g(x1, . . . ,xN)
N

∏
n=1

cn(xn), (77)
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with |cn(xn)| ≤ 1. SinceF in eq. (77) is linear in everycn(xn), its extrema are at the
limiting valuescn(xn) =±1. In other words, a Bell-like inequality|F | ≤ Max(F)≡
B(N) gives the upper fidelity bound. Note, that the above derivation shows that opti-
mal classical protocols include one in which partnersP1 to PN−1 send toPN one bit
messages which encode the value ofek = ykc(xk), wherek= 1,2, ...,N−1.

6.2 Quantum solutions

The inequality forF suggests that some problems may have quantum solutions,
which surpass any classical ones in their fidelity. Simply one may use an entangled
state|ψ〉 of N qubits that violates the inequality. Send to each of the partners one of
the qubits. In a protocol run allN partners make measurements on the local qubits,
the settings of which are determined byxk. They measure a certain qubit observable
nk(xk) ·σ . The measurement resultsγk =±1 are multiplied byyk, and the partnerPk,
for 1≤ k ≤ N−1, sends a bit message toPN encoding the value ofmk = ykγk. The
last partner calculatesyNγN ∏N−1

k=1 mk, and announces this asA. The average fidelity
of such a process is

F =
1

∑
x1,...,xN=0

g(x1, . . . ,xN)〈ψ |⊗N
n=1 (nk(xk) ·σk)|ψ〉, (78)

and in certain problems can even reachunity.
For some tasks the quantum vs. classical fidelity ratio growsexponentiallywith

N. This is the case, for example, for the so-calledmodulo-4 sumproblem. Each
partner receives a two-bit input string(Xk = 0,1,2,3; k = 1, . . . ,N). The promise
is thatXk’s are distributed such that(∑N

k=1Xk)mod2= 0. The task is4: PN must tell
whether the sum modulo-4 of all inputs is 0 or 2.

For this problem the classical fidelity bounds decrease exponentially withN, that
is B(F) ≤ 2−K+1, whereK = N/2 for even andK = (N+1)/2 for odd number of
parties. If one uses theN qubit GHZ states:|GHZ〉= 1√

2
(|z+, ...,z+〉+ |z−, ...,z−〉),

where|z±〉 is the state of spin±1 along thez-axis, and suitable pairs of local set-
tings, the associated Bell inequality can be violated maximally. Thus, one has a
quantum protocol which always gives the correct answer.

In all quantum protocols considered here entanglement thatleads to a violation of
Bell’s inequality is a resource that allows for better-than-classical efficiency of the
protocol. Surprisingly, one can also show a version of a quantum protocol without
entanglement [36, 39]. The partners exchange a single qubit, Pk to Pk+1 and so on,
and each of them makes a suitable unitary transformation on it (which depends onzk

andxk). The partnerPN, who receives the qubit as the last one, additionally performs
a dichotomic measurement. The result he/she gets is equal toT. For details, includ-

4 It can be formulated in terms of a task functionT = 1− (∑N
k=1Xk)mod4. An alternative formula-

tion of the problem readsf = cos( π
2 ∑N

k=1 Xk) with p′ = 1
2−N+1 |cos( π

2 ∑N
k=1 Xk)|.
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ing an experimental realization see Ref. [39]. The obvious conceptual advantage of
such a procedure is that the partners exchange a single qubit, from which due to
the Holevo bound [29] one can read out at most one bit of information. In contrast
with the protocol involving entanglement, no classical transfer of any information
is required, except from the announcement byPN of his measurement result!

In summary, if one has a pure entangled state of many qubits (this can be gen-
eralized to higher-dimensional systems and Bell’s inequalities involving more than
two measurement settings per observer), then there exist a Bell inequality which is
violated by this state. This inequality has some coefficientsg(x1, ...,xn), in front of
correlation functions, which can always be renormalized insuch a way that

1

∑
x1,...,xn=0

|g(x1, ...,xn)|= 1.

The functiong can always be interpreted as a product of the dichotomic func-
tion f (x1, ...,xn) =

g(x1,...,xN)
|g(x1,...,xN)| = ±1 and a probability distributionp′(x1, ...,xn) =

|g(x1, ...,xn)|. Thus we can construct a communication complexity problem that is
tailored to a given Bell’s inequality, with task functionT = ∏N

i yi f . All this can be
extended beyond qubits, see Ref. [37, 40].

