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Abstract. Power consumption has emerged as a key design concern acrossthe
entire computing range, from low-end embedded systems to high-end supercom-
puters. Understanding the power characteristics of a microprocessor under design
requires a careful study using a variety of workloads. Theseworkloads range from
benchmarks that represent typical behavior up to hand-tuned stress benchmarks
(so called stressmarks) that stress the microprocessor to its extreme power con-
sumption.
This paper closes the gap between these two extremes by studying techniques
for the automated identification of stress patterns (worst-case application behav-
iors) in typical workloads. For doing so, we borrow from sampled simulation
theory and we provide two key insights. First, although representative sampling
is slightly less effective in characterizing average behavior than statistical sam-
pling, it is substantially more effective in finding stress patterns. Second, we find
that threshold clustering is a better alternative than k-means clustering, which is
typically used in representative sampling, for finding stress patterns. Overall, we
can identify extreme energy and power behaviors in microprocessor workloads
with a three orders of magnitude speedup with an error of a fewpercent on aver-
age.

1 Introduction

Energy, power, power density, thermal hotspots, voltage variation, and related design
concerns have emerged as first-class microprocessor designissues over the past few
years. And this is the case across the entire computing range, from low-end embed-
ded systems to high-end supercomputers. A detailed understanding of these issues is of
primary importance for designing energy-aware, power-aware and thermal-aware mi-
croprocessors, their power and thermal management strategies, their power supply unit,
and thermal package.

Understanding the power, energy and thermal characteristics of a microprocessor
under design requires appropriate benchmarking and simulation methodologies. At the
one end of the spectrum, researchers and engineers consideraverage workload behav-
ior. This is appropriate for studying a microprocessor’s average power consumption or
thermal map, however, it does not capture more extreme behaviors. At the other end
of the spectrum, stressmarks are being used to explore a microprocessor’s maximum
power consumption [9,10], maximum thermal hotspots [27], and maximum dI/dt be-
havior [16]. These stressmarks are typically hand-tuned, and push the microprocessor
to its extremes in order to understand the microprocessor’sworst-case behavior. These



stress patterns are not expected to occur during typical operation, however, theycan
occur and therefore the microprocessor should be able to cope with them.

Microprocessors designed for maximum possible power consumption are not cost-
effective though because of the large gap between maximum and typical power con-
sumption. Dynamic thermal management (DTM) techniques [1,23] seek to exploit this
gap: the microprocessor cooling apparatus is designed for awattage less than the max-
imum power consumption, and a dynamic emergency procedure guarantees that this
designed-for wattage level is never exceeded with minimal impact on overall perfor-
mance. Gunther et al. [11] report that DTM techniques based on clock gating permitted
a 20% reduction in the thermal design power for the Intel Pentium 4 processor. Devel-
oping and evaluating DTM mechanisms however requires adequate evaluation method-
ologies for quickly finding the extreme behaviors in typicalworkloads that are subject
to DTM.

Therefore, this paper closes the gap between the two ends of the power benchmark-
ing spectrum by studying ways of identifyingstress patterns in typical workloads, also
called ‘worst-case execution behaviors’ by Tiwari et al. [25]. More specifically, the
goal of this work is to find stress patterns in typical workloads with the least possible
simulation time. Identifying stress patterns in typical workloads is important because
these stress patterns are expected to occur regularly in practice, much more often than
the stress patterns represented by hand-tuned stressmarks. The stress patterns are the
execution behaviors that DTM emergency procedures should adequately deal with.

