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Abstract. This paper presents the logic programming concept of thread-

based competitive or-parallelism, which combines the original idea of com-
petitive or-parallelism with committed-choice nondeterminism and spec-
ulative threading. In thread-based competitive or-parallelism, an explicit
disjunction of subgoals is interpreted as a set of concurrent alternatives,
each running in its own thread. The individual subgoals usually corre-
spond to predicates implementing different procedures that, depending
on the problem specifics, are expected to either fail or succeed with dif-
ferent performance levels. The subgoals compete for providing an answer
and the first successful subgoal leads to the termination of the remain-
ing ones. We discuss the implementation of thread-based competitive
or-parallelism in the context of Logtalk, an object-oriented logic pro-
gramming language, and present experimental results.
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1 Introduction

Or-parallelism is a simple form of parallelism in logic programs [1], where the
bodies of alternative clauses for the same goal are executed concurrently. Or-
parallelism is often explored implicitly, possibly with hints from the program-
mer to guide the system. Common uses include search-oriented applications, such
as parsing, database querying, and data mining. In this paper, we introduce a
different, explicit form of or-parallelism, thread-based competitive or-parallelism,
that combines the original idea of competitive or-parallelism [2] with committed-
choice nondeterminism [3] and speculative threading [4]. Committed-choice non-
determinism, also known as don’t-care nondeterminism, means that once an
alternative is taken, the computation is committed to it and cannot backtrack
or explore in parallel other alternatives. Committed-choice nondeterminism is
useful whenever a single solution is sought among a set of potential alternatives.

⋆ This work has been partially supported by the FCT research projects STAMPA
(PTDC/EIA/67738/2006) and MOGGY (PTDC/EIA/70830/2006).



Speculative threading allows the exploration of different alternatives, which can
be interpreted as competing to provide an answer for the original problem. The
key idea is that multiple threads can be started without knowing a priori which
of them, if any, will perform useful work. In competitive or-parallelism, different
alternatives are interpreted as competing for providing an answer. The first suc-
cessful alternative leads to the termination of the remaining ones. From a declar-
ative programming perspective, thread-based competitive or-parallelism allows
the programmer to specify alternative procedures to solve a problem without car-
ing about the details of speculative execution and thread handling. Another key
point of thread-based competitive or-parallelism is its simplicity and implemen-
tation portability when compared with classical or-parallelism implementations.
The ISO Prolog multi-threading standardization proposal [5] is currently im-
plemented in several systems including SWI-Prolog, Yap and XSB, providing a
highly portable solution given the number of operating systems supported by
these Prolog systems. In contrast, most or-parallelism systems described in the
literature [1] are no longer available, due to the complexity of maintaining and
porting their implementations.

Our research is driven by the increasing availability of multi-core computing
systems. These systems are turning into a viable high-performance, affordable
and standardized alternative to the traditional (and often expensive) parallel
architectures. The number of cores per processor is expected to continue to
increase, further expanding the areas of application of competitive or-parallelism.

The remainder of the paper is organized as follows. First, we present in
more detail the concept of competitive or-parallelism. Second, we discuss the
implementation of competitive or-parallelism in the context of Logtalk [6], an
object-oriented logic programming language, and compare it with classical or-
parallelism. Next we present experimental results. Follows a discussion on how
tabling can be used to take advantage of partial results gathered by speculative
computations. We then identify further potential application areas where com-
petitive or-parallelism can be useful. Finally, we outline some conclusions and
describe further work. In the remaining of the paper, the expression competi-

tive or-parallelism will be used interchangeably with the expression thread-based

competitive or-parallelism.

2 Thread-Based Competitive Or-Parallelism

The concept of thread-based competitive or-parallelism is based on the interpre-
tation of an explicit disjunction of subgoals as a set of concurrent alternatives,
each running in its own thread. Each individual alternative is assumed to imple-
ment a different procedure that, depending on the problem specifics, is expected
to either fail or succeed with different performance results. For example, one al-
ternative may converge quickly to a solution, other may get trapped into a local,
suboptimal solution, while a third may simply diverge. The subgoals are inter-
preted as competing for providing an answer and the first subgoal to complete
leads to the termination of the threads running the remaining subgoals. The



semantics of a competitive or-parallelism call are simple. Given a disjunction of
subgoals, a competitive or-parallelism call blocks until one of the following sit-
uations occurs: one of the subgoals succeeds; all the subgoals fail; or one of the
subgoals generates an exception. All the remaining threads are terminated once
one of the subgoals succeeds or an exception is thrown during the execution of
one of the running threads. The competitive or-parallelism call succeeds if and
only if one of the subgoals succeeds. When one of the subgoals generates an ex-
ception, the competitive or-parallelism call terminates with the same exception.1

When two or more subgoals generate exceptions, the competitive or-parallelism
call terminates with one of the generated exceptions.