As it was shown, for three or more parties,N ≥ 3, quantum solutions for certain
communication complexity problems can achieve probabilities of success of unity.
This is not the case forN = 2 and the problem based on the CHSH inequality. The
maximum quantum value for the left hand side of the CHSH inequality (25) is just√

2−1. This is much bigger than the Bell bound of 0, but still not the largest possible
value, for an arbitrary theory that is not following local realism, which equals to
1. Because the maximum possible violation of the inequalityis not attainable by
quantum mechanics several questions arise. Is this limit forced by the theory of
probability, or by physical laws? We will address this question in the next section,
and look what would be the consequences of a maximal logically possible violation
of the CHSH inequality.

6.3 Stronger-than-quantum-correlations

The Clauser-Horne-Shimony-Holt (CHSH) inequality [9] forlocal realistic theories
gives the upper bound on a certain combination of correlations between two space-
like separated experiments. Consider Alice and Bob who independently perform
one out of two measurements on their part of the system, such that in total there are
four experimental set-ups:(x,y) = (0,0), (0,1), (1,0) or (1,1). For any local hidden
variable theory the CHSH inequality must hold. One can put itthe following form:

p(a= b|x= 0,y= 0)+ p(a= b|x= 0,y= 0)

+p(a= b|x= 0,y= 0)+ p(a=−b|x= 0,y= 0)≤ 3, (79)



30 Časlav Brukner and Marek̇Zukowski

or equivalently,

∑
x,y=0,1

p(a⊕b= x ·y)≤ 3. (80)

In the latter form we interpret the dichtomic measurement results as of binary values,
0 or 1, and their relations are put as ‘modulo 2 sums’, denotedhere by⊕. One has
0⊕0= 1⊕1= 0 and 0⊕1= 1. For example,p(a= b|x= 0,y= 0) is the probability
that Alice’s and Bob’s outcomes are the same when she choosessettingx and he
settingy.

As discussed in previous sections quantum mechanical correlations can violate
the local realistic bound of inequality (80) and the limit was proven by Cirel’son [44]
to be 2+

√
2. In Ref. [19] Popescu and Rohrlich asked why quantum mechanics al-

lows a violation of the CHSH inequality with a value of 2+
√

2, but not more,
though the maximal logically possible value is 4. Would a violation with a value
larger than 2+

√
2 lead to (superluminal) signaling?. If this were true, thenquan-

tum correlations could be understood as maximal allowed correlations respecting
non-signaling requirement. This could give us an insight onthe origin of quantum
correlations, without any use of the Hilbert space formalism.

The non-signaling condition is equivalent to the requirement that the marginals
are independent of the partners choice of setting

p(a|x,y) ≡ ∑
b=0,1

p(a,b|x,y) = p(a|x), (81)

p(a|x,y) ≡ ∑
b=0,1

p(a,b|x,y) = p(a|x) (82)

wherep(a,b|x,y) is the joint probability for outcomesa andb to occur givenx and
y are the choices of measurement settings, respectively andp(a|x) is the probability
for outcomea givenx is the choice of measurement setting. Popescu and Rohrlich
constructed a toy-theory where the correlations reach the maximal algebraic value
of 4 for left hand expression of the inequality (79), but are nevertheless not in con-
tradiction with signaling. The probabilities in the toy model are given by

p(a= 0,b= 0|x,y) = 1
2

p(a= 1,b= 1|x,y) = 1
2

}

if xy∈ {00,01,10},

p(a= 1,b= 0|x,y) = 1
2

p(a= 0,b= 1|x,y) = 1
2

}

if xy= 11. (83)

Indeed one has

∑
x,y=0,1

p(a⊕b= x ·y) = 4. (84)

Van Dam [45] and independently Cleve considered how plausible are stronger-
than-quantum correlations from the point of view of communication complexity,
which describes how much communication is needed to evaluate a function with
distributed inputs. It was shown that the existence of correlations that maximally
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violate the CHSH inequality would allow to perform all distributed computations
(between two parties) of dichotomic functions with a communication constraint to
just one bit. If one is ready to believe that nature should notallow for “easy life”
concerning communication problems, this could be a reason why superstrong cor-
relations are indeed not possible.

