© Springer-Verlag
In Proc. of the 11th International Symposium on
Practical Aspects of Declarative Languages, PADL 2009
Springer LNCS 5418, pp. 16-30, 2009

Declarative Programming of User |nterfaces*

Michael Hanus Christof Kluf

Institut fur Informatik, CAU Kiel, D-24098 Kiel, Germany
{mhl ckl}@informatik .uni-kiel.de

Abstract. This paper proposes a declarative description of userfates that
abstracts from low-level implementation details. In garar, the user interfaces
specified in our framework are executable as graphical userfaces for desk-
top applications as well as web user interfaces via standaldbrowsers. Thus,
our approach combines the advantages of existing usefaatetechnologies in
a flexible way without demands on the programmer’s side. Véécbkan imple-
mentation of this concept in the declarative multi-paradigrogramming lan-
guage Curry and show how the integrated functional and legitures of Curry
are exploited to enable a high-level implementation of tiscept.

1 Motivation

The implementation of a good user interface for applicatimygrams is a necessary but
often non-trivial and tedious task. In order to support pamgmers in the implementa-
tion of user interfaces, one can find specific libraries teélect different approaches
to the construction of user interfaces. From a user’s petisge there are two kinds of

user interfaces (Uls) that are currently the most imporaet on conventional desktop
computers:

Graphical User Interfaces (GUIs): These are user interfaces that followed the early
textual user interfaces on single host computers. GUlIsledatmn-expert users to
easily interact with application programs. They provideadjreaction time (since
they run on the local host) and are relatively easy to instny other program,
i.e., usually they are distributed with the executable &f #pplication program.
On the negative side, application programs with GUIs regaome installation
efforts if many users want to use them on their desktops,usecane has to install
them on all desktops that might have different configuratimnoperating systems.
Moreover, they are difficult to maintain during their liferte since updates must be
performed on all existing installations.

Web User Interfaces (WUIs): These are user interfaces that became popular with the
world-wide web and its opportunities for user interactiga dynamic web pages.
In this case, the application runs on a web server and theintsgacts with the
application via a standard web browser. Thus, applicatiotisWUIs are relatively
easy to install for many users since every single user nedgi&aveb browser on

* This work was partially supported by the German Researcm@b(DFG) under grant Ha
2457/5-2.

his local host (which is usually already installed). Morenwsuch applications are
easy to maintain since one has to update the central ingtallen the web server
only. On the negative side, WUIs have a moderate reactioa (since the web
server is contacted for every state-changing interactad)a complete application
is more difficult to install on a single host (since one hasgidll and configure a
web server).

A few years ago, there was also another important differbetgeen GUIs and WUIs:
the model of interaction. In application with GUIs, the useuld immediately change
the content of many widgets by mouse events, whereas withs\\ddich page contain-
ing user input has to be sent to the web server which returesvaneb page with some
modified content. However, this disadvantage of WUIs has lleereased or omitted
by the development of the Ajax framework that supports aaradtion with a web

server without submitting and receiving complete new pdiges the web server [7].

From these considerations, it is reasonable to combinedtvemgages of both kinds
of user interfaces in a single framework so that the progranivas no additional burden
to select between GUIs or WUIs (or both) for his applicatidhis paper presents a
concrete proposal of such a concept and its implementatidhe declarative multi-
paradigm language Curry.

In the following section, we review the main features of fiimeal logic program-
ming and Curry as required in this paper. Section 3 desctiteesoncepts of our frame-
work followed by a few examples shown in Section 4. Impleragah issues and exten-
sions are sketched in Sections 5 and 6 before we concludefin8& with a discussion
of related work.

2 Functional Logic Programming and Curry

In this section we review the basic concepts of functiongidprogramming with Curry
that are relevant for this paper. More details can be fouralri@cent survey on func-
tional logic programming [13] and in the definition of Curd7].

Functional logic languages integrate the most importaatifes of functional and
logic languages to provide a variety of programming constgpthe programmer. Mod-
ern languages of this kind [8, 17, 19] combine the conceptieaiand-driven evalua-
tion and higher-order functions from functional programgwith logic programming
features like computing with partial information (logicrigbles), unification, and non-
deterministic search for solutions. This combination,prped by optimal evaluation
strategies [1] and new design patterns [2], leads to beistractions in application pro-
grams, e.g., as shown for programming with databases [3,6&b programming [10,
12,14]. The declarative multi-paradigm language Curryl[8,is a functional logic
language extended by features for concurrent programrhinipe following, we re-
view the elements of Curry that are relevant to understaadtimtents of this paper.
Further features (e.g., constraints, search strategiasucrency, declarative I/O, mod-
ules), more details about Curry’s computation model, anohaptete description of the
language can be foundin [17].

