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Bell's Inequalities: Foundations and Quantum
Communication

Caslav Brukner and Marekukowski

Abstract For individual events quantum mechanics makes only prdisabipre-
dictions. Can one go beyond quantum mechanics in this rezddds question
has been a subject of debate and research since the earlpfdtnestheory. Ef-
forts to construct deeper, realistic, level of physicaladiggion, in which individ-
ual systems have, like in classical physics, preexistiogerties revealed by mea-
surements are known as hidden-variable programs. Denadinsis that a hidden-
variable program necessarily requires outcomes of ceetgieriments to disagree
with the predictions of quantum theory are called “no-gmtieens”. The Bell theo-
rem excludes local hidden variable theories. The Kochezelsgr theorem excludes
noncontextual hidden variable theories. In local hidderiable theories faster-that-
light-influences are forbidden, thus the results for a gineasurement (actual, or
just potentially possible) are independent of the settofgsther measurement de-
vices which are at space-like separation. In noncontexidalen-variable theories
the predetermined results of a (degenerate) observabiedapendent of any other
observables that are measured jointly with it.

It is a fundamental doctrine of quantum information scietiag quantum com-
munication and quantum computation outperforms theirsatas counterparts. If
this is to be true, some fundamental quantum charactexisticst be behind better-
than-classical performance of information processingstaghis chapter aims at
establishing connections between certain quantum infdomarotocols and foun-
dational issues in quantum theory. After a brief discusibthe most common mis-
interpretations of Bell's theorem and a discussion of wkateal me aning is, it
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will be demonstratetiow quantum contextuality and violations of local realisam c
be used as useful resourciesquantum information applications. In any case, the
readers should bear in mind that this chapter is not a revighedliterature of the
subject, but rather a quick introduction.

1 Introduction

Which quantum states are useful for quantum informatiorcgssing? All non-
separable states? Only distillable non-separable st&eab?those which violate
constraints imposed by local realism? Entanglement is tbgt alistinct feature of
guantum physics with respect to the classical wdrld [1]. @e band, entangled
states violate Bell inequalities, and thus rule out localistic explanation of quan-
tum mechanics. On the other hand, they enable certain coatiom and com-
putation tasks to have an efficiency not achievable by the l#Hvelassical physics.
Intuition suggests that these two aspects, the fundamenéaland the one associ-
ated with applications, are intimately linked. It is naluceassume that the quantum
states which allow the no-go theorems of quantum theoryy asd&ochen-Specker,
Bell's or Greenberger-Horne-Zeilinger theorem shoula dde useful for quantum
information processing. If this were not true, one mightestghat the efficiency of
guantum information protocols could be simulatable bysitzd, essentially local
realistic or noncontextual models, and thus achievabéadly via classical means.
This intuitive reasoning is supported by the results of geample, Aciret. al [2]:
violation of a Bell's inequality is a criterium for the sedyrof quantum key distri-
bution protocols. Also it was shown that violation of Belfequalities by a quan-
tum state implies that pure-state entanglement can bdatistiom it [3] and that
Bell's inequalities are related to optimal solutions of gtuam state targetind [4].
In this overview we will give other examples that demonstithie strong link be-
tween fundamental features of quantum states and theiicappities in quantum
information protocols, such as in quantum communicatiomglexity problems,
guantum random access, or certain quantum games.

2 Quantum predictions for two qubits systems

To set the stage for our story let us first describe two-qudyissems in full detail.
We shall present predictions for all possible local yes-rpegiments on two
spin-1/2 systems(in modern terminology, qubits) for alsgible quantum states,
i.e. from the pure maximally entangled singlet state (orBoém-EPR state), via
factorizable (i.e. non-entangled) states, up to any mixattsThis will enable us
to reveal the distinguishing traits of the quantum preditsifor entangled states of
the simplest possible compound quantum system. The famalan be applied to
any system consisting of two subsystems, such that eacleof ihdescribed by a
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two dimensional Hilbert space. We choose the spi-donvention to simplify the
description.

2.1 Pure states

An important tool simplifying the analysis of the pure staté two subsystems is
the so-called Schmidt decomposition.

2.1.1 Schmidt decomposition

For any nonfactorizable (i.e., entangled) pure sthe, of pair of quantum sub-
systems, one described by a Hilbert space of dimenNiotne other by space of
dimensionM, N < M, it is always possible to find preferred bases, one basis for
the first system, another one for the second, such that ttelstaomes a sum of

bi-orthogonal terms, i.e.
N

|"U>:.Zlci|ai>1|bi>2 (1)

with n(Xi[Xj)n = &j, forx=a,bandn=1,2. It is important to stress that the appro-
priate single subsystem bases, hig¢, and ] bj>2, depend upon the state that we
want to Schmidt-decompose.

The ability to Schmidt decompose the state is equivalentw@ld known fact
form matrix algebra, that ani x M matrix A can be always put into a diagonal
formD, by applying a pair of unitary transformatior‘g}‘:lZ'Q":luijAijH =D .

The interpretation of the above formula could be put as ¥adldf the quantum
pure state of two systems is non-factorizable, then thest ayair of local observ-
ables (for system 1 with eigenstatag, and for system 2 with eigenstatég)) such
that the results of their measurement are perfectly caagla

The method of Schmidt decomposition allows one to put evarg pormalized
state of two spins into

|) =cosa /2| +); [ +),+sina/2| =), [—),. ()

Schmidt decomposition generally allows the coefficientsgaeal. This is achiev-
able via trivial phase transformations of the preferrecebas

2.2 Arbitrary states

Systems can be in mixed states. Such states describeaitsiatiwhich there does
not exist anynondegeneratebservable for which measurement result is determin-
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istic. This is the case when the system can be with varioulsghititiesP(x) > 0
in some non-equivalent statég(x)), with ¥, P(x) = 1. Mixed states are repre-
sented by self adjoint density non-negative opergtosy , P(X)| (X)) (Y(X)|. As
Trig(X)){(@(x)] =1 one has Tp = 1.

Let us present in detail properties of mixed states of thedpin-1/2 systems.
Any self adjoint operator for one spinf2 particle is a linear combination of the
Pauli matrices;, i = 1,2,3 and the identity operataoy = 1, with real coefficients.
Thus, any self adjoint operator in the tensor product of the $pin-1/2 Hilbert
spaces, must be a real linear combination of all possibldymts of the operators
oﬁo&, where the Greek indices run from 0 to 3, and the supersalig®te the
particle. As the trace of; is zero we arrive at the following form of the general
density operator for two spin/2 systems:

1
p=7

3
4( él>o(§2)+r-o<1)0(§2)+0(§1)s-0<2)+ > Tnmar(11>0r(r12>>, (3)

mn=1

wherer, sare real three dimensional vectors andr = 52, rig;. We shall use the
tensor product symbaob only sparingly, only whenever it is deemed necessary. The
condition Tip = 1 is satisfied thanks to the first term.

Since the average of any real variable which can have onlyakes+1 and—1
cannot be larger than 1 and less thah, the real coefficientgy, satisfy relations

—1<Tmn= Trpa,ﬁl) UrgnZ) <1, (4)
and they form a matrix which will be denoted By One also has
_ _ (1)
1<r=Trpon” <1, 5)

and
~1<sp=Trpow <1. (6)

2.2.1 Reduced density matrices for subsystems

A reduced density matrix represents the local state of a oomg system. If we

have two subsystems, then the average of any observabla phitains to the first

system only, i.e. of the form\® 1, wherel is the identity operation for system

2, can be expressed as follows AA® 1p) = Tr1[A(Tr2p)]. Here T§ represents a

trace with respect to systeimAs trace is a basis independent notion, one can always

choose a factorizable basis, and therefore split the tralcelation into two stages.
The reduced one particle matrices for spiri lare of the following form:

pr=Trop = S(14r-0), (7)

po=Trhp==(1+s-0?). (8)

N N
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with r andsthe two local Bloch vectors of the spins.
Let us denote the eigenvectors of the spin projection alamegtibna of the first
spin as| ¢(£1,a)),. They are defined by the relation

a-oW|y(+1,a), = £1|P(+1a);, ©

wherea is a real vector of unit length (i.e.- o' is a Pauli operator in the direction
of a). The probability of a measurement of this Pauli observabtgve a resultt1
is given by

P(j:1|a)1 = Trlpln(l) =

ax1) = 5(1Ear), (10)

NI =

and it is positive for arbitrarg, if and only if, the norm of satisfies
rj<1 (11)

Here Tl(l)

a1) IS the projectof g(+1,a)); (W(£1,a)].

2.3 Local measurements on two spins

The probabilities for local measurements to give the rdsult-1 for particle 1 and
the resulim = +1 for particle 2, under specified local settinggndb respectively,
of the quantization axes are given by:

P(I,mla,b)1» = Trpn&ﬁ) nfgfm) = % (1+la-r+mb-s+Ima-Tb),  (12)
whereTb denotes the transformation of the column vedtdsy the matrixT (we
treat here Euclidean vectors as column matrices).

One can simplify all these relations by performing suitdblzal unitary trans-
formations upon each of the subsystems, i.e. via factdezahitary operators
U@U®@_ 1t is well known that any unitary operation upon a spif2dis equiva-
lent to a three dimensional rotation in the space of BlochorscIn other words,
for any real vectow

U(O)w-oU(0)" = (Ow)-o, (13)

whereO is the orthogonal matrix of the rotation. If the density mais subjected to
such a transformations on either spins subsystem, i.eetd }0,)U?(0,) trans-
formation, the parameterssandT transform themselves as follows

/

_‘
> O

al,

_\|
[
o |
A

- N
O
N

(14)
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Thus, for an arbitrary state, we can always choose suchriaahde unitary trans-
formation that the corresponding rotations (i.e. orthajoransformations) will di-
agonalize the correlation tensor (matrix) This can be seen as another application
of Schmidt’'s decomposition, this time in case of second tankors.

The physical interpretation of the above is that one canywhoose two (local)
systems of coordinates, one for the first particle, the dthrehe second particle, in
such a way that th& matrix will be diagonal.

Let us note that one can decompose the two spin density niratix

1 3
P=pP1& P2+ 2 Z CnmUr:lL® Ur%a (15)

mn=1

i.e., it is a sum of the product of the two reduced density imesrand a ternC =
T —rsT which is responsible for correlation effects.

Any density operator satisfies the inequalgy< Trp? < 1, whered is the di-
mension of the Hilbert space in which it acts, i. e. of the eysit describes. The
value of Tp? is a measure of the purity of the quantum state. It is equaldnlyt
for single dimensional projectors, i.e. the pure stateshénstudied case one must
have

Ir?+ s+ [T < 3 (16)

For pure states, represented by Schmidt decomposiflofi (B) diagonal with

entriesTyy = —sina, Tyy = sina andT,;= 1, whereas = s, and theirzcomponent

is non-zeros, = m, = cosa. Thus in case of a maximally entangled stafebas
only diagonal entries equal to1 and—1. In the case of the singlet state,

W) ==
V=7

which can be obtained from ed.l (2), by puttiong= —7 and rotating one of the
subsystems such thgat) and|—) interchange (This is equivalent to a 180 degrees
rotation with respect to the axis See above(14)), the diagonal elements of the
correlation tensor are alt 1.