Instead of superstrong correlations one usually speaks about a “nonlocal box”
(NLB) or Popescu-Rohrlich (PR) box, as an imaginary device that takes as inputsx
at Alices andy at Bobs side, and outputsa andb at respective sides, such thata⊗b=
x·y. Quantum mechanical measurements on a maximally entangledstate allow for a

success probability ofp= cos2 π
8 = 2+

√
2

4 ≈ 0.854 at the game of simulating NLBs.
Recently, it was shown that in any “world” in which it is possible to implement
an approximation to the NLB, that works correctly with probability greater than
3+

√
6

6 = 90.8%, for all distributed computations of dichotomic functions with a one-
bit communication constraint, one can find a protocol that gives always the correct
values, Ref. [46]. This bound is an improvement over van Dam’s one, but still has a
gap with respect to the bound imposed by quantum mechanics.

6.3.1 Superstrong correlations trivializes communication complexity

We shall present a proof that availability of a perfect NLB would allow for a solu-
tion of a general communication complexity problem for a binary function, with an
exchange of a single bit of information. The proof is due to van Dam [45].

Consider a Boolean functionf : {0,1}n×{0,1}, which has as inputs twon-bit
stringsx = (x1, ...,xn) andy = (y1, ...,yn). Suppose that Alice receives thex string
and Bob, who is separated from Alice, they-string, and they are to determine the
function valuef (x,y) by communicating as little as possible. They have, however,
NLBs as resources.

First, let us notice that any dichotomic functionf (x,y) can be rewritten as a finite
summation:

f (x,y) =
2n

∑
i=1

Pi(x)Qi(y), (85)

whereP(x) are polynomials inx ∈ {0,1} andQi(y) = yi1
1 · ... ·yin

n are monomials in
yi ∈ {0,1} with i1, ..., in ∈ {0,1}. Note that the latter ones constitute an orthogonal
basis in a 2n dimensional space. The decomposed functionf is treated as a func-
tion of y’s, while the inputsx1, ...,xn are considered as indices numbering functions
f . Note that there are 2n different monomials. Alice can locally compute all thePi

values by herself and likewise Bob can compute allQi by himself. These values
determine the settings of Alice and Bob that will be chosen ini-th run of the exper-
iment. Note that to this end they need in general exponentially many NLBs. Alice
and Bob perform for everyi ∈ {1, ...,2n} a measurement on thei-th NLB in order
to obtain without any communication a collection of bit valuesai andbi , with the
propertyai ⊗ bi = Pi(x)Qi(y). Bob can add all hisbi to ∑2n

i=1bi values without re-
quiring any information from Alice, and he can broadcast this single bit to Alice.
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She, on her part, computes the sum of herai to ∑2n

i=1ai and adds Bob’s bit to it. The
final result

2n

∑
i=1

(ai ⊕bi) =
2n

∑
i=1

Pi(x)Qi(y) = f (x,y) (86)

is the function value. Thus,superstrong correlations trivialize every communication
complexity problem.

7 The Kochen-Specker Theorem

In previous sections we have seen, that tests of Bell’s inequalities are not only theory
independent tests of non-classicality, but also have applications in quantum informa-
tion protocols. Examples are communication complexity problems [38], entangle-
ment detection [47], security of key distribution [2], and quantum state discrimina-
tion [48]. Thus entanglement which violates local realism can be seen as a resource
for efficient information processing. Can quantum contextuality – the fact that quan-
tum predictions disagree from the ones of non-contextual hidden-variable theories –
also be seen as such a resource? We will give an affirmative answer to this question
by considering explicit examples of a quantum game.

The Kochen-Specker theorem is a ”no go” theorem that proves acontradiction
between predictions of quantum theory and those ofnon-contextualhidden vari-
able theories. It was proved by Bell in 1966 [49] and independently by Kochen and
Specker in 1967 [50]. The non-contextual hidden-variable theories are based on the
conjecture of the following three assumptions:

1. Realism: It is a model that allows one to use all variablesAm(n) in the theoretical
description of the experiment, whereAm(n) gives the value of some observable
Am whichcouldbe obtained if the knob setting were at positionsm. The indexn
describes the entire experimental “context” in whichAm is measured and is op-
erationally defined through the positions of all other knob settings in the experi-
ment, which are used to measure other observables jointly with Am. All Am(n)’s
are treated as perhaps unknown, but still fixed, (real) numbers, or variables for
which a proper joint probability distribution can be defined.