From a syntactic point of view, a Curry program is a functigmagram extended
by the possible inclusion of free (logic) variables in cdiwdis and right-hand sides of

defining rules. Curry has a Haskell-like syntax [22], i.&yp€) variables and function
names usually start with lowercase letters and the namegpefdnd data construc-
tors start with an uppercase letter. The applicatiofi tf e is denoted by juxtaposition
(“ f €"). A Curry programconsists of the definition of functions and data types on tvhic
the functions operate. Functions are first-class citizewnsezaluated lazily. To provide
the full power of logic programming, functions can be caligith partially instanti-
ated arguments and defined by conditional equations withtcaints in the conditions.
Function calls with free variables are evaluated by a pbssitindeterministic instanti-
ation of demanded arguments (i.e., arguments whose valee&eessary to decide the
applicability of a rule) to the required values in order t@lpa rule.

In general, functions are defined hylesof the form “f ¢, ...¢, | ¢ = €"with f
being a functionty, . . . , t,, patterns(i.e., expressions without defined functions) with-
out multiple occurrences of a variable, the (optiorw@hditionc is a constraint (e.qg.,
a conjunction of equations), andis a well-formedexpressiorwhich may also con-
tain function calls, lambda abstractions etc. A rule canfiygied if its left-hand side
matches the current call and its condition, if present, tisfable.

The following Curry program defines the data types of Boolealues, possible
values, and polymorphic lists, and functions to computectirecatenation of lists and
the last element of a list:

data Bool = True | False
data Maybe a = Nothing | Just a
data List a = [] | a : List a

(++) :: [a]l -> [a] -> [a]

(] ++ ys = ys

(x:x8) ++ ys = x : (xs ++ ys)

last :: [a] -> a

last xs | ys++[x] =:= xs = x where x,ys free

[1 (empty list) and: (non-empty list) are the constructors for polymorphicsliét is
a type variable ranging over all types and the typedt a” is written as[a] for con-

formity with Haskell). The concatenation functiomn+” is written with the convenient
infix notation. The (optional) type declaration: () of the function “++" specifies that
“++" takes two lists as input and produces an output list, whilestelements are of
the same (unspecified) type.

As one can see in this example, logic programming is supgbteadmitting func-
tion calls with free variables (seg$ ++ [x]” above) and constraints in the condition of
a defining rule. For instance, the equatigi *++ [x] =:= xs” is solved by instantiat-
ing the first argumenis to the listxs without the last argument, i.e., the only solution
to this equation satisfies thatis the last element afs. In order to support some con-
sistency checkextra variablesi.e., variables of a rule not occurring in a pattern of the
left-hand side, must be declared hyhtre. . . free” (see the rule definingast).

A constraintis any expression of the built-in tyccess. For instance, arqua-
tional constrainte; =: = ey is satisfiable if both sides, ande, are reducible to unifi-

! Curry uses curried function types where>3 denotes the type of all functions mapping ele-
ments of typex into elements of typ@.

able constructor terms. Specific Curry systems also suppare powerful constraint
structures, like arithmetic constraints on real numbefsde domain constraints (e.g.,
PAKCS [15]).

The operational semantics of Curry, described in detaiBirLf], is based on an
optimal evaluation strategy [1] which is a conservativeeaston of lazy functional
programming and (concurrent) logic programming. Currp aifers standard features
of functional languages, like higher-order functions, mled, or monadic I/O (which is
identical to Haskell's I/O concept [27]). ThusLO «” denotes the type of an I/O action
that returns values of type. For instance, the predefined I/O actiggmtChar has the
type “I0 Char”, i.e., it returns the next character from the keyboard wihénapplied.
Similarly, the predefined I/O actiareadFile has the typeString -> I0 String’,
i.e., it takes a string (the name of a file) and returns theasdntof the file when it is
applied.

3 Specifying User Interfaces

In this section we describe our proposal for the declargtregramming of user inter-
faces that can be executed either on a local host as a GU| lfg.the use of Tcl/Tk
[21]) or as a WUI on a web server that is accessed by a standdydmwser.

In order to develop appropriate abstractions for high{leNg@rogramming, one has
to analyze the essential components of these programnskg, tBased on earlier work
on programming GUIs and WUIs with functional logic languad@, 10, 12], one can
distinguish the following ingredients of Ul programming:

Structure: Each Ul has a specific hierarchical structure which typycatinsists of
basic elements (also calleddgets, like text input fields or selection boxes, and
composed elements, like rows or columns of widgets. Thus,Hale a tree-like
structure which can be easily specified by an algebraic ga&ih a declarative
language.