For example, assume that we have implemented several methods for calcu-
lating the roots of real functions.2 In Logtalk, we may then write:

find_root(F, A, B, Error, Zero, Method) :-

threaded((

bisection::find_root(F, A, B, Error, Zero), Method = bisection

; newton::find_root(F, A, B, Error, Zero), Method = newton

; muller::find_root(F, A, B, Error, Zero), Method = muller

)).

In this example, the competitive or-parallelism call (implemented by the Logtalk
built-in meta-predicate threaded/1) returns both the identifier of the fastest
successful method and its result. Depending on the function and on the initial
interval, one method may converge quickly to the root of the function while the
others may simply diverge. Thus, by avoiding committing to a specific method
that might fail for some functions, the competitive or-parallelism call allows a
solution to be found corresponding to the fastest, successful method.

Consider now a different example, the generalized water jugs problem. In this
problem, we have several jugs of different capacities and we want to measure a
certain amount of water. We may fill a jug, empty it, or transfer its contents to
another jug. As in our previous example, we may apply several methods to solve
this problem. The water jugs state-space can be explored using e.g. breadth-first,
depth-first, or hill-climbing search strategies. We could write:

solve(WaterJug, Liters, Jug1, Jug2, Steps) :-

threaded((

depth_first::solve(WaterJug, Liters, Jug1, Jug2, Steps)

; hill_climbing::solve(WaterJug, Liters, Jug1, Jug2, Steps)

; breadth_first::solve(WaterJug, Liters, Jug1, Jug2, Steps)

)).

Different heuristics could also be explored in parallel. As before, without knowing
a priori the amount of water to be measured, we have no way of telling which
method or heuristic will be faster. This example is used later in this paper to
provide experimental results.

1 If we want the computation to proceed despite the exception generated, we can
convert exceptions into failures by wrapping the thread subgoal in a catch/3 call.

2 The full source code of this example is included in the current Logtalk distribution.



These examples illustrate how thread-based competitive or-parallelism dis-
tinguish itself from existing or-parallel systems by allowing fine-grained control
at the goal level using an explicit parallelism construct. As in most implemen-
tations of or-parallelism, the effectiveness of competitive or-parallelism relies on
several factors. These factors are discussed in detail next.

3 Implementation

In this section we discuss the implementation of competitive or-parallelism in the
context of Logtalk, given the core predicates found on the ISO standardization
proposal for Prolog threads [5].

3.1 Logtalk Support

Logtalk is an open source object-oriented logic programming language that can
use most Prolog implementations as a back-end compiler. Logtalk takes advan-
tage of modern multi-processor and multi-core computers to support high level
multi-threading programming, allowing objects to support both synchronous
and asynchronous messages without bothering with the details of creating and
destroying threads, implement thread communication, or synchronizing threads.

Competitive or-parallelism is implemented in Logtalk using the built-in meta-
predicate threaded/1, which supports both competitive or-parallelism and in-
dependent (and quasi-independent) and-parallelism.

The threaded/1 predicate proves a conjunction or disjunction of subgoals
running each subgoal in its own thread.3 When the argument is a conjunction
of goals, a call to this predicate implements independent and-parallelism seman-
tics. When the argument is a disjunction of subgoals, a call to this predicate
implements the semantics of competitive or-parallelism, as detailed in the previ-
ous section. The threaded/1 predicate is deterministic and opaque to cuts and,
thus, there is no backtracking over completed calls.

The choice of using Prolog core multi-threading predicates to implement
competitive or-parallelism provides several advantages in terms of simplicity and
portability when compared with traditional, low-level or-parallelism implemen-
tation solutions. Nevertheless, three problems must be addressed when exploiting
or-parallelism: (i) multiple binding representation, (ii) work scheduling, and (iii)
predicate side-effects. These problems are addressed in the sections below.