We build on sampled simulation theory for identifying stress patterns in typical
workloads. However, in contrast to sampled simulation for which the aim is to estimate
average performance or power consumption by simulating a representative sample of
the entire program execution, the goal in this paper is to leverage sampled simulation
theory to find a sample of real program execution that includes stress patterns withex-
treme workload behavior, e.g., max power, max energy, etc. There are two common
ways in sampled simulation, statistical sampling (as done in SMARTS [29]) and repre-
sentative sampling (as done in SimPoint [22]). Our experimental results using the SPEC
CPU2000 benchmarks confirm that statistical sampling is generally more accurate than
representative sampling for estimating average behavior as shown in prior work [30],
however, the new insight provided in this paper is that representative sampling is sub-
stantially more effective in identifying stress patterns in typical workloads. The intuitive
explanation is that representative sampling uses knowledge about the program struc-
ture and execution to find representative sampling units, whereas statistical sampling is
largely agnostic to any notion of program structure and execution. Sampling units se-
lected through representative sampling therefore have a higher likelihood of including
extreme workload behaviors. In addition, we find that threshold clustering is a better
clustering method than k-means clustering (which is commonly used in representative
sampling such as SimPoint) for identifying sampling units with extreme workload be-
havior. The end result is that we can estimate stress patterns in typical workloads with a
three orders of magnitude simulation speedup compared to detailed simulation of entire
workloads with an error of at most a few percent on average.

In this paper, we make the following contributions:



– We close the gap between sampled simulation focusing on average workload be-
havior and hand-crafted stressmarks focusing on extreme behavior by identifying
stress patterns in typical workloads.

– We make the case that representative sampling is substantially more effective in
finding extreme behaviors in microprocessor workloads thanstatistical sampling,
although statistical sampling is (slightly) more effective in capturing average be-
havior.

– The results in this paper motivate changing current simulation practice. Not only
does representative sampling using threshold clustering estimate average perfor-
mance and power nearly as accurate as statistical sampling,it is substantially more
accurate when it comes to estimating stress patterns. And although representative
sampling may be more commonly used than statistical sampling in current sim-
ulation practice, this paper shows that threshold clustering is substantially more
effective than k-means clustering (which is typically being used) for finding stress
patterns. In other words, representative sampling with threshold clustering is both
effective at estimating average performance as well as stress patterns, whereas
prevalent techniques (representative sampling with k-means clustering and statisti-
cal sampling) are only effective for estimating average performance.

– We show that the proposed method can be used for finding many different flavors of
extreme workload behaviors, such as high cache miss rate, low IPC, or low branch
predictability behaviors. These behaviors may be useful for understanding program
patterns that lead to these extremities.

We believe this work is timely as power is a primary design concern in today’s
computer systems, and we are in need for appropriate benchmarking and performance
analysis methodologies. In addition, stress patterns willbecome even more relevant as
we enter the multi-core era and the gap between average and peak power widens as
the number of cores increases. Benchmarking consortia havealso recognized the need
for energy- and power-oriented benchmarks and associated benchmarking methodolo-
gies. For example, SPEC has developed the SPECpowerssj2008 benchmark suite [24],
which evaluates the performance and power characteristicsof volume server class com-
puters. Likewise, EEMBC has released the EnergyBench benchmark suite, which re-
ports energy consumption while running performance benchmarks [18].

2 Sampled simulation

In sampled simulation, only a limited number ofsampling units from a complete bench-
mark execution are simulated in full detail. We refer to the selected sampling units col-
lectively as thesample. Sampled simulation only reports performance for the instruc-
tions in the sampling units, and discards the instructions in the pre-sampling units. And
this is where the dramatic performance improvement comes from: only the sampling
units, which account for only a small fraction of the total dynamic instruction count,
are simulated in a cycle-by-cycle manner.

There are three major issues with sampling: (i) what sampling units to select, (ii)
how to initialize a sampling unit’s architecture starting image, and (iii) how to accu-
rately estimate a sampling unit’s microarchitecture starting image. This paper only con-



cerns the first issue because the other two issues can be handled easily by leveraging
existing technology. For example, the architecture starting image (registers and mem-
ory state) can be set through fastforwarding or through checkpointing [26,28]; and the
microarchitecture starting image (caches, branch predictors, etc.) can be estimated with
microarchitecture state warmup techniques — there is a wealth of literature covering
this area, see for example [5,8,12,19,26,28,29].

There are basically two major ways for determining what sampling units to select,
namely (i) statistical sampling, and (ii) representative sampling. We now discuss both
approaches.