(Il =)2=1=)1l+)2), (17)

3 Einstein-Podolsky-Rosen Experiment

In their seminal 1935 paperl[5] entitle@an quantum-mechanical description of
physical reality be considered completeihstein, Podolsky and Rosen (EPR) con-
sider quantum systems consisting of two particles such Wizte neither position
nor momentum of either particle is well defined, both theed#hce of their posi-
tions and the sum of their momenta are both precisely defihéten follows that
measurement of either position or momentum performed gnpsaticle 1 immedi-
ately implies for particle 2 a precise position or momentaspectively even when
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the two particles are separated by arbitrary distancewithny actual interaction
between them.

We shall present the EPR argumentation for incompleterfegsamtum mechan-
ics in the language of sping2. This has been done by Bohm in 1952. A two qubit
example of an EPR state is the singlet staié (17). Propefiasinglet can be in-
ferred without mathematical considerations given abobés i6 a state of zero total
spin. Thus measurements of the same component of the twespist always give
opposite values - this is simply the conservation of angmamentum at work. In
terms of the language od Pauli matrices the product of thal lesults is then al-
ways—1. We have (infinitely manyprefect (anti-)correlationsWe assume that the
two spins are very far away, but nevertheless in the sintdét.s

After the translation into the Bohm’s example EPR argumeansras follows.
Here are their premises:

1. Perfect correlationdf whatever spin components of particles 1 and 2, then with
certainly the outcomes will be found to be perfectly antiretated.

2. Locality: "Since at the time of measurements the two systems no lontggact,
no real change can take place in the second system in comsegjokanything
that may be done to the first system.”

3. Reality "If, without in any way disturbing a system, we can predidhcertainty
(i.e., with probability equal to unity) the value of a phyaicuantity, then there
exists an element of physical reality corresponding tophigsical quantity.”

4. CompletenessEvery element of the physical reality must have a courdgrim
the [complete] physical theory.”

In contrast to the last three premises which, thought theygaite plausible, are
still indications of a certain philosophical viewpointgtfirst premise is a statement
about a well established property of a singlet state.

The EPR argument is as follows. Because of the perfect antelations (1.), we
can predict with certainty the result of measuring eithesmponent oy component
of spin of particle 2 by previously choosing to measure tieesquantity of particle
1. By locality (2.), the measurement of particle 1 cannotseaany real change in
particle 2. This implies that by the premise (3.), both xh@endthe y components
of spin of particle 2 are elements of reality. This is also ¢thse for particle 1 by
a parallel argument where particle 1 and 2 interchange thkgs. Yet, (according
to Heisenberg’s uncertainty principle) there is no quanstizie of a single spin in
which bothx andy spin components have definite values. Therefore, by prehise
quantum mechanics cannot be a complete theory.

In his answer([6], published in the same year and under the $idlm as of the
EPR paper, Bohr criticized the EPR concept of "reality” asuasing the systems
having intrinsic properties independently of whether they observed or not and
he argued for "the necessity of a final renunciation of thegital ideal of causality
and a radical revision of our attitude towards the problemlofsical reality.” Bohr
pointed out that the wording of the criterion of physicallitgya(3.) proposed by
EPR contains an ambiguity with respect to the expressiothtwit in any way dis-
turbing the system”. And, while, as Bohr wrote, there is "nestion of mechanical
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disturbance of the system”, there is "the questiomofinfluence on the very con-
ditions which define the possible types of predictions @igarthe future behavior
of the system Bohr thus pointed out that the results of quantum measunésna
contrast to these of classical measurements, depend owitgate experimental
arrangement (context), which can even be non-local as iERt case. Before any
measurement is performed only the correlations betweesghecomponents of
two particles, but not spin components of individual pdescare defined. Theor
y component (but never both) of an individual particle becsefined only when
the respective observable of the distant particle is measur

Perhaps the most clear way to see how strongly the philosaphiewpoints
of EPR and Bohr differ is in their visions of the future deymizent of quantum
physics. While EPR wrote: "We believe that such [complett#jeory is possible”,
Bohr’s opinion is that (his) complementarity "provides nedor new physical law,
the coexistence of which might at first sight appear irredahte with the basic
principles of science.”

4 Bell's theorem

Bell's theorem can be thought of as a disproof of the validftg PR ideas. Elements
of physical reality cannot be an internally consistentorotA broader interpretation
of this result is that a local and realistic description ofune, at the fundamental
level, is untenable. Further consequences are that thést grantum processes
which cannot be medelled by any classical ones, not nedlggsiaysical processes,
but also some classical computer simulations with a comaatioin constraint. This
opened the possibility of development of quantum commuivioa

We shall present now a derivation of Bell's inequalitieseTtress will be put
on clarification of the underlying assumptions. These véllgsesented in the most
reduced form.

4.1 Thought experiment

At two measuring station& andB, which are far away from each other, two char-
acters Alice and Bob observe simultaneous flashy appeaaficaimberst-1 or

—1 at the displays of their local devices (or the monitoringhpaters). The flashes
appear in perfect coincidence (with respect to a certaiareace frame). In the
middle between the stations is something that they call rtsgfu When it is ab-
sent, or switched off, the numbetsl’s do not appear at the displays. The activated
source always causes two flashes, onA,aine atB. They appear slightly after a
relativistic retardation time with respect to the actigatiof the source, never be-
fore. Thus there is enough “evidence” for Alice and Bob that$ource causes the
flashes. The devices at the stations have a knob which cantle tpeo positions:
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Alice Bob
12 12

1@ | e~ - — R

-1 @ / \ -1 @

outcomes settings settings outcomes

)
)

Fig. 1 Test of Bell's inequalities. Alice and Bob are two separgpadties who share entangled
particles. Each of them is free to choose two measuremetihgetl and 2 and they observe
flashes in their detection station which indicate one of Weepiossible measurement outcomes +1
or-1.

m= 1 or 2 atA station, andh = 1 or 2 atB. Local procedures used to generate ran-
dom choices of local knob positions are equivalenhtiependent, fair coin tosses
Thus, each of the four possible values of the paimn are equally likely, i.e. the
probability P(n,m) = P(n)P(m) = %1. The “tosses”, and knob settings, are made at
random times, and often enough, so that the information esetlis never avail-
able at the source during its activation periods (the toaeéssettings cannot have
a causal influence on the workings of source). The local nteasnt data (setting,
result, moment of measurement) are stored and very manyofithe experiment
are performed.

4.1.1 Assumptions leading to Bell's inequalities

A conciselocal realisticdescription of such an experiment would use the following
assumptions|7]:

1. We assumeealism which is any logically self-consistent model that allowseo
to useeightvariables in the theoretical description of the experim@at, Bnm,
wheren,m= 1, 2. The variablé\n, gives the valuef1, which could be obtained
at stationA, if the knob settings, @\ andB, were at positiongs, m, respectively.
Similarly, Bnm plays the same role for statid) under the same settings. This
is equivalent to the assumption that a joint (non-negagiveperly normalized)
probability distribution of these Val’iab|€BﬂA1’1, A12,A21,A22,B11,B12, Bz"le,z),
is always allowed to exié.

2. The assumption dbcality does not allow influences to go outside the light cone.

1 Note, that no hidden variables appear, beyond these eighteter, given a (possibly stochas-
tic) hidden variables theory, one will be able to define oghewariables as (possibly random)
functions of the variables in that theory.
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3. Alice and Bob are free to choose their settings “at the Whirhis thefreedom,
or “free will” , often only a tacit assumptioln/[8]. A less provocative vengif this
assumptionThere exists stochastic processes which could be used tseltloe
values of the local settings of the devices which are indégetof the workings
of the source, that is they neither influence it or are inflezhby it. By the
previous assumptions the events of activation of the samdef the choice and
fixing of the local settings must be space-like separated.

Note that when setting labets, n are sent to the measurement devices, they will
likely cause some unintended disturbance: by these asmmaphy disturbance at
A, as far as it influences the outcome at A, is not related tathe toss nor to the
potential outcomes at B, and vice versa

Note further, thatA\, m andBn m are not necessarily actual properties of the sys-
tems. The only thing that is assumed it that there is a thieatetescription which
allows one to use these a&lightvalues.

4.1.2 First consequences

Let us write down the immediate consequences of these asisunsp
e By locality: for all n,m:
Am,n = Am, Bn,m =Bn (18)

That is, the outcome which would appear at A does not depencharh setting
might be chosen at B, and vice ver§dus RA; 1,...,B22) can be reduced to
P(A1,A2,B1,By).
e By freedom
(n,m) is statistically independent ofA1, Ay, B1,B>). (29)

Thus, theoverall probability distributions for potential settings and patal out-
comes satisfy

P(n,m,A1,Az,B1,Bp) = P(n,m)p(Aq,A2,B1,B2) (20)
The choice of settings in the two randomiz&sandB, is causally separated from
the local realistic mechanism, which produces the potemtizzomes.
4.1.3 Lemma: Bell's inequality

The probabilities, Pr, of the four logical propositiodg,= By, satisfy

Pr{Al = Bz} — PI’{A]_ = Bl} — PF{AZ = Bl} — PI’{AZ = Bz} < 0. (21)
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Proof: only four, or two, or none of the propositions, in tledt hand side of the
inequality can be true, thus(21). QED.

Now, if the observation settings are totally random (dedalby “coin tosses”),
P(n,m) = 711. Then, according to all our assumptions

P(An=Brin.m) = P(n.m)Pr{Ay = B} = S Pr{Ay=Bw}.  (22)

Therefore, we have a Bell inequality: under ttenjunctionof the assumptions for
theexperimentally accessibfgobabilities one has

P(A1=B2[1,2)—P(Ay=B1|1,1) —P(A2=B1[2,1) -P(A,=B|2,2) < 0.
(23)
This is the well-known Clauser-Horne-Shimony-Holt (CHShBquality [9].

4.2 The Bell theorem

Quantum mechanics predicts for some experiments satiglithe features of the
thought experiment the left hand side of inequalityl (23) ¢éoas high as/2 — 1,
which is larger that the local realistic boundHience, one has Bell's theorem [10]:
if quantum mechanics holds, local realism, defined by tHes&ilof the above as-
sumptions, is untenablBut, how does nature behave — according to local realism
or quantum mechanics? It seems that we are approaching tinemban which one
could have as perfect as possible laboratory realizatiachethought experiment
(locality loophole was closed in [11L, 12], detection loofeghim [13] and in recent
experiment measurement settings were space-like segdrata the photon pair
emission[[14]). Hence local realistic approach to desicnipof physical phenom-
enais close to be shown untenable too.