3.2 Multiple Binding Representation

The multiple binding representation is a crucial problem for the efficiency of
classical or-parallel systems. The concurrent execution of alternative branches

3 The predicate argument is not flattened; parallelism is only applied to the outermost
conjunction or disjunction. When the predicate argument is neither a conjunction
nor a disjunction of subgoals, no threads are used. In this case, the predicate call is
equivalent to a call to the ISO Prolog standard predicate once/1.



of the search tree can result in several conflicting bindings for shared variables.
The main problem is that of efficiently representing and accessing conditional

bindings.4 The environments of alternative branches have to be organized in such
a way that conflicting conditional bindings can be easily discernible.

The multiple binding representation problem can be solved by devising a
mechanism where each branch has some private area where it stores its con-
ditional bindings. A number of approaches have been proposed to tackle this
problem (see e.g [1]). Arguably, the two most successful ones are environment

copying, as implemented in the Muse [7] and YapOr [8] systems, and binding

arrays, as implemented in the Aurora system [9]. In the environment copying
model, each worker maintains its own copy of the environment (stack, heap,
trail, etc) in which it can write without causing binding conflicts. In this model,
even unconditional bindings are not shared. In the binding arrays model, each
worker maintains a private array data structure, called the binding array, where
it stores its conditional bindings. Each variable along a branch is assigned to a
unique number that identifies its offset entry in the binding array.

In a competitive or-parallelism call, only the first successful subgoal in the
disjunction of subgoals can lead to the instantiation of variables in the original
call. This simplifies our implementation as the Prolog core support for multi-
threading programming can be used straightforward. In particular, we can take
advantage of the Prolog thread creation predicate thread create/3. Each new
Prolog thread created by this predicate runs a copy of the goal argument using
its own set of data areas (stack, heap, trail, etc). Its implementation is similar
to the environment copying approach but simpler as only the goal is copied.
As each thread runs a copy of the goal, no variables are shared across threads.
Thus, the bindings of shared variables occurring within a thread are independent
of bindings occurring in other threads. This operational semantics simplifies
the problem of multiple binding representation in competitive or-parallelism,
which results in a simple implementation with only a small number of lines of
Prolog source code. Nevertheless, because each thread is running a copy of the
original goal, thus breaking variable bindings, we need a solution for retrieving
the bindings of the successful thread; our implementation solution is presented
later. Copying a goal into a thread and copying the successful bindings back
to the following computations may result in significant overhead for goals with
large data structures arguments. Thus, we sacrifice some performance in order
to provide users with an high-level, portable implementation.

3.3 Work Scheduling

Even though the cost of managing multiple environments cannot be completely
avoided, it may be minimized if the operating-system’s scheduler is able to divide
efficiently the available work between the available computational units during
execution. In classical or-parallelism, the or-parallel system usually knows the

4 A binding of a variable is said to be conditional if the variable was created before
the last choice point, otherwise it is said to be unconditional.



number of computational units (processors or cores) that are available in the
supporting architecture. A high-level scheduler then uses this number to create
an equal number of workers (processes or threads) to process work. The sched-
uler’s task of load balancing and work dispatching, from the user’s point-of-view,
is completely implicit, i.e., the user cannot interfere in the way work is scheduled
for execution. This is a nice property as load balancing and work dispatching
are usually complex tasks due to the dynamic nature of work.5

In competitive or-parallelism, the problem of work scheduling differs from
classical or-parallelism due to the use of explicit parallelism. The system can
also know the number of computational units that are available in the sup-
porting architecture, but the user has explicit control over the process of work
dispatching. This explicit control can lead to more complex load balancing prob-
lems, as the number of running workers (threads) can easily exceed the number of
available computational units (processors or cores). Our current implementation
delegates load balancing to the operating-system thread scheduler. However, we
can explicitly control the number of running threads using parametric objects
with a parameter for the maximum number of running threads. This is a simple
programming solution, used in most of the Logtalk multi-threading examples.