Functionality: If the user interacts with Ul elements by mouse or keyboaicks|
these Ul elements emit some events on which the applicatemrgm should react.
A convenient way to connect the application program to sweims is the concept
of event handlersi.e., functions that are associated to events of some Wtk
that are called whenever such an event occurs. Usuallyyvémg dandlers use the
functionality of the application program to compute somtadhat is shown in the
widgets of the Ul. Thus, event handlers are associated t@ swigigets but need
to refer to other widgets independently of the structuratdichy. This means that
Uls have not only a hierarchical (layout) structure but adogical (graph-like)
structure that connects the event handlers with variougetgdof the Ul structure.
In previous works on GUI and WUI programming [9, 10] it has behown that
free (logic) variables are an appropriate feature to deedtiis logical structure
and to avoid many problems that occur if fixed strings are asagferences to Ul
elements as in traditional GUI programming (e.g., [21, 28]WUI programming
(e.g., [4,20]).

Layout: In order to support a visually appealing appearance of atdhauld be pos-
sible to influence the standard layout of a Ul. Whereas inradgi@roaches layout

and structural information are often mixed (e.qg., as inTickr older versions of
HTML, and similarly in previous approaches to declarativel@VUIl program-
ming [9, 10]), it has been realized that these issues shauttidinguished in order
to obtain clearer and reusable implementations. For instacurrent versions of
HTML recommend the use of cascading style sheets (CSS) araepstructure
from layout.

The distinction between structure, functionality, andblatyand their appropriate mod-
elling in a declarative programming language are the kegeidignts to our framework
for Ul programming. Although parts of these ideas can be daarour previous works
[9,10,12], our current novel approach abstracts more floerunderlying technology
(Tcl/Tk, HTML/CGI) so that it enables a common method to sfyeaser interfaces.
In the following, we propose a concrete description of thecstire, functionality, and
layout of Uls in the language Curry by presenting appropriita types and operations
on them. In principle, one can transfer these ideas alsoher ateclarative languages
(where some restrictions might be necessary). However, Weee that the combined
functional and logic programming features of Curry are eitptl for our high-level and
application-oriented description of Uls.

As already discussed, Uls have a hierarchical structureciva be appropriately
described by the following data type:

data UIWidget = Widget WidgetKind -- kind of widget
(Maybe String) -- possible contents
(Maybe UIRef) —-- possible reference
[Handler] -- event handlers
[StyleClass] -- layout elements
[UIWidget] -- subwidgets

In order to avoid unnecessary restrictions, the definitiba widget is quite general.
In principle, one could also enumerate all kinds of widgetd distinguish between
widgets having no structure (basic widgets) and widgeté wsitucture (e.g., rows,
columns). For the sake of generality, we have chosen oneewiclonstructor where
the concrete kind of widget is given as the first componentyjéwidgetKind). The
last two components are a list of layout elements (see belad’the widgets contained
in this widget, respectively. The second component costdie possible contents of
the widget (e.qg., the entry string of a text input fidldthing for widget combinators
like row or column), the third component a possible refeesioca widget used by other
event handlers, and the fourth component a list of handtershe various events that
can occur in this widget. Concrete examples for widgetslaoaa below after we have
discussed the other data types used in widgets.

Event handlers need to refer to other widgets independehtlye widget hierar-
chy. Therefore, a widget can be equipped with an identityl @sea reference by event
handlers. Many approaches to user interface programnilegl €l/Tk or HTML/CGI,
use string constants as identifiers. Such approaches arepeone since a typo in a
string constant causes a run-time error which is usuallydetécted at compile time.
In order to provide a more reliable approach, we adapt the aderevious works on
declarative GUI and WUI programming [9, 10] and make the typeidget references

abstract. Thus, one cannot construct “wrong” identifiersHas to use free variables
(whose declarations are checked at compile time) for thipqgme. Therefore, ourt
library contains a type declaration

data UIRef = ...

where only the type namélRef but no data constructor is exported, ilelRef is an
abstract type. Since no constructor of this data type idaaito the user of thel
library, the only reasonable way to use values of typeef is with a free variable (see
below for a concrete example).

In general, event handlers are used for two main purposti®erihey should per-
form some calculations and show their results in some sperifigets of the Ul, i.e.,
they influence the state of the Ul, or they should change thte stf the underlying
application program, e.g., the execution of an event hamdight change some appli-
cation data that is stored in a file or database. In order tpatithe latter functionality,
the result type of an event handler is always “()", i.e., an event handler might have
a side effect on the external world. Since there are alsodtiorss to influence the state
of the Ul (see below), this result type of event handlers sssthat event handlers can
influence the state of the Ul as well as the state of the agjditarogram.