2. Non-contextuality: The value assigned to an observableAm(n) of an individual
system is independent of the experimental contextn in which it is measured,
in particular of any properties that are measuredjointly with that property. This
implies thatAm(n) = Am for all contextsn.

3. “Free will”. The experimenter is free to choose the observable and its context.
The choices are independent of the actual hidden values ofAm’s, etc.

Note that “non-contextuality” implies locality (i.e., non-contextuaily with respect
to a remote context), but there is no implication other way round. One might have
theories which are local, but locally non-contextual.

It should be stressed that the local realistic and non-contextual theories provide
us with predictions which can be tested experimentally, andwhich can be derived
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without making any reference to quantum mechanics(though many derivations in
the literature give exactly the opposite impression). In order to achieve this, it is im-
portant to realize that predictions for noncontextual realistic theories can be derived
in a completely operational way [53]. For concreteness, imagine that an observer
wants to perform a measurement of an observable, say the square,S2

n, of a spin com-
ponent of a spin-1 particle along a certain directionn. There will be an experimental
procedure for trying to do this as accurately as possible. Wewill refer to this proce-
dure by saying that one sets the “control switch“ of his/her apparatus to the position
n. In all experiments that we will discuss only a finite number of different switch
positions is required. By definition different switch positions are clearly distinguish-
able for the observer, and the switch position is all he knowsabout. Therefore, in an
operational sense the measured physical observable is entirely defined by the switch
position. From the above definition it is clear that the same switch position can be
chosen again and again in the course of an experiment. Noticethat in such an ap-
proach as described above, it does not matter which observable is “really” measured
and to what precision. One just derives general predictions, provided that certain
switch positions are chosen.

In the original Kochen-Specker proof [50], the observablesthat are considered
are squares of components of the spin 1 along various directions. Such observ-
ables have values 1 or 0, as the components themselves have values 1,0, or−1.
The squares of spin componentsŜ2

n1
, Ŝ2

n2
andŜ2

n3
along any three orthogonal direc-

tions n1, n2, andn3 can be measured jointly. Simply, the corresponding quantum
operators commute with each other. In the framework of a hidden-variable theory
one assigns to an individual system a set of numerical values, say+1,0,+1,... for the
square of spin component along each directionS2

n1
, S2

n2
, S2

n3
,... that can be measured

on the system. If any of the observables is chosen to be measured on the individual
system, the result of the measurement would be the corresponding value. In a non-
contextual hidden variable theory one has to assign to an observable, sayS2

n1
, the

samevalue independently of whether it is measured in an experimental procedure
jointly as a part of some set{S2

n1
,S2

n2
,S2

n3
} or of some other set{S2

n1
,S2

n4
,S2

n5
} of

physical observables, where{n1,n2,n3} and{n1,n4,n5} are triads of orthogonal
directions. Notice that within quantum theory some of the operators corresponding
to the observables from the first set maynot commutewith some corresponding to
the observables from the second set.

The squares of spin components along orthogonal directionssatisfy

Ŝ2
n1
+ Ŝ2

n2
+ Ŝ2

n3
= s(s+1) = 2. (87)

This isalwaysso for a particle of spin 1 (s=1). This implies that for every measure-
ment of three squares of mutually orthogonal spin components two of the results will
be equal to one, and one of them will be equal to zero. The Kochen-Specker the-
orem considers a set of triads of orthogonal directions{n1,n2,n3}, {n1,n4,n5},...,
for which at least some of the directions have to appear in several of the triads.
The statement of the theorem is that there are sets of directions for which it is not
possible to give any assignment of 1’s and 0’s to the directions consistent with the
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constraint (87). The original theorem in [50] used 117 vectors, but this has subse-
quently been reduced to 33 vectors [51] and 18 vectors [52]. Mathematically the
contradiction with quantum predictions has its origin in the fact that the classical
structure of non-contextual hidden variable theories is represented by commuta-
tive algebra, whereas quantum mechanical observables neednot be commutative,
making it impossible to embed the algebra of these observables in a commutative
algebra.