2.1 Statistical Sampling

Statistical sampling takes a number of sampling units across the whole execution of the
program. These sampling units are chosen randomly or periodically in an attempt to
provide a representative cross-cut of the entire program execution.

Laha et al. [20] propose statistical sampling for evaluating cache performance. They
select multiple sampling units by randomly picking intervals of execution.

Conte et al. [5] pioneered the use of statistical sampling inprocessor simulation.
They made a distinction between sampling bias and non-sampling bias. Non-sampling
bias results from improperly constructing the microarchitecture starting image prior to
each sampling unit. Sampling bias refers to how accurate thesample is with respect to
the overall average. Sampling bias is fundamental to the selection of sampling units.

The SMARTS (Sampling Microarchitecture Simulation) approach by Wunderlich et
al. [29] proposessystematic sampling, which selects sampling units periodically across
the entire program execution, i.e., the pre-sampling unit size is fixed, as opposed to
random sampling. The potential pitfall of systematic or periodic sampling compared
to random sampling is that the sampling units may give a skewed view in case the
periodicity present in the program execution under measurement equals the sampling
periodicity or its higher harmonics. This does not seem to bea concern in practice
though as SMARTS achieves highly accurate performance estimates compared to de-
tailed entire-program simulation. The important asset of statistical sampling compared
to representative sampling, is that it builds on well-founded statistics theory, which en-
ables computing confidence bounds at a given confidence level.

2.2 Representative Sampling

Representative sampling contrasts with statistical sampling in that it first analyzes the
program execution to pick a representative sampling unit for each unique behavior. The
most well known representative sampling approach is the SimPoint approach proposed
by Sherwood et al. [22]. SimPoint picks a small number of sampling units that ac-
curately create a representation of the complete executionof the program. To do so,
they break an entire program execution into intervals — aninterval is a contiguous
sequence of instructions from the dynamic instruction stream — and for each inter-
val they create a code signature. The code signature is a so called Basic Block Vector
(BBV) that counts the number of times each basic block is executed in the interval,
weighted with the number of instructions per basic block. After normalizing the BBVs



so that the BBV elements sum up to one, they then perform clustering to group intervals
with similar code signatures (BBVs) into so calledphases. BBV similarity is quantified
by computing the Manhattan distance between two BBVs. The intuitive notion is that
intervals of execution with similar code signatures have similar architectural behavior,
and this has been shown to be the case by Lau et al. [21]. Therefore, only one interval
from each phase needs to be simulated in order to recreate an accurate picture of the
entire program execution. They then choose a representative sampling unit from each
phase and perform detailed simulation on that representative unit. Taken together, these
sampling units (along with their respective weights) represent the complete execution
of a program. A sampling unit is called asimulation point in SimPoint terminology,
and each simulation point is an interval with on the order of millions, or tens to hun-
dreds of millions of instructions. The simulation points can be used across microar-
chitectures because the BBVs, based on which the simulationpoints are identified, are
microarchitecture-independent.

The clustering step in the SimPoint approach is a crucial step as it classifies inter-
vals into phases, with each phase representing distinct program behavior. There exist
a number of clustering algorithms; here, we discuss k-meansclustering (which is used
by SimPoint) and threshold clustering (which we advocate inthis paper for identifying
stress patterns in typical workloads).

K-means clustering. K-means clustering produces exactlyk clusters and works as fol-
lows. Initially, k cluster centers are randomly chosen. In each iteration, thedistance is
calculated for each interval to the center of each cluster, and the interval is assigned
to its closest cluster. Subsequently, new cluster centers are computed based on the new
cluster memberships. This algorithm is iterated until no more changes are observed
in the cluster memberships. It is well known that the result of k-means clustering is
dependent on the choice of the initial cluster centers. Therefore, SimPoint considers
multiple randomly chosen cluster centers and uses the Bayesian Information Criterion
(BIC) [22] to assess the quality of the clustering: the clustering with the highest BIC
score is selected.