Furthermore, the calculations and actions performed bgtevandlers usually de-
pend on the user inputs stored in the widgets of the interfaee these input values
must be passed as parameters to the event handlers. Thie emletpuately modelled
by anenvironmenparameter that is conceptually a mapping from widget refege to
the string values stored in the widgets. In order to absfraot the concrete implemen-
tation of such environments, ouI library contains the type declaration

data UIEnv = ...

where only the type nam# Env is exported. Moreover, tHel library contains the type
declarations

Cmd (UIEnv -> I0())

data Handler = Handler Event Command

data Command

whereEvent is the type of possible events issued by user interfaces:

data Event = DefaultEvent | FocusIn | FocusOut
| MouseButtonl | MouseButton2 | MouseButton3
|

KeyPress | Return | Change | DoubleClick

Therefore, each element in the list of event handlers of @etidpecifies a command
(an 1/0 action depending on the value of some environmeat)ishexecuted whenever
the associated event occurs.

The typeWwidgetKind specifies the different kinds of widgets supported by our
library. Some constructors of this type are

data WidgetKind = Col | Row | Label | Button | Entry
| TextEdit Int Int |

The constructor§ol andRow specify combinations of widgets as columns and rows,
respectivelyLabel is a widget containing a string not modifiable by the uBatton

is a simple buttonEntry is an entry field for a line of text, antkxtEdit is a widget
to edit larger text areas (the parameters are the height aftd of the edit area).

Since it is tedious to define all widgets of a user interfaceifing the constructor
Widget only, the library contains a number of useful abbreviatjdike

col ws = Widget Col Nothing Nothing [1 [1 ws
row ws = Widget Row Nothing Nothing [1 [1 ws
label str = Widget Label (Just str) Nothing 0imnian

entry ref str = Widget Entry (Just str) (Just ref) [1 [1 []

button cmd label =
Widget Button (Just label) Nothing
[Handler DefaultEvent (Cmd cmd)]) [1 []

For instance, a simple Ul showing the teke11o World!” and a button to exit the Ul
can be specified as follows:

col [label "Hello World!'",
button exitUI "Stop"]

exitUI is a predefined event handler to terminate the Ul. The enwien passed

to event handlers can be accessed and modified by the pratidfibeactions
getValue andsetValue that take a widget reference as their first argument. Thus,
“getValue r e” returns the value of the widget referenced byv.r.t. environment

e, and “setValue r v e” updates the value of the widget referencedrbgo that it
becomes visible to the user.

In order to influence the layout of Uls, widgets can take adfsttyle parameters
of type StyleClass. This type contains options to align the widget or the text-co
tained in it, set the font and color of the widget'’s text, $&t background color, and so
on. The styles of a widget can be dynamically changed by firesteoperations like
setStyles, addStyles, etc.

4 Examples

In order to demonstrate the concrete application of our ephave show a few pro-
gramming examples in this section. As a first example, cemsdsimple counter Ul
shown in Fig. 1. Using our library, its structure and funngtity is specified as follows:

counterUI = col [label "A simple counter:",
entry val "0",
row [button incr "Increment",
button reset "Reset",
button exitUI "Stop" 1]
where
val free

reset env setValue val "O" env

incr env = do v <- getValue val env

setValue val (show (readInt v + 1)) env

(@ Counter Demo - Mozilla Firef¢ — | = || . |
Elle Edit View History Bookmarks To

@ % €0 @ EmmE

a

A simple counter: iA simple counter:
42

increment! | Reset | Stop

4z

Increment | Reset | Stop | e

Fig. 1. A simple counter Ul executed as a GUI (left) and as a WUI (Jight

The free variableal (of typeUIRef) denotes the reference to the entry field containing
the string representation of the counter’s value. It is usethe event handlefeset to
set the value of this entry widget t@". The event handleimcr reads the current value
of this widget (by getValue val env”) before replacing it by its incremented value
(since the values in the widgets are strings, the strinaaissfiormed into an integer by
“readInt v").

The Ul specification can be executed by the predefined I/@metinUT that takes
a string (usually shown as the label of the window contaittiregJl) and a Ul specifica-
tion as parameters. For instance, the counter Ul shown ab@xecuted by evaluating
the main expression

runUI "Counter Demo" counterUI

Many interactive applications contain a state which is shawd modified by a Ul. We
want to demonstrate the implementation of such kinds of Utk wur concept by a
simple desk calculator Ul shown in Fig. 2. The implementatbthis Ul requires the
access of the Ul to some state that can be modified by the eaadtdrs associated to
the different buttons. In our application, the value of ttaesis a paird, £) containing
the current operangland an accumulator functidrthat is applied t@ when the button
“=" is pressed (this idea is due to [26]). In order to allow tharfe of the state’s
value by any event handler of the calculator Ul, we model #hlewtator’s state with
I0Refs, a concept from Haskell to deal with mutable sta@Refs are references to
stateful objects, where their states can only be accessechamged by the predefined
I/O actionsreadI0ORef andwriteIORef (in order to ensure referential transparency).
Thus, the calculator Ul can be implemented as follows (wiieeeparametegtref of
typeIORef (Int,Int->Int) is anIORef to the calculator’s state):

calcUI stref =
col [entryS [Class [Bg Yellow]] display "O",
row (map cbutton [’1°,°27,°37,°+°]),

row (map cbutton [’4°,°57,°67,°-]),
row (map cbutton [’7°,°87,°97,°%°]),
row (map cbutton [’C’,’0’,’=,"/’])]

where
display free
cbutton ¢ = button (buttonPressed c) [c]

