Skip to main content

Swarm Intelligence

  • Reference work entry
Handbook of Natural Computing

Abstract

Increasing numbers of books, websites, and articles are devoted to the concept of “swarm intelligence.” Meanwhile, a perhaps confusing variety of computational techniques are seen to be associated with this term, such as “agents,” “emergence,” “boids,” “ant colony optimization,” and so forth. In this chapter, we attempt to clarify the concept of swarm intelligence and its associations, and to provide a perspective on its inspirations, history, and current state. We focus on the most popular and successful algorithms that are associated with swarm intelligence, namely, ant colony optimization, particle swarm optimization, and (more recently) foraging algorithms, and we cover the sources of natural inspiration with these foci in mind. We then round off the chapter with a brief review of current trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaya I (2007) Ant colony optimization for multi-objective optimization problems. In: Proceedings of the 19th IEEE international conference on tools with artificial intelligence. Patras, Greece, pp 450–457

    Chapter  Google Scholar 

  • Appleby S, Steward S (1994) Mobile software agents for control in telecommunications networks. BT Technol J 12(2):104–113

    Google Scholar 

  • Berg H, Brown D (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–504

    Article  Google Scholar 

  • van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239

    Article  Google Scholar 

  • Biswas A, Dasgupta S, Das S, Abraham A (2007) Synergy of PSO and bacterial foraging optimization – A comparative study on numerical benchmarks. In: Corchado E et al. (eds) Innovations in hybrid intelligent systems. Advances in soft computing, vol 44. Springer, Germany, pp 255–263

    Chapter  Google Scholar 

  • Blum C (2005a) Ant colony optimization: Introduction and recent trends. Phys Life Rev 2(4):353–373

    Article  Google Scholar 

  • Blum C (2005b) Beam-ACO – hybridizing ant colony optimization with beam search: an application to open shop scheduling. Comp Oper Res 32(6):1565–1591

    Article  Google Scholar 

  • Bonabeau E, Guérin S, Snyers D, Kuntz P, Theraulaz G (2000) Three-dimensional architectures grown by simple ‘stigmergic’ agents. Biosystems 56:13–32

    Article  Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg J-L, Aron S, Camazine S (1997) Self-organization in social insects. Trends Ecol Evol 12(5):188–193

    Article  Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg J-L, Franks NR, Rafelsberger O, Joly J-L, Blanco S (1998) A model for the emergence of pillars, walls and royal chambers in termite nests. Phil Trans Royal Soc B Biol Sci 353(1375):1561–1576

    Article  Google Scholar 

  • Budrene E, Berg H (1991) Complex patterns formed by motile cells of Escherichia coli. Nature 349:630–633

    Article  Google Scholar 

  • Chen T-C, Tsai P-W, Chu S-C, Pan J-S (2007) A novel optimization approach: bacterial-GA foraging. In: Proceedings of the second international conference on innovative computing, information and control (ICICIC). IEEE Computer Press, Washington, DC, p 391

    Chapter  Google Scholar 

  • Cicirello VA, Smith SF (2001) Wasp nests for self-configurable factories. In: Proceedings of fifth international conference on autonomous agents. ACM, New York, pp 473–480

    Chapter  Google Scholar 

  • Coello Coello CA, Toscano Pulido G, Salazar Lechuga M (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comp 8(3):256–279

    Article  Google Scholar 

  • Colorni A, Dorigo M, Maniezzo V (1992a) Distributed optimization by ant colonies. In: Varela F, Bourgine P (eds) Proceedings of the first European conference on artificial life, Elsevier, Paris, France, pp 134–142

    Google Scholar 

  • Colorni A, Dorigo M, Maniezzo V (1992b) An investigation of some properties of an ant algorithm. In: Männer R, Manderick B (eds) Proceedings of the parallel problem solving from nature conference (PPSN 92), Elsevier, Brussels, Belgium, pp 509–520

    Google Scholar 

  • Deneubourg J-L, Goss S, Franks N, Sendova-Franks A, Detrain C, Chretien L (1991) The dynamics of collective sorting: Robot-like ants and ant-like robots. In: Arcady-Meyer J, Wilson S (eds) From animals to animats: proceedings of first international conference on simulation of adaptive behavior. MIT Press, Cambridge, pp 356–365

    Google Scholar 

  • Depickere S, Fresneau D, Deneubourg J-L (2004) Dynamics of aggregation in Lasius niger (Formicidae): Influence of polyethism. Insectes Sociaux 51(1):81–90