Threshold clustering. Classifying intervals into phases using threshold clustering can
be done in two ways, using an iterative algorithm or using a non-iterative algorithm. The
iterative algorithm selects an instruction interval as a cluster center and then computes
the distance to all the other instruction intervals. If the distance measure is smaller than
a given thresholdθ, the instruction interval is considered to be part of that cluster. Out
of all remaining instruction intervals (not part of previously formed clusters), another
interval is selected randomly as a cluster center and the above process is repeated. This
iterative process continues until all instruction intervals are assigned to a cluster/phase.
Theθ threshold is expressed as a percentage of the maximum possible Manhattan dis-
tance between two intervals; the maximum Manhattan distance between two intervals
is 2 assuming normalized BBVs, i.e., the sum across all BBV elements equals one.

The non-iterative algorithm scans all intervals from the beginning until the end of
the dynamic instruction stream. If the interval is further away from any previously seen
cluster center than a given thresholdθ, the interval is considered the center of a new
cluster. If not, the interval is assigned to the closest cluster. The non-iterative algorithm



is computationally more efficient and performs well for our purpose — we therefore
use the non-iterative approach in this paper.

The important advantage of threshold clustering is that, byconstruction, it builds
phases for which its in-phase variability (in terms of BBV behavior) is limited to a
thresholdθ. This is not the case for k-means clustering: the variability within a phase
can vary across phases.

3 Experimental setup

3.1 Benchmarks and simulators

We use the SPEC CPU2000 benchmarks and all of their referenceinputs in our exper-
imental setup. These benchmarks were compiled and optimized for the Alpha ISA; the
binaries were taken from the SimpleScalar website; all benchmarks are run to comple-
tion.

We use the SimpleScalar/Alpha v3.0 [3] superscalar out-of-order processor simu-
lator. The processor model is configured along the lines of a typical four-wide super-
scalar microprocessor such as the Alpha EV7 (21364). Power is estimated using Wattch
v1.02 [2] and HotLeakage [23] assuming a 70nm technology, 5.6GHz clock frequency
and 1V supply voltage. We assume an aggressive clock gating mechanism.

3.2 Sampled simulation

For statistical sampling, we use periodic sampling, as donein SMARTS [29], i.e., we
select a sampling unit everyn intervals. We will vary the sampling rate1/n in the
results presented in this paper.

For representative sampling, we use SimPoint v3.0 with its default settings. In short,
SimPoint computes a BBV per interval, and subsequently performs k-means clustering
on randomly projected 15-dimensional BBVs; SimPoint evaluates all values ofk be-
tween 1 and maxK and picks the bestk and random seed perk based on the BIC score
of the clustering. We will vary the sampling rate by varying the SimPoint maxK pa-
rameter. In the evaluation section of this paper, we will compare k-means clustering
versus threshold clustering. For doing so, we replace the k-means clustering algorithm
with the threshold clustering algorithm while leaving the rest of the SimPoint software
untouched.

In this paper, for both statistical and representative sampling, the interval size is
set to 1M (220) instructions unless mentioned otherwise, i.e., the stress patterns consti-
tute of 1M dynamically executed instructions. This choice does not affect the general
conclusions in this paper though — the methodology can be applied to other interval
granularities as well. In fact, we experiment with larger interval sizes — not reported
here because of space constraints — and obtain similar results as for the 1M-instruction
interval granularity. However, for smaller interval granularities, there may be practical
considerations that prohibit the use of representative sampling, the reason being that the
clustering algorithm may become very time-consuming for a large number of intervals.
Addressing the computational concerns of clustering largedata sets is left for future
work.