‘_ Calculator _ X File Edit \iew History Bookm

& - v k{é‘J g | A http://

x

[2520

I]
ElE E E
Kl e 501
ol o] &]

Done

-

Fig. 2. A simple desk calculator Ul executed as a GUI (left) and as d \Mght)

buttonPressed c env = do
state <- readIORef stref
let (d,f) = processButton c state
writeIORef stref (4,f)
setValue display (show d) env

The operatorntrys is similar to entry but has a further first argument to spec-
ify the initial layout of this widget (here: the backgroundla@r). Note that we ex-
ploit the higher-order features of Curry to create the iidlial buttons by the generic

function cbutton in a compact way. Each button has an associated event handler

buttonPressed that reads the current state, modifies it, and shows the nenang
in the entry widget referenced by the variahilesplay. The actual update of the state
depending on the selected button is computed by the opefatiressButton:

processButton :: Char -> (Int,Int->Int) -> (Int,Int->Int)
processButton b (d,f)

| isDigit b = (10*%d + ord b - ord ’0’, f)
| b==’+’ = (0,((f &) +))

| b=="-’ = (0,((f 4) -)

| b==’x%’ = (0,((f d&) *))

| b=="/> = (0, ((f &) ‘div‘))

| b=="=> = (£ d, id)

| b=="C’ = (0, id)

Finally, the complete application is executed by evalugtite operatiomain that first
creates a neWwORef object and then runs the Ul with this object:

main = do stref <- newIORef (0,id)
runUI "Calculator" (calcUI stref)

We have already mentioned that the use of free variablefa®nees to Ul elements
avoids the construction of wrong identifiers that might heypjif strings are used as
identifiers, as in scripting languages like Tcl/Tk, HTML/G®HP, etc. Moreover, this
also improves compositionality in the construction of WHer instance, if fixed strings
are used as reference identifiers, there might be name slésteeen different ref-

" 4 counters

A simple counter: A simple counter:

45 4
Increment | Reset | Stop | Increment | Reset | Stop |
A simple counter: A simple counter:
[124

| 11
Increment | Reset | Stop Increment | Reset | Stop |

Fig. 3. A Ul with four independent counters executed as a GUI

erences when independent Uls are composed in a larger Ultdtiee use of free
variables that represent fresh values every time they &adinced, such name clashes
are avoided in our library. For instance, consider the singgunter Ul above. Each
use ofcounterUI introduces its own fresh local reference variabd@ . Thus, we can
easily put four different counters in one Ul by

counter4 = col [row [counterUI,counterUI],
row [counterUI,counterUI]]

so that ‘runUI "4 counters" counter4” creates a Ul with four independent
counter Uls (see Fig. 3). This property of compositionaBtparticularly useful if one
combines various Uls into complex web pages (see below).

The use of free variables for fresh references in data stretis a specific func-
tional logic design pattern called “locally defined globdémtifier” [2]. An alternative
would be a global counter to create unique references thlatéaded through the con-
struction of the user interface. Such an approach leadsrédta monadic programming
style with an imperative flavor [5, 18] or puts some restoig on the possible depen-
dencies between input fields and buttons [25].

5 Implementation Issues

The definition of the components to specify a user interfasaliscussed in Section 3,
are contained in a libraryI so that one has to import this library in order to define an
interface. However, such an interface is not executableawit specifying whether it
should be run as a GUI or a WUI. For this purpose, our framewookides two imple-
mentations of the general Ul concept by transforming Uls BUls or into WUIs. The
necessary functionality is contained in the librati€@@GUI andUI2HTML, respectively.

In order to execute a Ul as a GUI (as shown in the left-handssid&ig. 1 and 2), one
has to import the librargI2GUI (which has the same interface @) instead ofUI,
i.e., one has to put the import declaration

import UI2GUI

at the beginning of the module containing the correspondingpecification. In order
to execute a Ul as a WUI (as shown in the right-hand sides of Fand 2), one has
to replaceUI2GUI by UI2HTML in the import declaration, and everything else is left

10

unchanged (apart from the command to generate an exectrialéhe corresponding
Curry program).

The implementation of the librafyI2GUT is straightforward by exploiting the exist-
ing Curry libraryGUI [9] and mapping Ul elements into corresponding GUI elements
Thus, the main functiopunUTI is implemented in this library by transforming the main
term and all its subterms of tyfEWidget into the corresponding GUI widgets and
then calling the main functiorunGUI of the GUT library.