    Article  Google Scholar 

  • DeRosier D (1998) The turn of the screw: the bacterial flagellar motor. Cell 93:17–20

    Article  Google Scholar 

  • Di Caro G, Dorigo M (1998) AntNet: distributed stigmergetic control for communications networks. JAIR 9:317–365

    MATH  Google Scholar 

  • Di Caro G, Ducatelle F, Gambardella LM (2008) Theory and practice of ant colony optimization for routing in dynamic telecommunications networks. In: Sala N, Orsucci F (eds) Reflecting interfaces: the complex coevolution of information technology ecosystems. Idea Group, Hershey

    Google Scholar 

  • Doerner KF, Gutjahr WJ, Hartl RF, Strauss C, Stummer C (2006) Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection. Eur J Oper Res 171:830–841

    Article  MathSciNet  MATH  Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1991) The ant system: an autocatalytic optimizing process. Technical Report No. 91-016 Revised. Politecnico di Milano, Italy

    Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) Ant system: Optimization by a colony of co-operating agents. IEEE Trans Syst Man Cybernetics – Part B: Cybernetics 26(1):29–41

    Article  Google Scholar 

  • Dreo J, Siarry P (2006) An ant colony algorithm aimed at dynamic continuous optimization. Appl Math Comput 181:457–467

    Article  MathSciNet  MATH  Google Scholar 

  • Ducatelle F, Förster A, Di Caro G, Gambardella LM (2009) New task allocation methods for robotic swarms. In: Ninth IEEE/RAS conference on autonomous robot systems and competitions. Castelo Branco, Portugal, May 2009

    Google Scholar 

  • Franks NR, Sendova-Franks A (1992) Brood sorting by ants: Distributing the workload over the work-surface. Behav Ecol Sociobiol 30(2):109–123

    Article  Google Scholar 

  • Gambardella LM, Taillard É, Agazzi G (1999) MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, London, pp 63–76

    Google Scholar 

  • García-Martínez C, Cordón O, Herrera F (2007) A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. Eur J Oper Res 180:116–148

    Article  MATH  Google Scholar 

  • Gaubert L, Redou P, Harrouet F, Tisseau J (2007) A first mathematical model of brood sorting by ants: Functional self organisation without swarm-intelligence. Ecol Complexity 4:234–241

    Article  Google Scholar 

  • Grassé P-P (1959) La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes Natalensis et Cubitermes sp. La théorie de la stigmergie: essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6:41–84

    Article  Google Scholar 

  • Grassé P-P (1984) Termitologia, Tome II – Fondation des sociétés construction. Masson, Paris

    Google Scholar 

  • Guney K, Basbug S (2008) Interference suppression of linear antenna arrays by amplitude-only control using a bacterial foraging algorithm. Prog Electromagnet Res 79:475–497

    Article  Google Scholar 

  • Gutjahr WJ (2007) Mathematical runtime analysis of ACO algorithms: Survey on an emerging issue. Swarm Intell 1(1):59–79

    Article  Google Scholar 

  • Häckel S, Fischer M, Zechel D, Teich T (2008) A multi-objective ant colony approach for pareto-optimization using dynamic programming. In: Proceedings of the tenth annual conference on genetic and evolutionary computation (GECCO). ACM, New York, pp 33–40

    Chapter  Google Scholar 

  • Handl J, Meyer B (2007) Ant-based and swarm-based clustering. Swarm Intell 1(2):95–113

    Article  Google Scholar 

  • Handl J, Knowles J, Dorigo M (2006) Ant-based clustering and topographic mapping. Artif Life 12(1):35–61

    Article  Google Scholar 

  • Heppner F, Grenander U (1990) A stochastic nonlinear model for coordinated bird flocks. In: Krasner S (ed) The ubiquity of chaos. AAAS, Washington, DC

    Google Scholar 

  • Holden N, Freitas AA (2007) A hybrid PSO/ACO algorithm for classification. In: Proceedings of the 2007 GECCO conference companion on genetic and evolutionary computation. London, UK, pp 2745–2750

    Google Scholar 

  • Hussein O, Saadawi T (2003) Ant routing algorithm for mobile ad-hoc networks (ARAMA). In: Proceedings of IEEE conference on performance, computing and communications, Phoenix, Arizona, USA, pp 281–290