bz
ip

2−
gr

ap
hi

c
bz

ip
2−

pr
og

ra
m

bz
ip

2−
so

ur
ce

cr
af

ty
eo

n−
ka

jiy
a

eo
n−

co
ok

eo
n−

ru
sh

m
ei

er
ga

p
gc

c−
16

6
gc

c−
20

0
gc

c−
ex

pr
gc

c−
in

te
gr

at
e

gc
c−

sc
ila

b
gz

ip
−

gr
ap

hi
c

gz
ip

−
lo

g
gz

ip
−

pr
og

ra
m

gz
ip

−
ra

nd
om

gz
ip

−
so

ur
ce m
cf

pa
rs

er
pe

rlb
m

k−
di

ff
pe

rlb
m

k−
ra

nd
pe

rlb
m

k−
sp

1
pe

rlb
m

k−
sp

2
pe

rlb
m

k−
sp

3
pe

rlb
m

k−
sp

4
tw

ol
f

vo
rt

ex
−

le
nd

ia
n1

vo
rt

ex
−

le
nd

ia
n2

vo
rt

ex
−

le
nd

ia
n3

vp
r−

pl
ac

e
vp

r−
ro

ut
e

am
m

p
ap

pl
u

ap
si

ar
t−

11
0

ar
t−

47
0

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
lu

ca
s

m
es

a
m

gr
id

si
xt

ra
ck

sw
im

w
up

w
is

e

4

6

8

10

12

14
P

ow
er

 (
W

)

Fig. 1. Boxplots characterizing the distribution of power consumption at the 1M-instruction in-
terval granularity; the boxes represent the 5% and 95% quartiles, and the thick horizontal line in
each box represents the median.

4 Evaluation

In the evaluation section, we now compare statistical sampling against representative
sampling for finding stress patterns in microprocessor workloads. This is done in a
number of steps: we present per-benchmark max power stress patterns, as well as pro-
cessor component power stress patterns; we also evaluate the error versus simulation
speedup trade-off; and finally, we demonstrate the efficacy of the proposed technique
for finding other flavors of extreme behavior, such as max CPI,max cache miss rate and
max branch misprediction rate stress patterns.

4.1 Motivation

Before evaluating sampled simulation for identifying stress patterns in typical micro-
processor workloads, we first further motivate the problem by showing that the variabil-
ity over time in power consumption is significant within a single benchmark execution.
We therefore compute the power consumption on an interval basis, i.e., we compute the
power consumption per interval of 1M instructions in the dynamic instruction stream.
This yields a distribution of power consumption numbers. Figure 1 represents this dis-
tribution as a boxplot per benchmark. The box represents the5% and 95% quartiles,
i.e., 90% of the data lies between these two markers, and thick horizontal line in the
box represents the median power consumption across the entire program execution.
The outliers are represented by the dashed lines that fall out of the box; the minimum
and maximum values are represented by the bottom and top horizontal lines at the ends
of the dashed lines, respectively.

The box plots clearly show that there is significant variability over time in power
consumption, and, more importantly within the context of this paper, there is a large
discrepancy in median versus max power consumption. In fact, for many benchmarks,
the max power consumption is substantially higher than its median power consumption,



e.g., formcf the max power consumption is more than three times as high as its median
power consumption. And in addition, the bulk of the power consumption numbers falls
far below the max power consumption. This illustrates that finding stress patterns for
these benchmarks is challenging, i.e., we need to find one of the few intervals that
cause max power consumption out of the numerous intervals that constitute the entire
benchmark execution — there are typically tens or even hundreds of thousands of 1M-
instruction intervals per benchmark.

4.2 Per-benchmark stress patterns

We now evaluate the efficacy of sampled simulation in finding stress patterns at the 1M-
instruction interval granularity. For doing so, we assume a1000× simulation speedup
for both statistical and representative sampling comparedto the simulation of the entire
program execution; we will consider other simulation speedups in Section 4.4. Simula-
tion speedup in this paper is defined as the number of instructions in the entire bench-
mark execution divided by the number of instructions in the sample. This simulation
speedup metric does not include the overhead of setting the architecture and microar-
chitecture starting images, as discussed in Section 2, however, state-of-the-art sampled
simulation methods use checkpointing to initialize a sampling unit’s starting image,
for which the overhead only depends on the number of samplingunits (to a first-order
approximation). In other words, comparing sampling strategies in terms of simulation
speedup can be done by simply comparing the number of sampling units (intervals) in
the sample versus the entire program execution.