The disproof of noncontextually relies on the assumption that the same value is
assigned to a given physical observable,Ŝ2

n, regardless with which two other ob-
servables the experimenter chooses to measure it. In quantum theory the additional
observables from one of those sets correspond to operators that do not commute
with the operators corresponding to additional observables from the other set. As
it was stressed in a masterly review on hidden variable theories by Mermin [54],
Bell wrote [49] that “These different possibilities require different experimental ar-
rangements; there is noa priori reason to believe that the results ... should be the
same. The result of observation may reasonably depend not only on the state of the
system (including hidden variables) but also on the complete disposition appara-
tus.” Nevertheless, as Bell himself showed, the disagreement between predictions
of quantum mechanics and of the hidden-variables theories can be strengthened if
non-contextuality is replaced by a much more compelling assumption of locality.
Note that in Bohr’s doctrine of the inseparability of the object and the measuring
instrument, an observableis defined through the entire measurement procedure ap-
plied to measure it. Within this doctrine one would not speakabout measuring the
same observable in different contexts, but rather about measuring entirely different
maximal observables, and deriving from it the value of a degenerate observable.
Note that Kochen-Specker argument necessarily involves degenerate observables.
This is why it does not apply to single qubits.

7.1 A Kochen-Specker Game

We will now consider a quantum game which is based on the Kochen-Specker ar-
gument strengthened by the locality condition (See Ref. [55]). We consider a pair
of entangled spin 1 particles, which form a singlet state with total spin 0. A formal
description of this state is given by

|Ψ〉= 1√
3
(|1〉n|−1〉n+ |−1〉n|1〉n −|0〉n|0〉n), (88)

where, for example,|1〉n|−1〉n is the state of the two particles with spin projection
+1 for the first particle and spin projection -1 for the secondparticle 1 along the
same directionn. It is important to note that this state is invariant under a change of
the directionn. This implies that if the spin components for the two particles are
measured along an arbitrary direction, however the same both sides, the sum of the
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two local results is always zero. This is a direct consequence of the conservation of
angular momentum.

We now present the quantum game introduced in Ref. [56]. The requirement
in the proof of the Kochen-Specker theorem can be formulatedas the following
problem in geometry. There exists an explicit set of vectors{n1, ...,nm} in R3 that
cannot be colored in red (i.e., assign the value 1 to the spin squared component
along that direction) or blue (i.e., assign the value 0) suchthat both of the following
conditions hold:

1. For every orthogonal pair of vectorsn1 andn2, they are not both colored red.
2. For every mutually orthogonal triple of vectorsni , n j , andnk, at least one of them

is colored red.

For example, the set of vectors can consist of 117 vectors from the original Kochen-
Specker proof [50], 33 vectors from Peres’s proof or 18 vectors from Cabello’s
proof [52].

The Kochen-Specker game employs the above sets of vectors. Consider two sep-
arated parties, Alice and Bob. Alice receives a random triple of orthogonal vectors
as her input and Bob receives a single vector randomly chosenfrom the triple as his
input. Alice is asked to give a trit indicating which of her three vectors is assigned
color 1 (implicitly, the other two vectors are assigned color 0). Bob outputs a bit as-
signing a color to his vector. The requirement is that Alice and Bob assign the same
color to the vector that they receive in common. Nevertheless, it is straightforward
to show that the existence of a perfect classical strategy inwhich Alice and Bob
can share classically correlated strings for this game would violate the reasoning
used in the Kochen-Specker theorem. On the other hand, thereis a perfect quantum
strategy using the entangled state (88). If Alice and Bob share two particles in this
state, Alice can perform a measurement of squared spin components pertaining to
directions{ni ,n j ,nk}, which are equal to those of the three input vectors, and Bob
measures squared spin component in directionnl for his input. Then Bob’s mea-
surement will necessarily yield the same answer as the measurement by Alice along
the same direction.

Concluding this section we note that quantum contextualityis also closely related
to quantum error correction [57], quantum key distribution[58], one-location quan-
tum games [59], and entanglement detection between internal degrees of freedom.