    Chapter  Google Scholar 

  • Jordan J, Helwig S, Wanka R (2008) Social interaction in particle swarm optimization, the ranked FIPS, and adaptive multi-swarms. In: Proceedings of the genetic and evolutionary computation conference (GECCO). Atlanta, Georgia, USA, pp 49–56

    Google Scholar 

  • Karlson P, Luscher M (1959) Pheromones: A new term for a class of biologically active substances. Nature 183:155–176

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international joint conference on neural networks. IEEE Press, Piscataway, pp 1942–1948

    Google Scholar 

  • Kim DH, Abraham A, Cho JH (2007) A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf Sci 177:3918–3937

    Article  Google Scholar 

  • Korb O, Stützle T, Exner TE (2007) An ant colony optimization approach to flexible protein-ligand docking. Swarm Intell 1(2):115–134

    Article  Google Scholar 

  • Lee Z-J, Su S-F, Chuang C-C, Liu K-H (2008) Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment. Appl Soft Comput 8:55–78

    Article  Google Scholar 

  • Lin BMT, Lu CY, Shyu SJ, Tsai CY (2008) Development of new features of ant colony optimization for flowshop scheduling. Int J Prod Econ 112:742–755

    Article  Google Scholar 

  • Lumer E, Faieta B (1994) Diversity and adaptation in populations of clustering ants. In: Cliff D et al. (eds) From animals to animats 3: Proceedings of third international conference on simulation of adaptive behaviour. MIT Press, Cambridge, pp 501–508

    Google Scholar 

  • Mariano CE, Morales E (1999) MOAQ: An ant-Q algorithm for multiple objective optimization problems. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith RE (eds) Proceedings of the genetic and evolutionary computation conference (GECCO 99). Orlando, Florida, USA, pp 894–901

    Google Scholar 

  • Mondada F, Gambardella LM, Floreano D, Nolfi S, Deneubourg J-L, Dorigo M (2005) The cooperation of swarm-bots: physical interactions in collective robotics. IEEE Robot Automat Mag 12(2):21–28

    Article  Google Scholar 

  • Nakrani S, Tovey C (2003) On honey bees and dynamic allocation in an internet server ecology. In: Proceedings of second international workshop on the mathematics and algorithms of social insects

    Google Scholar 

  • Niu B, Zhu Y, He X, Zeng X (2006) Optimum design of PID controllers using only a germ of intelligence. In: Proceedings of sixth world congress on intelligent control and automation. IEEE Press, Piscataway, NJ, pp 3584–3588

    Google Scholar 

  • Parpinelli RS, Lopes HS, Freitas AA (2002) Data mining with an ant colony optimization algorithm. IEEE Trans Evol Comput 6(4):321–332

    Article  Google Scholar 

  • Partridge BL (1982) The structure and function of fish schools. Scient Am June:114–123

    Google Scholar 

  • Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Cont Syst Mag June:52–68

    Google Scholar 

  • Pini G, Brutschy A, Birattari M, Dorigo M (2009) Interference reduction through task partitioning in a robotic swarm. In: Sixth international conference on informatics in control, automation and robotics (ICINCO 09). Milan, Italy

    Google Scholar 

  • Potts WK (1984) The chorus-line hypothesis of manoeuvre coordination in avian flocks. Lett Nat 309:344–345

    Article  Google Scholar 

  • Quijano N, Passino KM (2007a) Honey bee social foraging algorithms for resource allocation. Part I: Algorithm and theory. In: Proceedings of 2007 American control conference. New York, USA, pp 3383–3388

    Google Scholar 

  • Quijano N, Passino KM (2007b) Honey bee social foraging algorithms for resource allocation. Part II: Application. In: Proceedings of 2007 American control conference, New York City, New York, USA, pp 3389–3394

    Google Scholar 

  • Reyes-Sierra M, Coello Coello CA (2006) Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  • Reynolds C (1987) Flocks, herds and schools: A distributed behavioral model. Comput Grap 21(4):25–34

    Article  MathSciNet  Google Scholar 

  • Roberts J, Zufferey J, Floreano D (2008) Energy management for indoor hovering robots. In: IEEE (eds) IEEE/RSJ international conference on intelligent robots and systems (IROS-2008). Nice, France

    Google Scholar 

  • Rosati L, Berioli M, Reali G (2008) On ant routing algorithms in ad hoc networks with critical connectivity. Ad Hoc Netw 6(6):827–859