In classical or-parallelism, another major problem for scheduling is the pres-
ence of pruning operators like the cut predicate. When a cut predicate is exe-
cuted, all alternatives to the right of the cut are pruned, therefore never being
executed in a sequential system. However, in a parallel system, the work cor-
responding to these alternatives can be picked for parallel execution before the
cut is executed, therefore resulting in wasted computational effort when pruning
takes place. This form of work is known as speculative work [14]. An advanced
scheduler must be able to reduce to a minimum the speculative computations
and at the same time maintain the granularity of the work scheduled for execu-
tion [15, 16].

In competitive or-parallelism, the concept of speculative work is part of its
operational semantics, not because of the cut’s semantics as the threaded/1

predicate is deterministic and opaque to cuts, but because of the way subgoals
in a competitive or-parallelism call are terminated once one of the subgoals
succeeds. In this case, the speculative work results from the computational effort
done by the unsuccessful or slower threads when pruning takes place. We can
view the threaded/1 predicate as an high-level green cut predicate that prunes
all the alternatives to the left and to the right of the successful subgoal. For now,
we have postponed working on an advanced, high-level scheduler.

3.4 Thread Results and Cancellation Issues

Logtalk multi-threading support uses message queues to collect thread results.
This allows execution to be suspended while waiting for a thread result to be
posted to a message queue, avoiding polling, which would hurt performance.

5 A number of different scheduling strategies have been proposed to efficiently deal
with this problem on classical or-parallelism; see e.g. [10–13].



Each thread posts its result to the message queue of the parent thread within the
context of which the competitive or-parallelism call is taking place. The results
posted by each thread are tagged with the identifiers of the remaining threads of
the competitive or-parallelism call. This allows the cancellation of the remaining
threads once a successful result (or an exception) is posted. In Logtalk, a tem-
plate with the thread tags and the original disjunction subgoals is constructed
when compiling a competitive or-parallelism call. The template thread tags are
instantiated at run-time using the identifiers of the threads created when exe-
cuting the competitive or-parallelism call. The first successful thread unifies its
result with the corresponding disjunction goal in the template, thus retrieving
any variable bindings resulting from proving the competitive or-parallelism call.6

The effectiveness of competitive or-parallelism relies on the ability to cancel
the slower threads once a winning thread completes (or throws an exception),
as they would no longer be performing useful work. But canceling a thread may
not be possible and, when possible, may not be as fast as desired if a thread is in
a state where no interrupts are accepted. In the worst case scenario, some slower
threads may run up to completion. Canceling a thread is tricky in most low-level
multi-threading APIs, including POSIX threads. Thread cancellation usually
implies clean-up operations, such as deallocating memory, releasing mutexes,
flushing and possibly closing of opened streams.

In Prolog, thread cancellation must occur only at safe points of the underlying
virtual machine. In the case of the ISO Prolog multi-threading standardization
proposal, the specified safe points are blocking operations such as reading a term
from a stream, waiting for a message to be posted to a message queue, or thread
sleeping. These blocking operations allow interrupt vectors to be checked and
signals, such as thread cancellation, to be processed. Therefore, the frequency of
blocking operations determines how fast a thread can be canceled. Fortunately,
to these minimal set of cancellation safe points, the compilers currently imple-
menting the proposal often add a few more, e.g., whenever a predicate enters its
call port in the traditional box model of Prolog execution. In practical terms this
means that, although tricky in its low-level implementation details, it is possible
to cancel a thread whenever necessary. The standardization proposal specifies a
predicate, thread signal/2, that allows signaling a thread to execute a goal as
an interrupt. Logtalk uses this predicate for thread cancellation. Some current
implementations of this predicate fail to protect the processing of a signal from
interruption by other signals. Without a solution for suspending further signals
while processing an interrupt, there is the danger in corner cases of leaving dan-
gling, zombie threads when canceling a thread whose goal recursively creates
other threads. This problem is expected to be solved in the short term.

3.5 Side-Effects and Dynamic Predicates

The subgoals in a competitive or-parallelism call may have side-effects that may
clash if not accounted for. Two common examples are input/output operations

6 For actual implementation details and programming examples, the reader is invited
to consult the sources of the Logtalk compiler, which are freely available online [17].



and asserting and retracting clauses for dynamic predicates. To prevent conflicts,
Logtalk and the Prolog compilers implementing the ISO Prolog multi-threading
standardization proposal allow predicates to be declared synchronized, thread
shared (the default), or thread local. Synchronized predicates are internally pro-
tected by a mutex, thus allowing for easy thread synchronization. Thread private
dynamic predicates may be used to implement thread local dynamic state.