7.2 Temporal Bell’s Inequalities (Leggett-Garg Inequalities)

In the last section we will consider one more basic information processing task, ran-
dom access code problem. It can be solved with a quantum set-up with a higher effi-
ciency than it is classically possible. We will show that theresource for better-than-
classical efficiency is a violation of “temporal Bell’s inequalities” – the inequali-
ties that are satisfied by temporal correlations of certain class of hidden-variable
theories. Instead of considering correlations between measurement results on dis-
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tantly located physical systems, here we focus on one and thesame physical system
and analyze correlations between measurement outcomes at different times. The
inequalities were first introduced by Leggett and Garg [60] in the context of test-
ing superspositions of macroscopically distinct quantum states. Since our aim here
is different, we will look at general assumptions that allows us to derive temporal
Bell’s inequalities irrespectively of whether the object under consideration is macro-
scopic or not. This is why our assumptions differ from the original ones of Ref. [60].
Compare also Ref. [65, 66, 67]

We consider the theories which are based on the conjunction of the following
four assumptions5:

1. Realism: It is a model that allows one to use all variablesAm(t) m= 1,2, ... in
the theoretical description of the experiment performed attime t, whereAm(t)
gives the value of some observable whichcouldbe obtained if it were measured
at timet. All Am(t)’s are treated as perhaps unknown, but still fixed numbers, or
variables for which a proper joint probability distribution can be defined.

2. Non-invasiveness: The value assigned to an observableAm(t1) at timet1 is inde-
pendent whether or not a measurement was performed at some earlier time t0 or
which observableAn(t0) n= 1,2, ... at that time was measured. In other words,
(actual or potential) measurement valuesAm(t1) at timet1 areindependentof the
measurement settings chosen at earlier timest0.

3. Induction: The standard arrow of time is assumed. In particular, the valuesAm(t0)
at earlier timest0 do not depend on the choices of measurement settings at later
timest16.

4. “Free will” : The experimenter is free to choose the observable. The choices are
independent of the actual hidden values ofA’s, etc.

Consider an observer and allow her to choose at timet0 and at some later timet1
to measure one of two dichotomic observablesA1(ti) andA2(ti), i ∈ {0,1}. The as-
sumptions given above imply existence of numbers forA1(ti) andA2(ti), each taking
values either +1 or -1, which describe the (potential or actual) predetermined result
of the measurement. For the temporal correlations in an individual experimental run
the following identity holds:A1(t0)[A1(t1)−A2(t1)]+A2(t0)[A1(t1)+A2(t1)] =±2.
With similar steps as in derivation of the standard Bell’s inequalities, one easily
obtains:

p(A0A0 = 1)+ p(A0A1 =−1)+ p(A1A0 = 1)+ p(A1A1 = 1)≤ 3, (89)

where we omit the dependence on time.
An important difference between quantum contextuality andtemporal Bell’s in-

equalities is that later can also be tested on single qubits or two-dimensionalquan-

5 There is one more difference between the present approach and this of Ref. [60]. While there the
observer measures a single observable having a choice between different times of measurement,
here at any given time the observer has a choice between two (or more) different measurement
settings. One can use both approaches to derive temporal Bell’ inequalities.
6 Note that this already follows from the “‘non-invasiveness” when applied symmetrically to both
arrows of time.
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tum systems. We will now calculate the temporal correlationfunction for consecu-
tive measurements of a single qubit. Take an arbitrary mixedstate of a qubit, written
asρ = 1

2(1+ r ·σ), where1 is the identity operator,̂σ ≡ (σx,σy,σz) are the Pauli
operators for three orthogonal directionsx, y andz, andr ≡ (rx, ry, rz) is the Bloch
vector with the componentsr i =Tr(ρσi).