The implementation of the libraryI2HTML is more advanced since the existing
Curry libraryHTML [10] does not support server interaction inside a web pagee$his
is possible by the Ajax framework [7], we have added extersio theHTML library
(based on Ajax) to support the interaction model implied tyUT library. Based on
these extensions, the main functiemnUT is implemented in the libraryI2HTML by
transforming terms of typgIWidget into corresponding HTML expressions that are
put into an HTML form that contains the HTML input elementsialavaScript code to
implement the interaction with the web server.

In typical web applications, a user interface is not thelgiegtity of a web page but
often embedded in a larger web page (containing headergjat@n bars, other input
elements, explaining text, etc). In order to put Uls as elgsato larger web pages,
our library UI2HTML also exports a functioni2hexps that maps a Ul specification
into an HTML expression that can be inserted into an HTML pamestructed with the
HTML library [10]. Since the references used in Uls (of tyiRef discussed above)
and the references used in tHEML library to access the values of the input elements
are of different typ& there are also conversion functions between these kinasert
ences. Thus, the values set in a Ul can be used to influencesvafuelements in the
surrounding web page, and vice versa.

6 Extended Ul Programming

The structure of Ul specifications is a generalization camgdo previous proposals
for GUI or WUI programming. In this section, we discuss twagibilities to extend
previous more specialized approaches to interface pragimagby exploiting our Ul
approach.

6.1 Transforming GUIsinto WUIs

Since the structure of Ul elements is very similar to the @ptw of the Curry library
GUI, which has been already used for various applications, (6.5, 16, 23]), one can
also use our concept of Uls to enable the execution of suchtiaséd desktop ap-
plications as web applications. For this purpose, we hase iahplemented a library
GUI2HTML that provides the same interface as the librél¥ but executes a GUI as
a WUI by exploiting the libraryygI2HTML. For instance, we have used this implemen-
tation to execute the Curry analysis environment CurryBew(its implementation

2 This is necessary because Ul references must be more gierangiér to support their mapping
into GUIs or WUIs.

11

consists of almost 4000 lines of Curry code), which is wnitite Curry and has a quite
advanced graphical user interface (see [11]), in a standabdbrowser. The only nec-
essary change was the replacement of the import of theyilotar by the import of the
library GUI2HTML in the source code of the CurryBrowser implementation.

6.2 Type-SafeUls

[12] presented a technique to construct type-safe WUIs iigh-level manner. The
basic idea is to provide a set of typed WUIs for basic data gyfike wInt for
integers orwString for strings, and a set of combinators for typed WUIs, like
wPair for pairs,wTriple for triples, wList for lists, etc. For instance, the expres-
sion “wlist (wPair wInt wString)” specifies a WUI to manipulate values of type
[(Int,String)]. One of the important properties of such typed WUIs is thé taeat
the user can only enter values of the correct type, i.e. gfuber attempts to enter ill-
typed values, an error message appears and the user haseitt toe value. Thus, the
application program need not check the values, provide enessages etc. A further
important aspect is the possibility to constrain the typaltmwed values by any com-
putable predicate. For instance, if the predicaterectDate checks whether a triple
of integers forms a legal date, one can specify by

wlriple wInt wInt wInt ‘withCondition‘ correctDate

a WUI where one can enter only legal dates.

We can apply the same idea to Uls in order to obtain type-safiés\isimilarly to
[12]) as well as type-safe GUIs (which have not been coneitlbefore). Therefore, we
have implemented two librari@pedUI2HTML andTypedUI2GUI that provide almost
the same interface as [12] (i.e., it has all the entitie® diknt, wString, wPair, for
specifying typed Uls) and an operatiogpedui2ui to map a typed Ul specification
together with an initial (type-correct) value into a starttél widget that allows only
the manipulation of type-correct data. In additiogpedui2ui also returns operations
to access, set, and update the value shown in the typed Uinstance, the following
program defines a Ul containing a lists() of integers that can be together incremented
or reset, and a button to compute their sum:

counters :: [Int] -> UIWidget
counters xs =
col [label "A list of counters:", widget,
row [button (updval (map (+1))) "Increment all",
button (setval (repeat 0)) "Reset all",
button compute "Compute sum:", entry sval ""]]
where
sval free

(widget,getval,setval,updval) = typedui2ui (wList wInt) xs
compute env = do cs <- getval env

setValue sval (maybe "" (show . sum) cs) env

Note that the derived operatiogetval, setval, andupdval access or manipulate
values of type[Int], i.e., the implementation checks whether all widgets dardaly

12

integer values (in contrast to tkeunterUI example in Section 4). As a consequence,
getval returns aMaybe value, i.e., it returndlothing if some of the current input
fields contain illegal values. This is also the reason whydperationcompute uses
the standard functiomaybe in order to return the empty string as the sum value if
the current contents is Nothing. The result of this construction is a standard Ul,
i.e., we can create a type-safe GUI or WUI for a list of fourgers by executing
“runUI "Counters" (counters [1..4])".