4.2.1 The assumptions as a communication complexity probie

Assume that we heave two programni@gsvherek = 1, 2, each possessing an enor-
mously powerful computer. They share certain joint clagdsitformation strings of
arbitrary lengths and/or some computer programs. All teéve collectively de-
noted as\A. But, once they both possds no communication whatsoever between
them is allowed. After this initial stage, each one of thentrsdeom a Referee a
one hit random numbeg € {0, 1}, known only to him/her®; knows onlyxy, P,
knows onlyx,). Theindividual task of each of them is to produce, via whatever
computational program, a one bit numhgr, A ), and communicate only this one
bit to a Referee, who just compares the received bits. Tisame restriction on the
form and complication of thpossibly stochastitunctionsly, or any actions taken
to define the values, but any communication between the gxaris absolutely not
allowed. Thgoint task of the partners is to devise a computer code which uhder t
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constraints listed above, and without any cheating, allmasave after very many
repetitions of the procedures (each starting with estaibiisa new shared) the
following functional dependence of the probability thagithbits sent back to the
Referee are equal:

1 1
P{l1(x1) = l2(x2)} = 513 cos| — 1/4+ (11/2) (X1 + X2) . (24)
This is a variant of communication complexity problems. Therent task is abso-
lutely impossible to achieve with the classical means at thisposal, and without
communication. Simply because whatever is the protocol

PI’{|1(1) = |2(1)} —PI’{|1(0) = |2(O)} — Pr{ll(l) = |2(0)} —PI’{|1(0) = |2(1)} < 0.
(25)
whereas, the value of this expression in quantum streRg@yn be as high ag2 —
1. If the programmers use entanglement as resource andeebeir respective
qubits from an entangled pair (e.g. singlet) during the camication stages (when
A is established), one can obtain on averBgelnstead of computing, the partners
make a local measurement on their qubits. They measure ¢lzadrvables - o,
where||n|| = 1. Since the probability for them to get identical resuitsy,, for
observation directionsy, ny is

PQ{I’l = r2|n1,n2} = % — %nl ‘N, (26)
for suitably chosems (x1),n2(x2) they get values o equal to those if{24). The
messages sent back to the Referee encode the local resoleastirements aof -

o ®ny- o, and the local measurement directions are suitably chaséuanations
of x; andx,. We will come back to the relation between Bell's inequastiand
guantum communication complexity problems in more detaiBec[6.

4.2.2 Philosophy or physics? Which assumptions?

The assumptions behind Bell inequalities are often criidias being “philosophi-
cal”. If one reminds oneself on Mach'’s influence on Einstpimjosophical discus-
sions related to physics may be very fruitful.

For those who are, however, still skeptical one can arguelbsys. The whole
(relativistic) classical theory of physics is realistim@local). Thus we have an
important exemplary realization of the postulates of lagalism. Philosophical
propositions could be defined as those whaoh notobservationally or experimen-
tally falsifiable at the given moment of the development aflan knowledge, or in
pure mathematical theory are not logically derivable. Efane, theconjunction of
all assumptions of Bell inequalities is not a philosoph&tatement, as it irestable
both experimentally and logically (within, known at the memb, mathematical for-
mulation of fundamental laws of physics). Thus, Bell's tteen removed the ques-
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tion of possibility of local realistic description from thealm of philosophy. Now
this is just a question of a good experiment.

The other criticism is formulated in the following way. Batlequalities can be
derived using a single assumption of existence of joint abdliy distribution for
the observables involved in them, or that the probabilitgas of the experimen-
tal propositions involved in the inequalities is of Kolmagwian nature, and nothing
more. But if we want to apply these assumptions to the thoexgheériment we stum-
ble on the following questiordoes the joint probability take into account full ex-
perimental context or notThe experimental context is in our case (at least) the full
state of the settingagn, n). Thus if we use the same notation as above for the realistic
values, this time applied to the possible results of measengs of observables, ini-
tially we can assume existence of orgyA; 1,A12,A21,A22;B11,B12,B21,B22).
Note that such a probability could be e.qg. factorizable [f)ig, P(Anm, Bnm). That
is one could in such a case have different probability distions pertaining to
different experimental contexts (which can even be defiheaduigh the choice of
measurement settings in space-like separated laborsjorie

Let us discuss this from the quantum mechanical point of vy because
such considerations have a nice formal description withisitheory, familiar to all
physicists. Two observables, séy@ B1 andA, @ By, as well as other possible pairs
are functions of two differenmhaximalobservables for the whole system (which are
non-degenerate by definition). If one denotes such a maxibsarvable linked with
Am® By, by I\7Im,n and its eigenvalues bylmn the existence of the aforementioned
joint probability is equivalent to the existence opéMy 1,M1.2,M21, Mz 2) in form
of a proper probability distribution. Only if one assumesliidnally context inde-
pendence, this can be reduced to the question of existero®wiegative) prob-
abilities P(A1,A2,B1,B>), whereAy, andB,, are eigenvalues hn®1andl® By,
where it turnl is the unit operator for the given subsystem. While contedtépen-
dence is physically doubtful, when the measurements arspaitally separated,
and thus one can have mutual causal dependence, it is wifieiddor spatially
separated measurements. llecality enters our reasoning, whether we like it or
not. Of course one cannot derive any Bell inequality of thealisype if the ran-
dom choice of settings is not independent of the distrilsutitA;, Ay, By, By, that is
without (20).

There is yet another challenge to the set of assumptiongipexs above. It is
often claimed, that realism can be derived, once one corssttle fact that maxi-
mally entangled quantum systems reveal perfect correlsitiand one additionally
assumes locality. Therefore it would seem that the onlycbassumption behind
Bell inequalities is locality, with the other auxiliary anef freedom. Such a claim
is based on the ideas of EPR, who conjectured that one cairte “elements of
reality” of a remote system, provided this system is pelyexirrelated with another
system. To show the fallacy of such a hope, let us now distuss particle correla-
tions, in the case of which consideration of just few “eletsearf reality” reveals that
they are a logically inconsistent notion. Therefore, thagrmt be a starting point
for deriving a self-consistent realistic theory. The thpegticle reasoning is used
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here because of its beauty and simplicity, not because am@taeach a similar
conclusion for two particle correlations.

4.3 Bell’s theorem without inequalities: three entangled particles
or more

As the simplest example, take a Greenberger-Horne-Zetlifig] (GHZ) state of
N = 3 patrticles (fig.2):

1
V2

where(x|x') = 0 (x = a,b,c, and kets denoted by one letter pertain to one of the
particles). The observers, Alice, Bob and Cecil measureotigervablesA(ga),
B(gs), C(qr), defined by

IGHZ) = — (a)Ib)[c) + [a) |b)[c')) (27)

X (%) = |+, @) (+, | — |-, o) (—, x| (28)
where
) = \% (i[X) + exp(ig)[x)) (29)

andX = A B,C. The guantum prediction for the expectation value of thelpob of
the three local observables is given by

E(¢n ¢3. @) = (GHZ|A(gn)B(¢8)C(¢)|GHZ) =sin(gn + s+ @).  (30)

Therefore, ifgn + @ + @ = 1/2+ kT, quantum mechanics predicts perfect corre-
lations. For example, fopga = 11/2, @8 = 0 and@. = 0, whatever may be the results
of local measurements of the observables, for say the [gwtielonging to thé

th triple represented by the quantum sti@e&lZ), their product must be unity. In a
local realistic theory one would have

Al (11/2)B'(0)C'(0) = 1, (31)

whereX!(@), X = A,B or C is the local realistic value of a local measurement of
the observabIéZ((p) that would have beetwbtained for tha-th particle triple if
the setting of the measuring devicegs By locality X' (¢) depends solely on the
local parameter. The ed.(31) indicates that we can predibteertainty the result
of measuring the observable pertaining to one of the pasgtidayc) by choosing
to measure suitable observables for the other two. Henceallne X' (@) are EPR
elements of reality.

However, if the local apparatus settings are differentwaosld have hage.g.

A(0)B'(0)C'(11/2) = 1, (32)
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Fig. 2 Test of the GHZ theo- ’] i)
rem. Alice, Bob and Cecil are $
three separated parties who .

Alice

share three entangled parti- A

cles in the GHZ state. Each 1 2 1 2

of them are free to choose 2 @ - 2 @
betv_veen two measurement 1 @ / / 1 @
settings 1 and 2 and they ob-

serve flashes in their detection outcomes settings . settings outcomes
station which indicate one of T%)
the two possible measurement Bob (&c-)
outcomes +1 or -1. N

-

A (0)B'(11/2)C'(0) =1, (33)
A (r/2)B (11/2)C (11/2) = —1. (34)

Yet, the four statements (181334) are inconsistent withialoealism. SincX' (@) =
+1, if one multiples side by side the eds.]{31-34), the result i

1=-1. (35)

This shows that the mere concept of existence of "elemenphydical reality” as
introduced by EPR is in a contradiction with quantum mectaredictions. We
have a “Bell’'s theorem without inequalities” [15].

Some people still claim that EPR correlations together withassumption of
locality allow one to derive realism. The above example riyeshows that such a
realism would allow one to infer that= —1.

4.4 | mplications of Bell’stheorem

Violations of Bell's inequalities imply that the underlgrtonjunction of assump-
tions of realism, locality and “free will"is not valid, anchothing more

It is often said that the violations indicate “(quantum) fooality”. However if
one wantsion-localityto betheimplication, one has to assume “free will” and real-
ism. But this is only at this moment a philosophical choits¢ems that there is no
way to falsify it). It is not a necessary condition for violations of Bell’s indjties.

The theorem of Bell shows that even a local inherently proiséib hidden-
variable theory cannot agree with all predictions of quemtheory (we base our
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considerations op(Ag, Az, B1, Bz) without assuming its actual structure, or whether
the distribution for a single run is essentially determntinjsall we require is a joint
“co-existence” of the variables, ..., By in atheoreticaldescription). Therefore the
above statements cover theories that treat probabilgi@seducible, and for which
one can defin@(A1, A2, B1,By). Such theories contradict quantum predictions. This,
for some authors indicates that nature is non-local. Wik rhere existence of
Bohm'’s model [[16] demonstrates that non-local hiddenaldés are a logically
valid option, we now know that there are plausible modelehss Leggett’s crypto-
nonlocal hidden-variable modél[117], that are in disagreenwith both quantum
predictions and experiment [18]. But, perhaps more impaistaif one is ready to
consider inherently probabilistic theories, then thereasmmediate reason to re-
quire the existence of (non-negative and normalized) goitibas p(Aq 1...,B2.2).
Violation of this condition on realism, together with loitgl which allows one to
reduce the distribution t@(Ay,...,Bz), is not in adirect conflict with the theory
of relativity, as it does not necessarily imply the posgipibf signalling superlu-
minally. To the contrary, quantum correlations cannot beduer direct commu-
nication between Alice to Bob, but still violate Bell’s inggjities. It is therefore
legitimate to consider quantum theory as a probability thesubject to, or even
derivable from more general principles, such as non-siggabndition [19[20] or
information theoretical principles [21, 22].

Note that complementarity, inherent in quantum formﬁsmmpletely contra-
dicts the form of realism defined above. So why quantum-aatity?

To put it short, Bell's theorem does not impyy property of quantum mechan-
ics. It just tells what it is not.