We simulate all sampling units selected by statistical and representative sampling,
respectively, and retain the max power consumption of any ofthese sampling units.
We then compare this sampled maximum against the max power consumption ob-
served across the entire benchmark execution — this is done by simulating the com-
plete benchmark execution while keeping track of the max power consumption at the
1M-instruction interval size. The percentage difference between the max power values
is called theerror, which is a smaller-is-better metric: the smaller the errorscore, the
closer the stress pattern identified through sampled simulation reflects the real stress
pattern observed across the entire benchmark execution. Figure 2 shows the error in
estimating the maximum power consumption. We observe that statistical sampling is
less effective in finding stress patterns than representative sampling, i.e., the error can
be as high as 60% (and average error of 9.3%) for statistical sampling whereas repre-
sentative sampling is much more effective. Representativesampling with k-means clus-
tering achieves an average error of 3% (and 14% at most); representative sampling with
threshold clustering is even more effective with an averageerror of 2.3% and a maxi-
mum error of at most 11%. The reason for the difference in efficacy between statistical
sampling and representative sampling is that representative sampling selects sampling
units based on the benchmark execution and structure (through the BBVs that are be-
ing collected for finding the distinct phase behaviors), whereas statistical sampling is
largely agnostic to any notion of program structure and behavior. In other words, for
statistical sampling, the likelihood of hitting upon a stress pattern is inverse propor-
tional to the sampling rate, whereas representative sampling identifies distinct program
behavior by looking into the code that is being executed.
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Fig. 2.Error in estimating max power stress patterns.

The reason why threshold clustering outperforms k-means clustering is that thresh-
old clustering, by construction, bounds the amount of variability within a cluster, whereas
k-means clustering does not. In other words, for a given simulation speedup, i.e., for a
given number of clusters, threshold clustering will yield more sparsely populated clus-
ters than k-means clustering; i.e., outliers in the data setwill end up in separate clusters
in contrast to k-means clustering, which may group those outliers with its closest, albeit
relatively far away, cluster.

The end conclusion is that representative sampling with threshold clustering results
in a simulation speedup of three orders of magnitude compared to entire benchmark
simulation with an error of at most a few percent on average for finding stress pat-
terns in the SPEC CPU2000 benchmarks. And in addition, respresentative sampling
with threshold clustering is more effective than representative sampling with k-means
clustering and statistical sampling.

4.3 Processor component stress patterns

In the previous section, the focus was on stress patterns forthe entire processor. We
now look into stress patterns for individual processor components, such as the instruc-
tion window, functional units, caches, branch predictor, etc. This, in conjunction with
a microprocessor floorplan, could provide valuable information in terms of power den-
sity and thermal hotspots [23]. Figures 3 and 4 quantify the error in estimating average
and maximum per-component power consumption, respectively. (We assume a1000×

simulation speedup and present average results computed across all benchmarks.) The
interesting observation from these graphs is that both statistical and representative sam-
pling are very accurate in estimating average processor component power consumption
(the average error is around 1% on average), however, representative sampling is by far
more effective in capturing stress patterns. For representative sampling with threshold
clustering, the processor component power error for the stress patterns is less than 5%,
whereas representative sampling with k-means clustering and statistical sampling lead
to an processor component power error of up to 10% and 20%, respectively.



R
en

am
e 

B
pr

ed
 

W
in

do
w

 

LS
Q

 

R
eg

fil
e 

Ic
ac

he
 

D
ca

ch
e 

IT
LB

 

D
T

LB
 

IA
LU

 

F
P

A
LU

 

L2
 

F
et

ch
 

D
is

pa
tc

h 

Is
su

e 

E
rr

or
 (

%
)

0.0

0.5

1.0

1.5

2.0

Statistical sampling
K−means clustering
Threshold clustering

0.0

0.5

1.0

1.5

2.0

R
en

am
e 

B
pr

ed
 

W
in

do
w

 

LS
Q

 

R
eg

fil
e 

Ic
ac

he
 

D
ca

ch
e 

IT
LB

 

D
T

LB
 

IA
LU

 

F
P

A
LU

 

L2
 

F
et

ch
 

D
is

pa
tc

h 

Is
su

e 

E
rr

or
 (

%
)

0.0

0.5

1.0

1.5

2.0

Fig. 3.Error in estimating average power consumption per processor component.
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Fig. 4. Error in estimating max power consumption per processor component.