7 Conclusions and Related Work

We described a framework to implement user interfaces igla-lével, declarative man-
ner. Our approach is based on separating the structuraltidmal, and layout aspects
of a user interface. We showed that the features availabileictional logic languages
can be exploited to provide appropriate specifications e$¢hissues. The hierarchical
structure of Uls can be easily specified as term structufes .absociated functionality
can be specified by attaching event handlers (i.e., fungfitmthe elements of these
term structures. The connections of event handlers to thieidual widgets of the Ul
can be described by logic variables. This avoids typicajgmming errors in untyped
scripting languages and supports compositionality in thestruction of complex Uls.
Finally, the concrete layout is separated from the strattand functional aspects of
the Ul. This supports the use of the same Ul specification fiierdint contexts, i.e.,
one can create either graphical user interfaces for deggipfications or web-based
user interfaces from such descriptions only by importiregahbpropriate libraries. This
simplifies the programming efforts to combine the advardajexisting user interface
technologies. Finally, our framework also enables thesfiamation of existing GUI
applications into web applications, the embedding of Ute erbitrary HTML pages,
and the construction of type-safe Uls. Although this funietility is a distinctive feature
of our approach based on declarative programming techsjgueediscuss some related
work in the following.

Approaches to construct Uls in a declarative manner have imensively studied
in the functional programming community, e.g., [5, 18, 28;26]. Although there are
approaches to create GUIs for different platforms [18] frin@ same base code, none
of them support the unified creation of GUIs and WUISs.

Adobe AIR® enables the use of the same base code to create applic&izmsn
in a web browser as well as on a desktop. In contrast to ourapptr Adobe AIR is
not based on standard features of web browsers but requieesfis software to be
installed on the client’s side. Another related work is th@oGle Web Toolkit (GWT).
GWT is a framework to implement dynamic web pages for Javgnars similarly to
GUI programmingin order to create highly interactive weplagations with reasonable
efforts. GWT does not support the use of the same programrtergte both GUI and
WUI applications in contrast to our approach where condrafgementations (GUIs
or WUIs) are automatically inferred from a single Ul destidp. Moreover, because of

3 http://www.adobe.com/devnet/air/
4 http://code.google.com/webtoolkit/

13

the applied declarative programming concepts, our coaddédescriptions are more
compact.

Another popular method to construct Uls are graphical eslifvat support the con-
struction of the UlI's layout, e.g., Cocoa’s Interface Beifd Similarly to our approach,
such Ul editors also advocate the separation of layout andtifunality by binding
the graphical Ul objects to the code of the base applicatMthough these graphical
editors are useful to define the layout of appealing Uls inngp& manner, the con-
nection of a constructed Ul with the application code is kes$al than in our event
handler model using a single implementation language. bere a textual represen-
tation of Uls as program entities is precise and compacir(fdrmation about the Ul
is contained in the program), and it allows the applicatibistandard programming
techniques to construct complex Uls from application+oieel Ul elements, e.g., as
shown in [12] or Section 6.2 above. Another possibility is tfeneration of the textual
Ul specification from the data model of the application,,eoge could generate the Uls
to manipulate the application data from an entity-relatip model, as in the Ruby on
Rails frameworR (a similar framework for Curry is currently being developed

The various features of the declarative base language Guipgrticular, algebraic
data types, functions as first class citizens, logic vagsldnd polymorphic types, have
shown to be useful to support the high-level, compact, aliahie specification of Uls
that can be used in different contexts. The implementatfauo concept as sketched
in Section 5 is freely available with the latest distributiof PAKCS [15]. For future
work it might be interesting to explore whether the same digatty modified concept
can be also used to create user interfaces for other arthi#gsce.g., mobile devices.

References

1. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing&yaJournal of the ACM
Vol. 47, No. 4, pp. 776-822, 2000.

2. S. Antoy and M. Hanus. Functional Logic Design Pattern®rbc. of the 6th International
Symposium on Functional and Logic Programming (FLOPS 20pg) 67—87. Springer
LNCS 2441, 2002.

3. B. Brafel, M. Hanus, and M. Miller. High-Level Databasedfamming in Curry. In
Proc. of the Tenth International Symposium on Practicale&sp of Declarative Languages
(PADL'08), pp. 316—-332. Springer LNCS 4902, 2008.

4. D. Cabeza and M. Hermenegildo. Internet and WWW Programgmsing Computational
Logic Systems. InWorkshop on Logic Programming and the Intern&®96. See also
http://clip.dia.fi.upm.es/Software/pillow/.

5. K. Claessen, T. Vullinghs, and E. Meijer. Structuringpirizal paradigms in TkGofer. In
Proc. of the International Conference on Functional Pragraing (ICFP’97) pp. 251-262.
ACM SIGPLAN Notices Vol. 32, No. 8, 1997.