5 All Bell's inequalities for two possible settings on eachide

We shall now present a general method of derivatigstandard Bell inequalities
(that is Bell's inequalities involving two-outcome measonents and with two set-
tings per observer). Although these will not be spelled ogtlieitly, all the as-
sumptions discussed above are behind the algebraic matignd leading to the
inequalities. We present in detail a derivation for two-eflver problem, because
the generalization to more observers is, surprisinglyjamims:

Consider pairs of particles (say, photons) simultaneoasiiited in well defined
opposite directions. After some time the photons arrivevatvery distant measur-
ing devices A and B operated by Alice and Bob. Alice, choosem¢asure either
observablé\; or Ay, and Bob eitheB; or B,. The hypothetical results that they may
get for thej-th pair of photons ar(i,\‘1 andAJZ, for Alice’s two possible choices, and
B} andB}, for Bob's. The numerical values of these resultd (or —1) are defined
by the two eigenvalues of the observables.

2 Which can be mathematically expressed as non-existenceiatf probabilities for non-
commuting, i.e. non-commeasurable, observables.
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~Since, always eitth{— B£| =2 and|B{+ B£| =0, or|B{— B£| =0 and|B{+
BJZ| = 2, with a similar property of Alice’s hypothetical resultetfollowing relation
holds

A} £A)|-[B{ =By =0 (36)

for all possible sign choices withib (B6) except one, forethone has 4. Therefore
1 ) . ) .
2 |(AL+ (1) Ay (BL +(-1)'By) = 4, (37)
k=

or equivalently one has the set of identities

1 ) ) ) .
S(s1,%2)[(AL + 51AY) (B] + 5:BY)] = +4, (38)
S1,8=—

with anyS(s;,s,) = £1. There are Z — 16 suchSfunctions.

Imagine now thalN pairs of photons are emitted, pair by pai is sufficiently
large, such that/1/N < 1). The average value of the products of the local values
is given by

1N
=Bl = g 3 A8 (39

wheren.m=1,2.
Therefore after averaging, the following single Bell-typequality emerges:

i [E(A1,B1) + (—1)'E(A1,B2) + (—1)E(A2,B1) + (—1)*E(A2,Bz)| < 4,

(40)
or equivalently a series of inequalities:

1
S(s1,52)[E(A1,B1) + SE(A1,B2) + S1E(A2,B1) + s19E(A2,By)] < 4.

(41)
As the choice of measurement settings is assumed to beistdlysindependent of
the working of the source, i.e of the distribution &f's, Ay’s, B1’s andBy’s, the
average& (An, Bm) cannot differ much, for highl, from theactually observednes
in the subsets of runs for which the given pair of settings sedscted.

S1,9=—
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5.1 Completeness of the inequalities

The inequalities form a complete set. That is, they defindahes of the convex
polytope formed out of all possible local realistic modelsthe given set of mea-
surements. Whenever local realistic model exists inetu@D) is satisfied by its
predictions. To prove the sufficiency of conditiénl(40) waswuct a local realistic
model for any correlation functions which satisfy it, i.ee are interested in the local
realistic models foEf;lFf( such that they fully agree with the measured correlations
E(Kky, k) for all possible observablég, ky = 1,2.

One can introduck which is a “tensor” or matrix built out ofjj, withi, j =1,2.
If all its components can be derived from local realism, onshiave

1
Er= S PABA®B, (42)
AB=-1

with A = (A1(n1),S1A1(N2)), B = (A2(n1),A2(n2)), wheresy, s, € {—1,1} and
nonnegative normalized probabilitiB$A, B).

Let us ascribe for fixed;,s,, a hidden probability thaAj(n1) = sjA;j(n2) (with
j = 1,2) in the form familiar from Eq.[{40):

2
Pl =3l 5 4 kol (@3
k2, 2:1
Obviously these probabilities are positive. However thesnsup to identity only
if inequality (40) is saturated, otherwise there is a “ptuibity deficit”, AP. This
deficit can be compensated without affecting correlatiocfions.

First we construct the following structure, which is indebé local realistic
model of the set of correlation functions if the inequalgysaturated:

1

2 (s1,92)P(s1,%2)(1,81) @ (1, %), (44)
s1,=-1

whereZ (s;,s,) is the sign of the expression within the modulus in Eq] (43).
Now if AP > 0, we add a “tail” to this expression given by:

1 1 1

ap 2
il Av,A2) ® (By, By). (45)
16A1271A22718127182271( 1,A2) ® (B, B2)

This “tail” does not contribute to the values of the corriglatfunctions, because it
represents the fully random noise. The sum[of (44) is a vatidllrealistic model
for E = (E(1,1),E(1,2),E(2,1),E(2,2)). The sole role of the “tail” is to make all
hidden probabilities to add up to 1.

To give the reader some intuitive grounds for the actual fofrand the com-
pleteness of the derived inequalities, we shall now giveesoamarks. The gist is
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that the consecutive terms in the inequalities are justmesipa coefficients of the
tensorE in terms of a complete orthogonal sequence of basis teriBous. the ex-
pansion coefficients represent the tensors in a one-to-age w

In the four dimensional real space where b&th andE are defined one can
find an orthonormal basis ség152 = %(l,sl) ® (1,52). Within these definitions the
hidden probabilities acquire a simple form:

P(s1.%) = 310 €l (46)

where the dot denotes the scalar produd®fnNow the local realistic correlations,
E.Rr, can be expressed as:

~ 1 ~ A ~
Elr= z 1Ssis, - E|2(81,92)Ss;s, - (47)
s1.H=—1

The modulus of any numbéx| can be split intdx| = x sign(x), and we can always
demand the produ@ (n1)Az(n1) to have the same sign as the expression inside
the modulus. Thus we have:

E= (S5 B)Sis- (48)

St

™M=

-1
The expression in the bracket is the coefficient of teisor the basisSs,. These

coefficients are then summed over the same basis vectarsidtesthe last equality
appears.

5.2 Two-qubit statesthat violate the inequalities

A general two qubit state can be put in the following concaenf

N

3
f’: Z_ Tuv(A;%@AE)- (49)

u,v=0

The two qubit correlation function for measurements of Spalong directiom(1)
and of spin 2 along(2) is given by

Eom(n(1),n(2)) = Tr [f) (n(l) atan(2)- 62)] , (50)

and it reads
Eom(n(1),n(2)) = > Tijn(1)in(2);. (51)
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Two particle correlations are fully defined once one knovesdbmponents ofjj,
i,j =1,2,3, of the tensofl . Equation[[5ll) can be put into a more convenient form:

Eqmu(n(1),n(2)) = Ten(1)@n(2), (52)
where "e” is the scalar product in the space of tensors, which in taiisamorphic
with R3® R3.

Quantum correlatioBqm(n(1),n(2)) can be described by alocal realistic model
if, and only if, foranychoice of the settings(1)t andn(2)*2, whereky, ko = 1,2,
one has

% i ’ﬂ[”(1)1+(—1)kn(1)2]®[n(2)1+(—1)'n(2)2)] <1 (53)
k=1

Since there always exist two mutually orthogonal unit vesagx)! anda(x)? such
that
n(x)!+ (—1)*n(x)? = 2a (x)xa(x)* with k = 1,2 (54)

and witha (x)1 = cosf(x), a(x), = sinB(x), one obtains
i ’a(l)ka(2)|foa(1)k®a(2)' <1 (55)
k=1

Note thatT e a(1)*®a(2)" is a component of the tensbrafter a transformation of
the local coordinate systems of each of the particles inth smes where the two
first basis vectors amx)* anda(x)?. We shall denote such transformed components
again byTy.

The necessary and sufficient condition for a two-qubit dati@n to be described
within a local realistic model is that in any plane of obséiosms for each particle
(defined by the two observation directions) one must have

2
Z la(Lka(2)iT| < 1. (56)
k=1

for arbitrarya (1)k, a(2);.
Using the Cauchy inequality one obtains

2 2
1 20T T2. 57
k;ﬂla( ka (2) Tl <, k,Z:l 2 (57)

Te<1 (58)

Therefore, if
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for any set of local coordinate systems, the two particleetation functions of
the form of [51) can be understood within the local realismaitwo settings per
observer experiment).

This condition is both necessary and sufficient.

5.2.1 Sufficient condition for violation of the inequality

The full set of inequalities is derivable from the identi88j where we put non-
factorable sign functio®(s;,s) = %(1+ s1) 4+ (1—s1)s. In this case one obtains
the CHSH inequality in its standard form:

(A1 +A2)B1+ (A1 —A2)B2) 50| < 2, (59)

where (...)arg denotes average. All other non-trivial inequalities ar¢adiable

by all possible sign change§ — —Xy (with k= 1,2 andX = A B). It is easy

to see that factorizable sign functions, such as 8., S) = $1%, lead to triv-

ial inequalities|E(An, Bm)| < 1. As noted above the quantum correlation function
Eo(ak, by) is given by the scalar product of the correlation teribowith the ten-
sor product of the local measurement settings represemtedibvectorsay @ by,

i.e. Eo(a,b)) = (a®by) - T. Thus, the condition for a quantum state endowed
with the correlation tensoF to satisfy the inequality{539), is that for all directions
ai,ap,b1,by one has

B2y @by (B2

where both sides of ($9) were divided by 2.

Next notice thatA . = %(aliaz) satisfy the following relationsA -A_ =0
and[|A[?+||A_||?= 1. ThusA, +A_ is a unit vector, and\. represent its
decomposition into two orthogonal vectors. If one introgsicnit vectors. such
thatAL = aja., one has‘:ﬁr +a? = 1. Thus one can put inequalify 60) into the
following form:

)®b2} ﬂ <1 (60)

IS T|<1, (61)

whereS= a;a;, ®byj+a a ®by. Notethatsince, -a_ =0, one ha$-S=1, i.e.

Sis a tensor of unit norm. Any tensor of unit nori, has the following Schmidt
decompositiorﬂ = A1vV1 ®@ W1 + Apvp @ Wa, wherev; -vj = §j,wi-wj = &; and

/\12+/\2 = 1. The (complete) freedom of the choice of the measuremeadttthns

b1 andb,, allow one by choosinl, orthogonal tdo; to putSin the form isomorphic
with U, and the freedom of choice af anda, allows A, andA _ to be arbitrary
orthogonal unit vectors, anal. anda_ to be also arbitrary. ThuS can be equal
to any unit tensor. To get the maximum of the left hand sidd6@),(we Schmidt
decompose the correlation tensor, and take two terms ofgbendposition which
have the largest coefficients. In this way we get a tefi$pof Schmidt rank two.

We putS= WTlTH:r/’ and the maximum i§T’|| = VT’ T'. Thus, in other words,
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2
T2 <1 62
maX[kél kl] < ( )

is the necessary and sufficient condition for the inequéi@) to hold, provided the
maximization is taken over all local coordinate systemsaaf observers. The con-
dition is equivalent to the necessary and sufficient cooitif Horodeccy Family
[27] for violation of the CHSH inequality.