4.4 Error versus simulation speedup

The previously reported results assumed a simulation speedup of three orders of mag-
nitude (1000×). We now explore the trade-off between error and simulationspeedup in
more detail, see Figure 5, which shows two graphs, one for estimating average power
consumption (left graph) and another one for estimating maxpower consumption (right
graph) — these graphs show average results across all benchmarks. The vertical and
horizontal axes show percentage error and simulation speedup with respect to simu-
lating the entire benchmark, respectively. For computing these graphs, we simulate all
sampling units; for the left graph, we then compute the average power consumption
across all sampling units, and compare it against the true average power consumption
computed by simulating the entire benchmark; for the right graph, we retain the largest
power consumption number of any of the sampling units and compare it against the
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Fig. 5. Statistical sampling versus representative sampling: error as a function of simulation
speedup for estimating average power consumption (left graph) and max power (right graph).

largest power consumption number observed across the entire program execution. For
statistical sampling, one sampling unit is selected everyn intervals; this corresponds
to a simulation speedup of a factorn. For representative sampling, we set a maxK
parameter orθ threshold for the clustering yieldingn clusters or sampling units; this
corresponds to antotal/n simulation speedup withntotal the number of intervals in the
entire program execution.

We observe that statistical sampling is more accurate than representative sampling
for estimating average power consumption, see left graph Figure 5. The results in the
left graph confirm the earlier findings by Yi et al. [30] who provide a detailed compari-
son of statistical and representative sampling for estimating average performance: they
found that average performance is more accurately estimated through statistical sam-
pling, however, representative sampling has a better speedversus accuracy tradeoff.

However, when it comes to estimating max power consumption,representative sam-
pling is more effective, and threshold clustering is the most effective approach. In par-
ticular, representative sampling with threshold clustering finds an interval with a power
consumption number around 2% on average of the max power number found through
simulation of the entire benchmark at a simulation speedup of three orders of magni-
tude. For the same simulation speedup, statistical sampling achieves an error of 10% on
average. Or, reversely, for an error of 2%, statistical sampling only achieves a simulation
speedup around a factor of 40. In other words, representative sampling with threshold
clustering is both faster and more effective in capturing max power stress patterns.

4.5 Other extreme behaviors

Representative sampling with threshold clustering is effective at finding other flavors
of extreme behaviors as well, beyond power related stress patterns. Figure 6 shows
four examples, namely max CPI, max L1 D-cache miss rate, max L2 cache miss rate
and max branch misprediction rate stress patterns. In all four examples, representative
sampling with threshold clustering is the most effective approach; this is especially the
case for the CPI and cache miss rate extreme behaviors. Theseextreme behaviors can
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(c) max L2 cache miss rate (d) max branch misprediction rate
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Fig. 6.Finding other flavors of stress patterns: max CPI (top left),max L1 D-cache miss rate (top
right), max L2 cache miss rate (bottom left), and max branch misprediction rate (bottom right).

provide valuable insight and understanding about problematic program behaviors and
patterns.

5 Related work

Stress testing. In VLSI circuit design, statistically generated test vectors are used to
stress a circuit by inducing maximum switching activity [4]. At the microarchitectural
level, engineers develop hand-crafted synthetic test cases, so called stressmarks, to es-
timate maximum power consumption of a microprocessor. Thisis common practice in
industry, see for example [9,10,27]. Recent work by Joshi etal. [17] proposes a frame-
work for automatically developing stressmarks by exploring the workload space using
an abstract workload model.