    Article  Google Scholar 

  • Sahin E (2005) Swarm robotics: From sources of inspiration to domains of application. In: Swarm robotics. LNCS, vol 3342. Springer, Berlin, pp 10–20

    Chapter  Google Scholar 

  • Schoonderwoerd R, Holland O, Bruten J, Rothkrantz L (1996) Ant-based load balancing in telecommunications networks. Adap Behav 5(2):169–207

    Article  Google Scholar 

  • Schoonderwoerd R, Holland O, Bruten J (1997) Ant-like agents for load balancing in telecommunications networks. In: Proceedings of the first international conference on autonomous agents. ACM, New York, pp 209–216

    Chapter  Google Scholar 

  • Segall J, Block S, Berg H (1986) Temporal comparisons in bacterial chemotaxis. PNAS 83:8987–8991

    Article  Google Scholar 

  • Shi XH, Liang YC, Lee HP, Lu C, Wang LM (2005) An improved GA and a novel PSO-GA-based hybrid algorithm. Inf Process Lett 93:255–261

    Article  MathSciNet  MATH  Google Scholar 

  • Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185:1155–1173

    Article  MathSciNet  MATH  Google Scholar 

  • Tang WJ, Wu QH, Saunders JR (2007) A bacterial swarming algorithm for global optimization. In: Proceedings of the 2007 IEEE congress on evolutionary computation (CEC 2007). IEEE Service Center, Piscataway, pp 1207–1212

    Chapter  Google Scholar 

  • Theraulaz G (1994) Du super-organisme à l’intelligence en essaim: modèles et représentations du fonctionnement des sociétés d’insectes. In: Bonabeau E, Theraulaz G (eds) Intelligence collective. Hermes, Paris, pp 29–109

    Google Scholar 

  • Theraulaz G, Bonabeau E (1995) Modelling the collective building of complex architectures in social insects with lattice swarms. J Theor Biol 177(4):381–400

    Article  Google Scholar 

  • Theraulaz G, Bonabeau E, Nicolis SC, Sole RV, Fourcassie V, Blanco S, Fournier R, Joly J-L, Fernandez P, Grimal A, Dalle P, Deneubourg J-L (2002) Spatial patterns in ant colonies. PNAS 99(15):9645–9649

    Article  MATH  Google Scholar 

  • Tripathy M, Mishra S (2007) Bacteria foraging-based solution to optimize both real power loss and voltage stability limit. IEEE Trans Power Syst 22(1):240–248

    Article  Google Scholar 

  • Vander Meer RK, Alonso LE (1998a) Pheromone directed behaviour in ants. In: Vander Meer RK et al. (eds) Pheromone communication in social insects. Westview, Boulder, CO, pp 159–192

    Google Scholar 

  • Vander Meer RK, Breed M, Winston M, Espelie KE (eds) (1998b) Pheromone communication in social insects. Westview, Boulder, CO, pp 368

    Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Waibel M, Keller L, Floreano D (2009) Genetic team composition and level of selection in the evolution of multi-agent systems. IEEE Trans Evol Comput 13(3):648–660

    Article  Google Scholar 

  • Walker RL (2000) Dynamic load balancing model: Preliminary assessment of a biological model for a pseudo-search engine. In: Parallel and distributed processing. LNCS, vol 1800. Springer, Berlin, pp 620–627

    Chapter  Google Scholar 

  • Yang B, Chen Y, Zhao Z (2007) Survey on applications of particle swarm optimization in electric power systems. In: IEEE international conference on control and automation. Guangzhou, China, pp 481–486

    Chapter  Google Scholar 

  • Yin P-Y, Glover F, Laguna M, Zhu J-X (2007) Scatter PSO – A more effective form of particle swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation (CEC 2007). IEEE Press, Piscataway, NJ, pp 2289–2296

    Google Scholar 

  • Yuan H, Li Y, Li W, Zhao K, Wang D, Yi R (2008) Combining immune with ant colony algorithm for geometric constraint solving. In: Proceedings of the 2008 workshop on knowledge discovery and data mining. IEEE Computer Society, Washington, DC, pp 524–527

    Chapter  Google Scholar 

  • Zhang R, Wu C (2008) An effective immune particle swarm optimization algorithm for scheduling job shops. In: Proceedings of the third IEEE conference on industrial electronics and applications. Singapore, pp 758–763

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Corne, D.W., Reynolds, A., Bonabeau, E. (2012). Swarm Intelligence. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_48

Download citation

Publish with us

Policies and ethics