5.3 Bell’'sinequalitiesfor N particles

Let us consider a Bell inequality test withh observers. Each of them chooses be-
tween two possible observables, determined by local paeaste (j) andna(j),
wherej = 1,...,N. Local realism implies existence of two numbgégsandA), each
taking values +1 or -1, which describe the predeterminedltre$ a measurement
by the j-th observer for the two observables. The following algahidentity holds:

1 N . .
> 1S<s1,...,sN> |‘|1[Ai+sjAé] = +2N, (63)
SLoySN= 1=

where §(si,...,Sv) is an arbitrary "sign” function, i.eS(sy,...,sv) = £1. It is a
straightforward generalization of the one for two obsesvas given in[(41). The
correlation function is the average over many runs of theeeRpeNntEy,  , =

<|_|'j\l:1A1J<j Yavg With kg, ...kn € {1,2}. After averaging[(63) over the ensemble of the
runs one obtains the Bell inequaliti@s

1 2
) Sees) 3 S N T B, ] <2V (64)
Stye.,SN=—1 kl ..... N=1

Since there are? different functionsS, the above inequality represents a setdof 2
Bell inequalities.
All these boil down to just one inequality (!):

> 13 1é;l*1...4$*1Ek1,...,kN|szN, (65)
SN=—1 Ky, KN=

The proof of this fact is trivial exercise with the use of theerty that eithejX| =1
or |X| = —1, whereX is a real number. This inequality was derived independently
in Refs [24] and [[25]. The presented derivation follows nhaRef. [2€].

3 This set of inequalities is a sufficient and necessary cimdfor the correlation functions enter-
ing them to have a local realistic model. Compare it to the padicle case.
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5.4 N-qubit correlations

A general N-qubit state can be put in the form

O 5
P=oN z OTul"'/JN (®E:10-I|5K)' (66)
Up, UN=

Thus, theN qubit correlation function has the following structure

Eom(n(1),n(2),....,n(N)) = Ten(1)®n(2)...@n(N), (67)

whereT stands for amN index tensor, with componenty, ., Wherek = 1,2,3.
The necessary and sufficient condition for a descriptiomefdorrelation function
within local realism in the general case reads

2
ZW o (D 0 (2)ky-+- (N )iy Tt ey | < 1. (68)
kiko....kn=1

for any possible choice of local coordinate systems foniiadial particles. Again if

2
Te k<1 (69)
ke, Ty=1

for any set of local coordinate systems, tiejubit correlation function can be de-
scribed by a local realistic model. The proof of these faetganeralizations of the
ones presented earlier pertaining to two particles. Thigcgrit condition for vio-
lation of the general Bell's inequality fo¥ particles by a general state Mfqubits
can be found in Ref[[26].

5.5 Concluding remarks

The inequalities presented above represent the full setaoflard “tight” Bell's
inequalities for an arbitrary number of parties. Any norhtimequality is weaker
than tight ones. Such Bell's inequalities can be used toctietetanglement, not
as efficiently as entanglement general witnesses. Hownesr have the advantage
over the witnesses that they are systems-independent.detegt entanglement no
matter what is the actual Hilbert space that describes thgystems.

As we shall show below the Bell inequalities analyzed abdse show that the
entanglement violating them is directly applicable in sapmantum informational
protocols that beat any classical ones of the same kind.wilibe shown via an
explicit construction of such protocols.
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6 Quantum reduction of communication complexity

In his review paper entitled "Quantum Communication Comripye(A Survey)”
Brassard[[28] posed a questidiCan entanglement be used to save on classical
communication?’He continued that there are good reasons to believe at fast th
the answer to the question is negative. Holevo’s theoferhd@2fes that no more
thann bits of classical information can be communicated betweatigs by the
transmission of qubits regardless of the coding scheme as long as no entagigie
is shared between parties. If the communicating partieseghi@or entanglement,
twice as much classical information can be transmitted {gso called "superdense
coding” [30]), but no more. It is thus reasonable to expeat gven if the parties
share entanglement no savings in communication can bevachiyond that of
the superdense codingr(Bits pern qubits transmitted).

Itis also well known that entanglement alone cannot be usecimmunication.
Local operations performed on any subsystem of an entarglegbosite system
cannot have any observable effect on any other subsystémvase it could be
exploited to communicate faster than light. One would tintisifively conclude that
entanglement is useless for saving communication. Brdskamwever, concluded
"... all the intuition in this paragraph is wrong.”

The topic of classical communication complexity was introeld and first stud-
ied by Andrew Yao in 1979[31]. A typical communication comxity problem can
be formulated as follows. Let Alice and Bob be two separatatigs who receive
some input data of which they know only their own data and hetdata of the
partner. Alice receives an input strisgind Bob an input string and the goal is for
both of them to determine the value of a certain funcfigny). Before they start the
protocol Alice and Bob are eveaadlowed to share (classically correlated) random
stringsor any other data, which might improve the success of theopod$. They
are allowed to process their data locally in whatever waye ®hvious method to
achieve the goal is for Alice to communicato Bob, which allows him to compute
f(x,y). Once obtained, Bob can then communicate the va(ugy) back to Alice.

It is the topic of communication complexity to address thesjions:Could there
be more efficient solutions for some functiorig, §)? What are these functions?

A trivial example that there could be more efficient soluidhen the obvious
one given above is a constant functibfx,y) = c, wherec is a constant. Obviously
here Alice and Bob do not need to communicate at all, as thegicaply takec for
the value of the function. However there are functions forclwtihe only obvious
solution is optimal, that is only transmissionxato Bob warrants that he reaches the
correct result. For instance, it is shown timahits of communication are necessary
and sulfficient for Bob to decide whether or not Alice#it input is the same as his
one [28/32].

Generally one might distinguish the following two types ofltmunication com-
plexity problems:

1. What is the minimal amount of communication (minimal nemnbf bits) re-
quired for the parties to determine the value of the funcivith certainty?



Bell's Inequalities: Foundations and Quantum Communicati 25

2. What is the highest possible probability for the partesitrive at the correct
value for the function if only aestrictedamount of communication is allowed?

Here we will consider only the second class of problems. Xwdéin this case one
does not insist on the correct value of the function to beinbthwith certainty.
While an error in computing the function is allowed, the fErtry to compute it
correctly with as high probability as possible.

From the perspective of the physics of quantum informati@t@ssing the nat-
ural questions isAre there communication complexity tasks for which theipart
could increase the success in solving the problem if thegegh@or entanglement?
In their original paper Cleve and Buhrmdn [33] showed thaameglement can in-
deed be used to save classical communication. They showetbtholve a certain
three-party problem with certainty the parties need to ticaat at least 4 bits of
information, in a classical protocol, whereas in the quanfotocol (with entan-
glement shared) it is sufficient for them to broadcast onlit8df information. This
was the first example of a communication complexity probleat tould be solved
with higher success than it is be possible with any clasgigatbcol. Subsequently,
Buhrman, Cleve and van Dam[34] found a two-party problen ¢aa be solved
with a probability of success exceeding 85% and 2 bits ofrméttion communi-
cated if prior shared entanglement is available, whereapribbability of success in
a classical protocol could not exceed 75% with the same atafwommunication.

The first problem whose quantum solution requires signiflgamaller amount
of communication compared to classical solutions was @@ by Buhrman, van
Dam, Hgyer and Tapjp [35]. They considerektparty task which requires roughly
kink bits of communication in a classical protocol, and exakthjits of classical
communication if the parties are allowed to share prior mgitement. The quan-
tum protocol of Ref.[[34] is based on the violation of the CH8tequality by
two-qubit maximally entangled state. Similarly, the quamtprotocols of multi-
party problems[[34, 38, 35] are based on an application o&tHZ-type argument
against local realism for multi-qubit maximally entanglgdtes. Galvad [36] has
shown an equivalence between the CHSH and GHZ tests for plartieles and the
two- and three-party quantum protocols of Refl[34], refipely. In a series of pa-
pers [37[:38, 39, 40] it was shown that entanglement viddediBell inequality can
always be exploited to find a better-than-any-classicaltgmi to some communi-
cation complexity problems. In this brief overview we magifdllow the approach
introduced in these papers. The approach has been furtheoged and applied in

Ref. [41]42] (See also Ref. [43]).

6.1 The problem and its optimal classical solution

Imagine several spatially separated partnieér$o Ry, each of whom has some data
known to him/her only, denoted heredswith i = 1,...,N. They face a joint task:
to compute the value of a functidn(Xy, ..., Xn). This function depends on all data.
Obviously they can get the value ©fby sending all their data to partnBy, who
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does the calculation and announces the result. But are timys to reduce the
amount of communicated bits, i.e. to reduce the commuicadmplexity of the
problem?

Assume that every partnBg receives a two bit stringfx = (z, X) wherez, xx €
{0,1}. We shall consider specific task functions which have thiefohg form

T = F(xg, o) (— 1) Ta %

where f € {0,1} the sum in the exponent is modulo 2. The partners know also
the probability distribution (“promise”) of the bit strisg“inputs”). There are two
constraints on the problem. Firstly, we shall consider agributions, which are
completely random with respect &', that is a class of the form(Xy,...,Xn) =
2-Np/(xq,...,xn). Secondly, communication between the partners is restriti
N — 1 bits. Assume that we ask the last partner to give his/heverns(Xy, ..., Xn),
equal to+1, to the question what is functional valti€X, ..., Xy) in each run for
the given set of inputXy, ..., Xy.

For simplicity, we shall introduce nowk = (—1)%, yx € {—1,1}. We shall usgy
as a synonym df. SinceT is proportional tqy Y, the final answeA is completely
random if it does not depend @very y. Thus, information orz’s from allN — 1
partners must somehow rea@alp. Therefore the only communication “trees” which
might lead to a success are those in which e8ckends only a one-bit message
my € {0,1}. Again we introduceg, = (—1)", e € {—1,1}, and will treat is as
synonym ofimy.

The average success of a communication protocol can be mneelasiih the fol-
lowing fidelity function

F= 3 p0Xe - X)T (X - XA X), (70)

1 1 1 N
F:Z—N z P/ (X1, -, Xn) F (X1, .oy XN) Z |_|ykA(xl,...7xN;yl,...,yN).
X1, XN=0 Y1, YyN=—1k=1

(71)
The probability of success B= (1+F)/2.