Power phase characterization. A lot of work has been done on characterizing time-
varying program behavior, and different authors have been proposing different ways for
doing so, such as code working sets [6], BBVs [22], procedurecalls [13], and perfor-
mance data [7].

Isci and Martonosi [14] propose a methodology for tracking dynamic power phase
behavior in real-life applications using a real hardware setup. They measure total pro-



cessor power consumption data using a digital multimeter and simultaneously collect
raw performance counter data. They then use the performancecounter data to esti-
mate processor component power consumption numbers, whichthey subsequently use
to identify power phase behavior at runtime using thresholdclustering. Whereas the
goal of the work by Isci and Martonosi is on tracking power consumption and power
phase behavior at runtime, the focus of our work is on finding stress patterns to guide
processor design under extreme workload behavior, which isa related but different
problem.

In their follow-on work, Isci and Martonosi [15] compare clustering based on BBVs
versus processor component power numbers, and found both approaches to be effective,
but processor component power numbers to be more accurate for tracking power phase
behavior. The downside of processor component power numbers though is that it re-
quires that the entire benchmark be measured in terms of its power behavior, which
may be costly in terms of equipment (in case of a real hardwaresetup) or which may be
too time-consuming (in case of a simulation setup). In addition, processor component
power numbers are specific to one particular microprocessorimplementation. A BBV
profile is both inexpensive and fast to measure through software instrumentation, and, in
addition, is microarchitecture-independent, i.e., can beused across microarchitectures.
Since our goal is to find stress patterns to be used during the design of a processor, we
advocate the BBV approach because of its microarchitecture-independence, its low cost
and its fast computation.

6 Conclusion and future work

Power consumption has emerged as a key design concern over the entire range of com-
puting devices, from embedded systems up to large-scale data centers and supercomput-
ers. Understanding the power characteristics of workloadsand their interaction with the
architecture however, is not trivial and requires an appropriate benchmarking method-
ology. Researchers and engineers currently use a range of workloads for gaining insight
into the power characteristics of processor architectures. On the one side, typical work-
loads such as SPEC CPU and other commercial workloads are used to assess average
power consumption. On the other side, hand-crafted stressmarks are being used to un-
derstand worst-case behavior in terms of a processor’s max power consumption. This
paper closed the gap between these two ends of the power benchmarking spectrum by
finding stress patterns in typical microprocessor workloads.

In this paper, we advocated and studied sampled simulation as a means of finding
these stress patterns efficiently. Although sampled simulation is a well studied and ma-
ture research area, the objective in this paper is completely different. While the goal of
sampled simulation traditionally has been on estimating average performance, the prob-
lem addressed in this paper is on estimating worst-case performance rather than average
performance, i.e., the goal is to find stress patterns in typical workloads without having
to simulate the complete benchmark execution. We found thatalthough statistical sam-
pling is more effective than representative sampling for estimating average behavior,
representative sampling is substantially more effective than statistical sampling when it
comes to capturing extreme behavior. In addition, we found that threshold clustering is



substantially more effective than k-means clustering for finding stress patterns (which
is a frequently used clustering technique for representative sampling). Our experimen-
tal results using the SPEC CPU2000 benchmarks demonstrate that stress patterns at a
million-instruction granularity can be found with an errorof a few percent on average
at a simulation speedup of three orders of magnitude.

We believe that this work could lead to a new line of research towards finding
stress patterns in microprocessor workloads. Sampled simulation, which was tradition-
ally used for estimating average behavior, may benefit from specific enhancements to-
wards stress pattern identification. One focus of future research may be to improve the
computational requirements of the clustering algorithm inrepresentative sampling so
that larger data sets and thus smaller granularity stress patterns may become feasible
in practice. One example of a stress pattern that requires a small granularity is a dI/dt
stress pattern: stress patterns with large power swings over short periods of time are of
interest for studying the dI/dt problem [16] as the associated current swings may lead
to ripples on the voltage supply lines, which may introduce timing errors and/or cause
circuits to fail. Existing clustering algorithms however are too time-consuming when
applied to a large data set.
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