Suppose that the measurement of the observableσ · a is performed at time
t0, followed by the measurement ofσ · b at t1, wherea and b are directions at
which spin is measured. The quantum correlation function isgiven byEQM(a,b) =
∑k,l=±1k · l ·Tr(ρπa,k) ·Tr(πa,kπb,l ), where, e.g.,πa,k is the projector onto the sub-
space corresponding to the eigenvaluek=±1 of the spin alonga. Here we use
the fact that after the first measurement the state is projected on the new stateπa,k.
Therefore, the probability to obtain the resultk in the first measurement andl in
the second one is given by Tr(ρπa,k)Tr(πa,kπb,l ). Using πa,k =

1
2(1+ kσ · a) and

1
2Tr[(σ ·a)(σ ·b)] = a·b one can easily show that the quantum correlation function
can simply be written as

EQM(a,b) = a·b. (90)

Note that in contrast to the usual correlation function the temporal one (90) does not
dependent of the initial stateρ . Note also that a slight modification of our derivation
of Eq. (90) can also apply to the cases in which the system evolves between the two
measurements following an arbitrary unitary transformation.

The scalar product form of quantum correlations (90) allowsfor the violation of
the temporal Bell inequality and the maximal value of the left-hand side of (89) is
achieved for the choice of the measurement settings:a1=

1√
2
(b1−b2), a2=

1√
2
(b1+

b2) and is equal to 2+
√

2.

7.3 Quantum Random Access Codes

Random access code is a communication task for two parties, whom we call again
Alice and Bob. Alice receives some classicaln-bit string known only to her (her
local input). She is allowed to send just a one bit message,m, to Bob. Bob is asked
to tell the value of theb-th bit of Alice, b= 1,2...,n. Howeverb is known only to
him (this is his local input data). The goal is to construct a protocol enabling Bob
to tell the valueb-th bit of Alice, with as high average probability of successas
possible, for a uniformly random distribution of Alices bit-strings, and a uniform
distribution ofb’s. Note that, since Alice does not know in advance which bit Bob
is to recover. Thus she has no option to send just this required bit.

If they share a quantum channel then one speaks about a quantum version of the
previous problem. Alice is asked to encode her classicaln-bit message into 1 qubit
(quantum bit) and send it to Bob. He performs some measurement on the received
qubit to extract the required bit. In general, the measurement that he uses will depend
on which bit he wants to reveal. The idea behind these so-called quantum random
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access codes already appeared in a paper written circa 1970 and published in 1983
by Stephen Wiesner [63].

We illustrate the concept of random access code with the simplest scheme, in
which in a classical framework Alice needs to encode a two-bit string b0b1 into a
single bit, or into a single qubit in a quantum framework.

In the classical case Alice and Bob need to decide on a protocol defining which
bit-valued message is to be sent by Alice, for each of the fourpossible values of her
two-bit stringb0b1. There are only 24 = 16 different deterministic protocols, thus
the probability of success can be evaluated in a straightforward way. The optimal
deterministic classical protocols can then be shown to havea probability of success
PC = 3/4. For example, if Alice sends one of the two bits, then Bob will reveal
this bit with certainty and have probability of 1/2 to reveal the other one. Since
any probabilistic protocol can be represented as a convex combination of the 16
deterministic protocols, the corresponding probability of success for any such prob-
abilistic protocol will be given by the weighted sum of the probabilities of success
of the individual deterministic protocols. This implies that the optimal probabilistic
protocols can at best be as efficient as the optimal deterministic protocol, which is
3/4.

Ambainiset al. [64] showed that there is a quantum solution of the random ac-
cess code with probability of successPQ = cos2(π/8)≈ 0.85. It is realized as fol-
lows: depending on her two-bit stringb0b1, Alice prepares one of the four states
|ψb0b1〉. These states are chosen to be on the equator of the Bloch sphere, separated
by equal angles ofπ/2 radians (see figure 3). Using the Bloch sphere parametriza-
tion |ψ(θ ,φ)〉 = cos(θ/2)|0〉+ exp(iφ)sin(θ/2)|1〉, the four encoding states are
represented as:

|ψ00〉 = |ψ(π/2,π/4)〉,
|ψ01〉 = |ψ(π/2,7π/4)〉,
|ψ10〉 = |ψ(π/2,3π/4)〉,
|ψ11〉 = |ψ(π/2,5π/4)〉. (91)

Bob’s measurements, which he uses to guess the bits, will depend on which bit he
wants to obtain. To guessb0, he projects the qubit along thex-axis in the Bloch
sphere, and to decodeb1 he projects it along they-axis. He then estimates the bit
value to be 0 if the measurement outcome was along the positive direction of the
axis and 1 if it was along the negative axis. It can easily be calculated that the
probability of successful retrieving of the correct bit value is the same in all cases:
PQ = cos2(π/8) ≈ 0.85, which is higher than the optimal probability of success
PC = 0.75 of the classical random access code using one bit of communication.