The first steps of a derivation of the reduced form of the figdlinction for
an optimal classical protocol will now be presented (theleeanay reconstruct the
other steps or consult references [3€, 39]). In a classicabpol the answeh of the
partnerPy can depend on the local inpwg, xn, and messages,,, ..., €, , received
directly from a subset of partnersd , ..., R :

AZA(XN7YN731a---7Q|)- (72)

Let us fixxy, and treafA as a functiorAy, of the remaining + 1 dichotomic vari-
ables

YN,Qla---7Q| .
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Thatis, we treat nowy as a fixed index. All such functions can be thought oflad 2
dimensional vectors, because the values of each such adnfetm a sequence of
the length equal to the number of elements in the domain.dr?th* dimensional
space containing such functions one hasrthogonal basigiven by

o
Vi (N 88 ) = Y4 [T el (73)
k=1
wherej, j1,...,ji € {0,1}. Thus, one can expar{xn,yn,8;,-..,&,) with respect
to this basis and the expansion coefficients read

1 1
Ciind ) =5 Y AGNYNGGL 8V (N By &) (74)

YNBips-8 =—1
Since|A| = |Vjj,,..j;| = 1, one hagcjj,..j, (xn)| < 1. We put the expansion into the
expression foF and obtain
1 1 1 N 1 J_ [ i
F=2ox (X1, Xn) Yh Ciiit ON)YN [] &
N PRRRS] 1---J1 N ?
2 Xl,...,ZXN:O yl,...yzszlle j,jl,z.“:O klzl “

(75)
whereg(Xa, ..., Xn) = f(Xg, .-, XnN) P (X2, -+ -, XN)- Becausez}l,N}lyNy% =0, and
Z&k}l)’keg =0, only the term with aljj, j1, ..., | equal to unity can give a non-zero
contribution toF. Thus,Ain F can be replaced by

|
A =ynen () [ & (76)
k=1

wherecy (xn) stands forci1 1(xn). Next, notice that, for example,,, can depend
only on local datai, , yi, and the messages obtainedHyyfrom a subset of partners:
€py---»Epm- This set does not contain any of the's of the formula[76) above. In
analogy withA, the functione,, for a fixedx;;, can be treated as a vector, and
thus can be expanded in terms of orthogonal basis functafres¢imilar nature as
eq. [73)), etc. Again, the expansion coefficients sattﬁfj){_,_jm(xilﬂ < 1.Ifone puts
this into A, one obtains a new form d&f, which after a trivial summation ovex
andy;, depends orey (xn)Ci (%) [k2 &, Whereci, (x) stands forc;; ;(x,), and
its modulus is again bounded by 1. Note thyatandy;, disappear, agﬁ =1.

As each message appears in the product only once, we cottiisyocedure of
expanding those messages which depend on earlier messhgdsalts. The final
reduced form of the formula for the fidelity of an optimal prool reads

1
F= 5 g0w....xn) [] %), (77)

X1, XN=0 n=1

=z
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with |cn(X,)| < 1. SinceF in eq. [7T) is linear in evergy(Xy,), its extrema are at the
limiting valuescn(xn) = 1. In other words, a Bell-like inequalitfFr | < Max(F) =
B(N) gives the upper fidelity bounbote, that the above derivation shows that opti-
mal classical protocols include one in which partrigrso Py_1 send toPy one bit
messages which encode the valu@of yc(X«), wherek=1,2,....N — 1.

6.2 Quantum solutions

The inequality forF suggests that some problems may have quantum solutions,
which surpass any classical ones in their fidelity. Simplg oray use an entangled
state|() of N qubits that violates the inequality. Send to each of thengastone of

the qubits. In a protocol run al partners make measurements on the local qubits,
the settings of which are determinedXgy They measure a certain qubit observable
Nk(Xx) - 0. The measurement resufis= +1 are multiplied by, and the partneg,

for 1 <k <N -1, sends a bit messageRg encoding the value afy = yx\. The

last partner calculateg W ﬂ'ﬁ‘:’f my, and announces this &s The average fidelity

of such a process is

1
F= 5 g0a....x)(W@hy (k%) - o)), (78)

Xl,...,XN:O

and in certain problems can even reacfity.

For some tasks the quantum vs. classical fidelity ratio gegonentiallywith
N. This is the case, for example, for the so-calleddulo-4 sunproblem. Each
partner receives a two-bit input striffgfx = 0,1,2,3; k=1,...,N). The promise
is thatX,’s are distributed such thzﬁngl Xx)mod2= 0. The task @ Py must tell
whether the sum modulo-4 of all inputs is 0 or 2.

For this problem the classical fidelity bounds decrease mapibally withN, that
is B(F) < 27K+1 whereK = N/2 for even an = (N + 1)/2 for odd number of

parties. If one uses th¢ qubit GHZ statesiGHZ) = iz(|z+, o ZH) 2, 7)),

where|zt) is the state of spia-1 along thez-axis, and suitable pairs of local set-
tings, the associated Bell inequality can be violated makinThus, one has a
quantum protocol which always gives the correct answer.

In all quantum protocols considered here entanglemeniethds to a violation of
Bell's inequality is a resource that allows for better-tri@dassical efficiency of the
protocol. Surprisingly, one can also show a version of a tjuarprotocol without
entanglement[36, 39]. The partners exchange a single,dqukit P, ; and so on,
and each of them makes a suitable unitary transformation(atnich depends on,
andxy). The partnePy, who receives the qubit as the last one, additionally perfor
a dichotomic measurement. The result he/she gets is equiaRor details, includ-

4 It can be formulated in terms of a task functidn= 1— (YR, Xx)mod4 An alternative formula-
tion of the problem read§ = cos( 5 i3 X) with p' = 5=tz |cos( § g X
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ing an experimental realization see R&f.|[39]. The obvimreeptual advantage of
such a procedure is that the partners exchange a single €uwloit which due to
the Holevo bound]29] one can read out at most one bit of in&dion. In contrast
with the protocol involving entanglement, no classicahsfer of any information
is required, except from the announcemenByof his measurement result!

In summary, if one has a pure entangled state of many qubisdan be gen-
eralized to higher-dimensional systems and Bell's ingtjgalinvolving more than
two measurement settings per observer), then there exisli @Bquality which is
violated by this state. This inequality has some coeffigigMy, ...,Xn), in front of
correlation functions, which can always be renormalizeslioh a way that

1

z 19(X1, ..., %n)| = 1.

tion f(xq,...,Xn) = H = +1 and a probability distribution/ (xy,...,%n) =
|g(X4, ..., X)|. Thus we can construct a communication complexity problean is
tailored to a given Bell's inequality, with task functidh= |‘|iNyi f. All this can be
extended beyond qubits, see REf|[37, 40].

As it was shown, for three or more partids> 3, quantum solutions for certain
communication complexity problems can achieve probadsliof success of unity.
This is not the case fdl = 2 and the problem based on the CHSH inequality. The
maximum quantum value for the left hand side of the CHSH imditpu(29) is just
v/2—1. This is much bigger than the Bell bound of 0, but still netldrgest possible
value, for an arbitrary theory that is not following locahlism, which equals to
1. Because the maximum possible violation of the inequadityot attainable by
quantum mechanics several questions arise. Is this limietb by the theory of
probability, or by physical laws? We will address this gqigsin the next section,
and look what would be the consequences of a maximal logipaksible violation
of the CHSH inequality.

6.3 Stronger-than-quantum-correlations

The Clauser-Horne-Shimony-Holt (CHSH) inequality [9] focal realistic theories
gives the upper bound on a certain combination of correlatmetween two space-
like separated experiments. Consider Alice and Bob whopaddently perform
one out of two measurements on their part of the system, satlirttotal there are
four experimental set-upsx,y) = (0,0), (0,1), (1,0) or (1,1). For any local hidden
variable theory the CHSH inequality must hold. One can piltatfollowing form:

p(a=blx=0,y=0)+p(a=bjx=0,y=0)
+p(a=Db[x=0,y=0)+p(a=—bx=0,y=0) <3, (79)
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or equivalently,
Zo p(adb=x-y) <3. (80)

X,y=0,1
In the latter form we interpret the dichtomic measuremesiilts as of binary values,
0 or 1, and their relations are put as ‘modulo 2 sums’, denlézd by®. One has
0p0=1®1=0and 1= 1. Forexamplep(a=b|x=0,y=0) is the probability
that Alice’s and Bob’s outcomes are the same when she cheesiisgx and he
settingy.

As discussed in previous sections quantum mechanicallatores can violate
the local realistic bound of inequalify (80) and the limitsyzroven by Cirel'sori[44]
to be 24 /2. In Ref. [19] Popescu and Rohrlich asked why quantum mechait
lows a violation of the CHSH inequality with a value of#2y/2, but not more,
though the maximal logically possible value is 4. Would alation with a value
larger than 2+ 1/2 lead to (superluminal) signaling?. If this were true, tioeian-
tum correlations could be understood as maximal allowedetations respecting
non-signaling requirement. This could give us an insightt@origin of quantum
correlations, without any use of the Hilbert space fornmalis

The non-signaling condition is equivalent to the requirabtbat the marginals
are independent of the partners choice of setting

p(ax,y) = % p(a,blx,y) = p(alx), (81)

p(ax,y) = % p(a,blx,y) = p(ax) (82)

wherep(a, b|x,y) is the joint probability for outcomesandb to occur giverx and

y are the choices of measurement settings, respectivelp@ix) is the probability

for outcomea givenx is the choice of measurement setting. Popescu and Rohrlich
constructed a toy-theory where the correlations reach ténmal algebraic value

of 4 for left hand expression of the inequalify179), but aeertheless not in con-
tradiction with signaling. The probabilities in the toy ned@re given by

Ega:1b21IX§§ i} if xye {00,01,10},
azl,b:ox l
EE&ZObzlixﬁ 5} xy=11 (83)
Indeed one has
x,yZO,l

Van Dam [45] and independently Cleve considered how pléaisite stronger-
than-quantum correlations from the point of view of comneatiopn complexity,
which describes how much communication is needed to ewaldtinction with
distributed inputs. It was shown that the existence of datiens that maximally
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violate the CHSH inequality would allow to perform all dibuited computations
(between two parties) of dichotomic functions with a comication constraint to
just one bit. If one is ready to believe that nature shouldatiotv for “easy life”
concerning communication problems, this could be a reasgnsuperstrong cor-
relations are indeed not possible.

Instead of superstrong correlations one usually speakstabtnonlocal box”
(NLB) or Popescu-Rohrlich (PR) box, as an imaginary deiet takes as inputs
at Alices andy at Bobs side, and outpudsandb at respective sides, such tlaab b=
X-y. Quantum mechanical measurements on a maximally entasigitedallow for a
success probability gf = cos’ £ = 2+Tf2 ~ 0.854 at the game of simulating NLBs.
Recently, it was shown that in any “world” in which it is pdsi& to implement
an approximation to the NLB, that works correctly with prbbi¢dy greater than
3*—6\/6 =90.8%, for all distributed computations of dichotomic functsowith a one-
bit communication constraint, one can find a protocol the¢galways the correct
values, Ref.[[46]. This bound is an improvement over van Bamk, but still has a
gap with respect to the bound imposed by quantum mechanics.

6.3.1 Superstrong correlations trivializes communicatia complexity

We shall present a proof that availability of a perfect NLBulballow for a solu-
tion of a general communication complexity problem for aapynfunction, with an
exchange of a single bit of information. The proof is due to Z@am [45].

Consider a Boolean functiofi: {0,1}" x {0,1}, which has as inputs two-bit
stringsx = (X, ..., Xn) andy = (y1, ...,Yn). Suppose that Alice receives tRestring
and Bob, who is separated from Alice, thestring, and they are to determine the
function valuef (x,y) by communicating as little as possible. They have, however,
NLBs as resources.