6. S. Fischer. A Functional Logic Database Library. Aroc. of the ACM SIGPLAN 2005
Workshop on Curry and Functional Logic Programming (WCFL®R), pp. 54-59. ACM
Press, 2005.

7. J.J. Garrett. Ajax: A New Approach to Web Applications.aftlvePath.com, 2005.

5 http://developer.apple.com/tools/interfacebuildenlh
8 http://lwww.rubyonrails.org/

14

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.
20.

21.
. S. Peyton Jones, editoHaskell 98 Language and Libraries—The Revised Rep8am-

23.

24.

25.

26.

27.

. M. Hanus. A Unified Computation Model for Functional andjimProgramming. IriProc.

of the 24th ACM Symposium on Principles of Programming Lagga (Paris) pp. 80-93,
1997.

. M. Hanus. A Functional Logic Programming Approach to Gieal User Interfaces. In

International Workshop on Practical Aspects of Declaratianguages (PADL'0Qpp. 47—
62. Springer LNCS 1753, 2000.

M. Hanus. High-Level Server Side Web Scripting in Curiq. Proc. of the Third Inter-
national Symposium on Practical Aspects of DeclarativedLeyes (PADL'01)pp. 76-92.
Springer LNCS 1990, 2001.

M. Hanus. CurryBrowser: A Generic Analysis EnvironmiantCurry Programs. Ifroc. of
the 16th Workshop on Logic-based Methods in Programmingr@émments (WLPE'06)pp.
61-74, 2006.

M. Hanus. Type-Oriented Construction of Web User lateg6. InProceedings of the 8th
ACM SIGPLAN International Conference on Principles and d®iee of Declarative Pro-
gramming (PPDP’06)pp. 27-38. ACM Press, 2006.

M. Hanus. Multi-paradigm Declarative Languages. Phoceedings of the International
Conference on Logic Programming (ICLP 200fp. 45—75. Springer LNCS 4670, 2007.
M. Hanus. Putting Declarative Programming into the Wehnslating Curry to JavaScript.
In Proceedings of the 9th ACM SIGPLAN International Confeeema Principles and Prac-
tice of Declarative Programming (PPDP’0Dp. 155-166. ACM Press, 2007.

M. Hanus, S. Antoy, B. BraRRel, M. Engelke, K. HoppnerKdj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS: The Portland Aachen Kiel Curry Systenfvailable at
http://www.informatik.uni-kiel.de/"pakcs/ ,2008.

M. Hanus and J. Koj. An Integrated Development Enviromirfer Declarative Multi-
Paradigm Programming. IRroc. of the International Workshop on Logic Programming
Environments (WLPE’01pp. 1-14, Paphos (Cyprus), 2001. Also available from the-Co
puting Research Repository (CORRpatp: //arXiv.org/abs/cs.PL/0111039.

M. Hanus (ed.). Curry: An Integrated Functional Logiaigaage (Vers. 0.8.2). Available at
http://www.curry-language.org , 2006.

D. Leijen. wxHaskell — A portable and concise GUI librémy Haskell. InProceedings of
the 2004 ACM SIGPLAN Workshop on Haskefl. 57—-68. ACM Press, 2004.

F. Lopez-Fraguas and J. Sanchez-Hernandez. TOY: Kigdradigm Declarative System.
In Proc. of RTA'99pp. 244-247. Springer LNCS 1631, 1999.

E. Meijer. Server Side Web Scripting in Haskellournal of Functional Programming
Vol. 10, No. 1, pp. 1-18, 2000.

J.K. OusterhoufTcl and the Tk toolkitAddison Wesley, 1994.

bridge University Press, 2003.

P.H. Sadeghi and F. Huch. The Interactive Curry Observiiiebugger iCODEEIlectronic
Notes in Theoretical Computer Sciendel. 177, pp. 107-122, 2007.

M. Sage. FranTk - a declarative GUI language for HaskelProceedings of the 5th ACM
SIGPLAN International Conference on Functional Programgn{ICFP’00), pp. 106-117.
ACM Press, 2000.

P. Thiemann. WASH/CGI: Server-side Web Scripting widsSons and Typed, Composi-
tional Forms. Iith International Symposium on Practical Aspects of Dextlae Languages
(PADL 2002) pp. 192—-208. Springer LNCS 2257, 2002.

T. Vullinghs, D. Tuijnman, and W. Schulte. Lightweight/G for Functional Programming.
In Proc. of the 7th International Symposium on ProgrammingdLeages, Implementations,
Logics and Programs (PLILP’'95pp. 341-356. Springer LNCS 982, 1995.

P. Wadler. How to Declare an ImperativdCM Computing Surveya/ol. 29, No. 3, pp.
240-263, 1997.

15