We will now introduce a hidden variable model of the quantum solution to see
that the key resource in its efficiency lies in violation of temporal Bell’s inequalities.
Galvao [61] was the first to point to the relation between violation of Bell’s type
inequalities and quantum random access codes. See also Ref.[62] for a relation
with the parity-oblivious multiplexing.
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Fig. 3 The set of encoding
states and decoding measure-
ments in quantum random
access code represented in
the x− y plane of the Bloch
sphere. Alice prepares one
of the four quantum states
ψb0b1 to encode two bits
b0,b1 ∈ {0,1}. Depending
on which bit Bob wants to
reveal he performs either a
measurement along thex (to
revealb0) or along they axis
(to revealb1).

A hidden-variable model equivalent to the quantum protocol, which best fits the
temporal Bell’s inequalities can be put as a description of the following modification
of the original quantum protocol. Alice prepares the initial state of her qubit as
a completely random state, described by a density matrix proportional to the unit
operator,σ0. Her parity of bit valuesb0⊕ b1 defines a measurement basis, which
is used by her to prepare the state to be sent to Bob. Note that the result of the
dichotomic measurement in the basis defined byb0 ⊕ b1 is, due to the nature of
the initial state, completely random, and totally uncontrollable by Alice. To fix the
bit valueb1 (and thus also the valueb0, since the parity is defined by the choice
of the measurement basis) on her wish, Alice either leaves the state unchanged, if
the result of measurement corresponds to her wish ofb1 or she rotates the state in
the x− y plane at 180o to obtain the orthogonal state, if the result corresponds to
b1⊕1. Just a glance at the states involved in the standard quantum protocol shows
what are the two complementary (unbiased) bases which defineher measurement
settings, and which resulting states are linked with which values ofb0b1. After the
measurement the resulting state is sent to Bob, while Alice is in possession of a bit
pairb0b1, which is perfectly correlated with the qubit state on the way to Bob. That
is, we have exactly the same starting point as in the originalquantum protocol.

Now, it is obvious that the quantum protocol violates the temporal inequalities,
while any hidden variable model of the above procedure, using the four assumptions
(1.-4.) behind the temporal inequalities is not violating them. What is important the
saturation of the temporal inequalities is equivalent to a probability of success of
3/4.

The link with temporal Bell’s inequalities points onto another advantage of quan-
tum over classical random access codes. Usually, one considers the advantage to be
only resource dependent. With this we mean that there is an advantage as far as one
compares one classical bit with one qubit. Yet, the proof given above shows that
quantum strategy has an advantage overall hidden variable models respecting (1.-
4.), i.e. also those where Alice and Bob use systems with arbitrarily large number
of degrees of freedom.

Concluding this section and the Chapter we would like to point onto an interest-
ing research avenue. Here we gave a brief review on the results demonstrating that
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“no go theorems” for various hidden variable classes of theories, are behind better-
than-classical efficiency in many quantum communication protocols. It would be
interesting to investigate the link between fundamental features of quantum me-
chanics and the power of quantum computation. It has been shown that temporal
Bell’s inequalities distinguish between classical and quantum search (Grover) algo-
rithm [68]. Cluster states – a resource for measurement-basedquantumcomputation
(also known as “one-way” quantum computation) in which information is processed
by a sequence of adaptive single-qubit measurements on the state – are shown to
violate Bell’s inequalities [69, 70]. Similarly, the CSHS and GHZ problems are
shown to be closely related to measurement-basedclassicalcomputation, as does
the Popescu-Rohrlich box [71]. These results point on the aforementioned link but
we are still far away from understanding what are the key non-classical ingredients
that give rise to the enhanced quantum computational power.The question gets even
more fascinating after realizing that not only too low [71, 72, 73, 74, 75, 76] but also
too much entanglement does not allow powerful quantum computation [77, 78].
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Experimental Quantum Communication Complexity, Phys. Rev. A 72, 050305(R) (2005).
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