First, let us notice that any dichotomic functid(x,y) can be rewritten as a finite
summation:

2I’1
fy) = 3 ROOQ) (85)
1=
whereP(x) are polynomials ix € {0,1} andQi(y) = y'f -...-yin are monomials in

yi € {0,1} with i4,...,in € {0,1}. Note that the latter ones constitute an orthogonal
basis in a 2 dimensional space. The decomposed funcfids treated as a func-
tion of y's, while the input, ..., X, are considered as indices numbering functions
f. Note that there are"aifferent monomials. Alice can locally compute all tRe
values by herself and likewise Bob can computeQllby himself. These values
determine the settings of Alice and Bob that will be choseirtinrun of the exper-
iment. Note that to this end they need in general exponéntizany NLBs. Alice
and Bob perform for everye {1,...,2"} a measurement on thieh NLB in order

to obtain without any communication a collection of bit ved@; andb;, with the
propertya; ® by = R (X)Qi(y). Bob can add all hig; to Zizilbi values without re-
quiring any information from Alice, and he can broadcass ingle bit to Alice.
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She, on her part, computes the sum of &ep zizilai and adds Bob'’s bit to it. The

final result
on on

3 @)= 3 RO = () (86)

is the function value. Thuspperstrong correlations trivialize every communication
complexity problem.

7 The Kochen-Specker Theorem

In previous sections we have seen, that tests of Bell's ialitégs are not only theory
independent tests of non-classicality, but also have egigdins in quantum informa-
tion protocols. Examples are communication complexityofems [38], entangle-
ment detection [47], security of key distributidd [2], angastum state discrimina-
tion [48]. Thus entanglement which violates local realisan be seen as a resource
for efficient information processing. Can quantum contakty— the fact that quan-
tum predictions disagree from the ones of non-contextuildm-variable theories —
also be seen as such a resource? We will give an affirmativesars this question
by considering explicit examples of a quantum game.

The Kochen-Specker theorem is a "no go” theorem that provan#adiction
between predictions of quantum theory and thoseami-contextuahidden vari-
able theories. It was proved by Bell in 1966 [49] and indepely by Kochen and
Specker in 1967 50]. The non-contextual hidden-varidideties are based on the
conjecture of the following three assumptions:

1. Realismltis a model that allows one to use all variabfegn) in the theoretical
description of the experiment, whefg,(n) gives the value of some observable
Am which couldbe obtained if the knob setting were at positiomsThe indexn
describes the entire experimental “context” in whigh is measured and is op-
erationally defined through the positions of all other knettisgs in the experi-
ment, which are used to measure other observables jointtyAyi. All An(n)’s
are treated as perhaps unknown, but still fixed, (real) nusloe variables for
which a proper joint probability distribution can be defined

2. Non-contextualityThe value assigned to an observaBjgn) of an individual
system is independent of the experimental conteit which it is measured,
in particular of any properties that are measycedtly with that property. This
implies thatAn(n) = Am for all contextan.

3. “Free will". The experimenter is free to choose the obably and its context.
The choices are independent of the actual hidden valuAg’sf etc.

Note that “non-contextuality” implies locality (i.e., nesontextuaily with respect
to a remote context), but there is no implication other waynh One might have
theories which are local, but locally non-contextual.

It should be stressed that the local realistic and non-gturbtheories provide
us with predictions which can be tested experimentally,\ahith can be derived
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without making any reference to quantum mechatiesugh many derivations in
the literature give exactly the opposite impression). bfeoto achieve this, it is im-
portant to realize that predictions for noncontextualistialtheories can be derived
in a completely operational way [63]. For concretenessgimathat an observer
wants to perform a measurement of an observable, say thess§ief a spin com-
ponent of a spin-1 particle along a certain directioifhere will be an experimental
procedure for trying to do this as accurately as possiblewilNeefer to this proce-
dure by saying that one sets the “control switch* of his/hgyaxatus to the position
n. In all experiments that we will discuss only a finite numbg&different switch
positions is required. By definition different switch pasits are clearly distinguish-
able for the observer, and the switch position is all he knalaeut. Therefore, in an
operational sense the measured physical observablerislgefined by the switch
position. From the above definition it is clear that the samiéck position can be
chosen again and again in the course of an experiment. Nb&tén such an ap-
proach as described above, it does not matter which obdergdbeally” measured
and to what precision. One just derives general predictipre/ided that certain
switch positions are chosen.

In the original Kochen-Specker proaf [50], the observaltiet are considered
are squares of components of the spin 1 along various directiSuch observ-
ables have values 1 or 0, as the components themselves hHaes \tz0, or—1.
The squares of spin compone%, 3212 and§3 along any three orthogonal direc-
tionsny, ny, andns can be measured jointly. Simply, the corresponding quantum
operators commute with each other. In the framework of admeariable theory
one assigns to an individual system a set of numerical vadags-1,0+41,... for the
square of spin component along each direcﬁﬁ)lr,l Sﬁz, Sﬁs that can be measured
on the system. If any of the observables is chosen to be nehsarthe individual
system, the result of the measurement would be the corrdsmpmalue. In a non-
contextual hidden variable theory one has to assign to aercdisle, sa)Sr%l, the
samevalue independently of whether it is measured in an experiai@rocedure
jointly as a part of some sdis} , S, S, } or of some other sefS; , S5, S5, } of
physical observables, whef@1,n,,n3} and{ni,n4,ns} are triads of orthogonal
directions. Notice that within quantum theory some of therapors corresponding
to the observables from the first set mayt commutavith some corresponding to
the observables from the second set.

The squares of spin components along orthogonal direcsiatisfy

§+8,+S, =ss+1)=2 (87)

This isalwaysso for a particle of spin 1 (s=1). This implies that for evergasure-
ment of three squares of mutually orthogonal spin compatemt of the results will
be equal to one, and one of them will be equal to zero. The KoSpecker the-
orem considers a set of triads of orthogonal directiomsn,,n3}, {n1,n4,ns},...,

for which at least some of the directions have to appear iers¢wf the triads.
The statement of the theorem is that there are sets of director which it is not
possible to give any assignment of 1's and 0’s to the direstmonsistent with the
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constraint[(87). The original theorem in[50] used 117 vestbut this has subse-
quently been reduced to 33 vectarsi[51] and 18 vecfars [52kthkmatically the

contradiction with quantum predictions has its origin ie flact that the classical
structure of non-contextual hidden variable theories asented by commuta-
tive algebra, whereas quantum mechanical observablesnmadit commutative,

making it impossible to embed the algebra of these obsexgabla commutative
algebra.

The disproof of noncontextually relies on the assumpti@t the same value is
assigned to a given physical observalﬁi;-,, regardless with which two other ob-
servables the experimenter chooses to measure it. In quah&ory the additional
observables from one of those sets correspond to opera@trsid not commute
with the operators corresponding to additional obsergfstam the other set. As
it was stressed in a masterly review on hidden variable teedry Mermin [54],
Bell wrote [49] that “These different possibilities reqaiidifferent experimental ar-
rangements; there is repriori reason to believe that the results ... should be the
same. The result of observation may reasonably depend hoooithe state of the
system (including hidden variables) but also on the corepdégposition appara-
tus.” Nevertheless, as Bell himself showed, the disagreeimetween predictions
of qguantum mechanics and of the hidden-variables theodrde strengthened if
non-contextuality is replaced by a much more compellingiaggion of locality.
Note that in Bohr’s doctrine of the inseparability of the ettjand the measuring
instrument, an observabiedefined through the entire measurement procedure ap-
plied to measure it. Within this doctrine one would not spabkut measuring the
same observable in different contexts, but rather abousuregay entirely different
maximal observables, and deriving from it the value of a degate observable.
Note that Kochen-Specker argument necessarily involvgsrigrate observables.
This is why it does not apply to single qubits.

7.1 A Kochen-Specker Game

We will now consider a quantum game which is based on the Ko&pecker ar-
gument strengthened by the locality condition (See Ref})[38e consider a pair
of entangled spin 1 particles, which form a singlet statdéwotal spin 0. A formal
description of this state is given by

1
Y

where, for examplgl)n| — 1), is the state of the two particles with spin projection
+1 for the first particle and spin projection -1 for the secqadticle 1 along the
same directiom. It is important to note that this state is invariant undeharge of
the directionn. This implies that if the spin components for the two paescare
measured along an arbitrary direction, however the santedides, the sum of the

|¥) (1Dnl=L)n+[=21)n|L)n —[0)n|O)n), (88)
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two local results is always zero. This is a direct consege@fithe conservation of
angular momentum.

We now present the quantum game introduced in Ref. [56]. Elqairement
in the proof of the Kochen-Specker theorem can be formulagethe following
problem in geometry. There exists an explicit set of vecfors...,ny} in R® that
cannot be colored in red (i.e., assign the value 1 to the spiared component
along that direction) or blue (i.e., assign the value 0) shahboth of the following
conditions hold:

1. For every orthogonal pair of vectang andny, they are not both colored red.
2. For every mutually orthogonal triple of vectarsnj, andny, at least one of them
is colored red.

For example, the set of vectors can consist of 117 vectons fine original Kochen-
Specker proof[[50], 33 vectors from Peres’s proof or 18 vecfoom Cabello’s
proof [52].

The Kochen-Specker game employs the above sets of vectomsider two sep-
arated parties, Alice and Bob. Alice receives a randomdriflorthogonal vectors
as her input and Bob receives a single vector randomly chiosemthe triple as his
input. Alice is asked to give a trit indicating which of heréle vectors is assigned
color 1 (implicitly, the other two vectors are assigned ¢@p Bob outputs a bit as-
signing a color to his vector. The requirement is that Alind 8ob assign the same
color to the vector that they receive in common. Neverttgligss straightforward
to show that the existence of a perfect classical strategyhich Alice and Bob
can share classically correlated strings for this game dveidlate the reasoning
used in the Kochen-Specker theorem. On the other hand,ithengerfect quantum
strategy using the entangled stdte] (88). If Alice and Boleshao particles in this
state, Alice can perform a measurement of squared spin coemp® pertaining to
directions{n;,nj,ny}, which are equal to those of the three input vectors, and Bob
measures squared spin component in direatiofor his input. Then Bob’s mea-
surement will necessarily yield the same answer as the ma&asat by Alice along
the same direction.

Concluding this section we note that quantum contextuisligyso closely related
to quantum error correction [67], quantum key distribu{i68], one-location quan-
tum games[59], and entanglement detection between intéegaees of freedom.

7.2 Temporal Bell’s I nequalities (Leggett-Garg | nequalities)

In the last section we will consider one more basic inforpragirocessing task, ran-
dom access code problem. It can be solved with a quantunpseittua higher effi-
ciency than it is classically possible. We will show that tesource for better-than-
classical efficiency is a violation of “temporal Bell's inggjities” — the inequali-
ties that are satisfied by temporal correlations of certéanscof hidden-variable
theories. Instead of considering correlations betweensareaent results on dis-
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tantly located physical systems, here we focus on one arshtne physical system
and analyze correlations between measurement outcomefeaért times. The
inequalities were first introduced by Leggett and Garg [60fhe context of test-
ing superspositions of macroscopically distinct quanttates. Since our aim here
is different, we will look at general assumptions that abouws to derive temporal
Bell's inequalities irrespectively of whether the objentler consideration is macro-
scopic or not. This is why our assumptions differ from thgimral ones of Ref[[60].
Compare also Ref [65, 66, 167]

We consider the theories which are based on the conjuncfitimecfollowing
four assumptioffis

1. Realism It is a model that allows one to use all variablgg(t) m=1,2,... in
the theoretical description of the experiment performetina¢ t, whereAm(t)
gives the value of some observable whaduldbe obtained if it were measured
at timet. All Ay (t)’s are treated as perhaps unknown, but still fixed numbers, or
variables for which a proper joint probability distributican be defined.

2. Non-invasivenesdhe value assigned to an observahbigt,) at timet; is inde-
pendent whether or not a measurement was performed at solee &ae ty or
which observablé\,(to) n= 1,2, ... at that time was measured. In other words,
(actual or potential) measurement valéggt; ) at timet; areindependentf the
measurement settings chosen at earlier tiges

3. Induction The standard arrow of time is assumed. In particular, theesd\n(to)

at earlier time$p do not depend on the choices of measurement settings at later

timestjﬁ.
4. “Free will” : The experimenter is free to choose the observable. Theebaire
independent of the actual hidden valueg\&f, etc.

Consider an observer and allow her to choose at tyaed at some later time
to measure one of two dichotomic observatfie&;) andAx(t;), i € {0,1}. The as-
sumptions given above imply existence of numberg¥dt;) andA;(t;), each taking
values either +1 or -1, which describe the (potential or @¢foredetermined result
of the measurement. For the temporal correlations in aniohal experimental run
the following identity holdsA (to)[Ax (t1) — Az (t1)] + Ax(to) [As(t1) + Ax(t1)] = £2.
With similar steps as in derivation of the standard Bell'sgnalities, one easily
obtains:

P(AoAo = 1)+ p(AcAr = —1) + p(AiAo = 1) + p(AlA1 = 1) <3,  (89)

where we omit the dependence on time.
An important difference between quantum contextuality gemdporal Bell's in-
equalities is that later can also be tested on single qubtts@dimensionaguan-

5 There is one more difference between the present approadhiarof Ref.[[60]. While there the

observer measures a single observable having a choice éretiiféerent times of measurement,
here at any given time the observer has a choice between twaodie) different measurement
settings. One can use both approaches to derive tempotairggualities.

6 Note that this already follows from the “non-invasiveriesgien applied symmetrically to both
arrows of time.
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tum systems. We will now calculate the temporal correlatiorction for consecu-
tive measurements of a single qubit. Take an arbitrary méxat of a qubit, written
asp = %(1+r -0), wherel is the identity operatog = (0o, 0y, 0,) are the Pauli
operators for three orthogonal directiony andz, andr = (ry,ry,r) is the Bloch
vector with the components=Tr(pa;).

Suppose that the measurement of the observabla is performed at time
tp, followed by the measurement of - b att;, wherea andb are directions at
which spin is measured. The quantum correlation functi@ivien byEgm(a,b) =
Ski—+1K-1-Tr(pmy) - Tr(Tex7h ), where, e.9.7kk is the projector onto the sub-
space corresponding to the eigenvakue +1 of the spin along. Here we use
the fact that after the first measurement the state is pegjemt the new state, .
Therefore, the probability to obtain the resklin the first measurement ardn
the second one is given by (b7t ) Tr(Te kT, ). USINg Mk = %(14— ko -a) and
%Tr[(a -a)(0-b)] = a-b one can easily show that the quantum correlation function
can simply be written as

EQM (a, b) =a-b. (90)

Note that in contrast to the usual correlation function érmeporal one[{30) does not
dependent of the initial staje Note also that a slight modification of our derivation
of Eqg. [90) can also apply to the cases in which the systenvesdletween the two
measurements following an arbitrary unitary transfororati

The scalar product form of quantum correlatidng (90) alléavghe violation of
the temporal Bell inequality and the maximal value of thé-tefnd side of[{89) is
achieved for the choice of the measurementsettiaujgns:%2 (b1 —by),ax= % (b1 +

b,) and is equal to 2 v/2.

7.3 Quantum Random Access Codes

Random access code is a communication task for two parttesyvwe call again
Alice and Bob. Alice receives some classicabit string known only to her (her
local input). She is allowed to send just a one bit messagt Bob. Bob is asked
to tell the value of théo-th bit of Alice, b= 1,2....n. Howeverb is known only to
him (this is his local input data). The goal is to constructat@col enabling Bob
to tell the valueb-th bit of Alice, with as high average probability of success
possible, for a uniformly random distribution of Alices 4sirings, and a uniform
distribution ofb’s. Note that, since Alice does not know in advance which lobB
is to recover. Thus she has no option to send just this redjbite

If they share a quantum channel then one speaks about a quaetsion of the
previous problem. Alice is asked to encode her classidat message into 1 qubit
(quantum bit) and send it to Bob. He performs some measurennethe received
qubit to extract the required bit. In general, the measurgihat he uses will depend
on which bit he wants to reveal. The idea behind these sedallantum random
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access codes already appeared in a paper written circa h@jtublished in 1983
by Stephen Wiesnelr [63].

We illustrate the concept of random access code with theleshpcheme, in
which in a classical framework Alice needs to encode a tvietoing bpb; into a
single bit, or into a single qubit in a quantum framework.

In the classical case Alice and Bob need to decide on a pridediming which
bit-valued message is to be sent by Alice, for each of theffossible values of her
two-bit stringbgb. There are only 2= 16 different deterministic protocols, thus
the probability of success can be evaluated in a straigh#fiat way. The optimal
deterministic classical protocols can then be shown to hgs®bability of success
Pc = 3/4. For example, if Alice sends one of the two bits, then Bob wéleal
this bit with certainty and have probability of/2 to reveal the other one. Since
any probabilistic protocol can be represented as a convetbcmtion of the 16
deterministic protocols, the corresponding probabilftguccess for any such prob-
abilistic protocol will be given by the weighted sum of thebabilities of success
of the individual deterministic protocols. This impliesaththe optimal probabilistic
protocols can at best be as efficient as the optimal detestitiqgrotocol, which is
3/4.

Ambainiset al. [64] showed that there is a quantum solution of the random ac-
cess code with probability of succeRs = cog(11/8) ~ 0.85. It is realized as fol-
lows: depending on her two-bit strirtgyby, Alice prepares one of the four states
|Wnyb, ) - These states are chosen to be on the equator of the Bloctespbparated
by equal angles oft/2 radians (see figure 3). Using the Bloch sphere parametriza-
tion | (6, p)) = coq0/2)|0) + exp(i®)sin(8/2)|1), the four encoding states are
represented as:

|Yoo) = |Y(11/2,11/4)),
|Yo1) = |Y(11/2,7m1/4)),
|¢no) = |Y(11/2,3m/4)),
|Yn1) = [Y(11/2,5m/4)). (91)

Bob’s measurements, which he uses to guess the bits, widrdkpn which bit he
wants to obtain. To gueds, he projects the qubit along theaxis in the Bloch
sphere, and to decodie he projects it along thg-axis. He then estimates the bit
value to be 0 if the measurement outcome was along the positiection of the
axis and 1 if it was along the negative axis. It can easily Heutated that the
probability of successful retrieving of the correct bitwalis the same in all cases:
Po = co’(11/8) ~ 0.85, which is higher than the optimal probability of success
Pc = 0.75 of the classical random access code using one bit of coneation.

We will now introduce a hidden variable model of the quantuwiution to see
that the key resource in its efficiency lies in violation afigoral Bell's inequalities.
Galvao [61] was the first to point to the relation between atioln of Bell's type
inequalities and quantum random access codes. See als{6Refor a relation
with the parity-oblivious multiplexing.
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Fig. 3 The set of encoding

states and decoding measure-

ments in quantum random v
access code represented in /ﬂr—"\
thex—y plane of the Bloch o) N o)
sphere. Alice prepares one VRN N
of the four quantum states / . / \
Yo, to encode two bits ( \
bo, b1 € {0,1}. Depending

on which bit Bob wants to \\ s N /
reveal he performs either a \ / \. /
measurement along the(to AN NS
revealbp) or along they axis [y 4~ //'p;‘.ro.i)
(to revealby). —

A hidden-variable model equivalent to the quantum protoabich best fits the
temporal Bell's inequalities can be put as a descriptiohefollowing modification
of the original quantum protocol. Alice prepares the inistate of her qubit as
a completely random state, described by a density matriggetmnal to the unit
operator,0g. Her parity of bit valuedy & by defines a measurement basis, which
is used by her to prepare the state to be sent to Bob. Notehbaesult of the
dichotomic measurement in the basis definedopy b; is, due to the nature of
the initial state, completely random, and totally uncoltdtde by Alice. To fix the
bit valueb; (and thus also the valum, since the parity is defined by the choice
of the measurement basis) on her wish, Alice either leavesttite unchanged, if
the result of measurement corresponds to her widhy @i she rotates the state in
the x—y plane at 180 to obtain the orthogonal state, if the result corresponds to
b; @ 1. Just a glance at the states involved in the standard quapratocol shows
what are the two complementary (unbiased) bases which deéinemeasurement
settings, and which resulting states are linked with whiglues ofbgb;. After the
measurement the resulting state is sent to Bob, while Afi¢e possession of a bit
pair bpby, which is perfectly correlated with the qubit state on the/waBob. That
is, we have exactly the same starting point as in the origjnahtum protocol.

Now, it is obvious that the quantum protocol violates thegenal inequalities,
while any hidden variable model of the above procedure gusia four assumptions
(1.-4.) behind the temporal inequalities is not violatihgm. What is important the
saturation of the temporal inequalities is equivalent ta@bpbility of success of
3/4.

The link with temporal Bell's inequalities points onto ahet advantage of quan-
tum over classical random access codes. Usually, one @sshie advantage to be
only resource dependeniVith this we mean that there is an advantage as far as one
compares one classical bit with one qubit. Yet, the prooégiabove shows that
quantum strategy has an advantage @lehidden variable models respecting (1.-
4.), i.e. also those where Alice and Bob use systems withrarlly large number
of degrees of freedom.

Concluding this section and the Chapter we would like to poirio an interest-
ing research avenue. Here we gave a brief review on the sedeithonstrating that
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“no go theorems” for various hidden variable classes offilespare behind better-
than-classical efficiency in many quantum communicatiarquols. It would be
interesting to investigate the link between fundamentaturees of quantum me-
chanics and the power of quantum computation. It has beenrstitat temporal
Bell's inequalities distinguish between classical andmjuan search (Grover) algo-
rithm [68]. Cluster states — a resource for measuremergelpgntuncomputation
(also known as “one-way” quantum computation) in which infation is processed
by a sequence of adaptive single-qubit measurements onatee-sare shown to
violate Bell's inequalities[[69, 70]. Similarly, the CSH®1ch GHZ problems are
shown to be closely related to measurement-batesbicalcomputation, as does
the Popescu-Rohrlich bok [I71]. These results point on tbeeafientioned link but
we are still far away from understanding what are the key classical ingredients
that give rise to the enhanced quantum computational pdlerquestion gets even
more fascinating after realizing that not only too lowl[[72,[73) 74| 75, 7)6] but also
too much entanglement does not allow powerful quantum coation [77)78].
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