In Logtalk, predicates with side-effects can be declared as synchronized by
using the synchronized/1 directive. Calls to synchronized predicates are pro-
tected by a mutex, thus allowing for easy thread synchronization. For example:

:- synchronized(db_update/1). % ensure thread synchronization

db_update(Update) :- ... % predicate with side-effects

A dynamic predicate, however, cannot be declared as synchronized. In order to
ensure atomic updates of a dynamic predicate, we need to declare as synchronized
the predicate performing the update.

The standardization proposal specifies that, by default, dynamic predicates
are shared by all threads. Thus, any thread may call and may assert and retract
clauses for the dynamic predicate. The Prolog compilers that implement the
standardization proposal allow dynamic predicates to be instead declared thread
local.7 Thread-local dynamic predicates are intended for maintaining thread-
specific state or intermediate results of a computation. A thread local predicate
directive tells the system that the predicate may be modified using the built-in
assert and retract predicates during execution of the program but, unlike normal
shared dynamic data, each thread has its own clause list for the predicate (this
clause list is empty when a thread starts). Any existing predicate clauses are
automatically reclaimed by the system when the thread terminates.

4 Experimental Results

We chose the generalized water jug problem to provide the reader with some
experimental results for competitive or-parallelism. In this problem, two water
jugs with p and q capacities are used to measure a certain amount of water. A
third jug is used as an accumulator. When p and q are relatively prime, it is
possible to measure any amount of water between 1 and p + q [18]. This is a
classical state-space search problem, which we can try to solve using blind or
heuristic search methods. In this experiment, we used competitive or-parallelism
(COP) to simultaneously explore depth-first (DF), breadth-first (BF), and hill-
climbing (HC) search strategies. Depending on the values of p and q, the required
number of steps to measure a given amount of water can range from two steps
(in trivial cases) to several dozens of steps.8 Moreover, the number of potential
nodes to explore can range from a few nodes to hundreds of thousands of nodes.

7 Due to syntactic differences between these Prolog compilers, directives for specifying
both thread local and thread shared dynamic predicates are not yet specified in the
standardization proposal.

8 There is an upper bound to the number of steps necessary for measuring a certain
amount of water [19]. In this simple experiment we ignored this upper bound.



Our experimental setup used Logtalk 2.33.0 with SWI-Prolog 5.6.59 64 bits
as the back-end compiler on an Intel-based computer with four cores and 8 GB
of RAM running Fedora Core 8 64 bits.9 Table 1 shows the running times, in
seconds, when 5-liter and 9-liter jugs were used to measure from 1 to 14 liters of
water. It allows us to compare the running times of single-threaded DF, HC, and
BF search strategies with the COP multi-threaded call where one thread is used
for each individual search strategy. The results show the average of thirty runs.
We highlight the fastest method for each measure. The last column shows the
number of steps of the solution found by the competitive or-parallelism call. The
maximum solution length was set to 14 steps for all strategies. The time taken
to solve the problem ranges from 0.000907 to 8.324970 seconds. Hill climbing is
the fastest search method in six of the experiments. Breadth-first comes next as
the fastest search method in five experiments. Depth-first search is the fastest
search method only in three experiments. Repeating these experiments with
other capacities for the water jugs yields similar results.

Table 1. Measuring from 1 to 14 liters with 5-liter and 9-liter jugs.

Liters DF HC BF COP Overhead Steps

1 26.373951 0.020089 0.007044 0.011005 0.003961 5
2 26.596118 12.907172 8.036822 8.324970 0.288148 11
3 20.522287 0.000788 1.412355 0.009158 0.008370 9
4 20.081001 0.000241 0.001437 0.002624 0.002383 3
5 0.000040 0.000240 0.000484 0.000907 0.000867 2
6 3.020864 0.216004 0.064097 0.098883 0.034786 7
7 3.048878 0.001188 68.249278 0.008507 0.007319 13
8 2.176739 0.000598 0.127328 0.007720 0.007122 7
9 2.096855 0.000142 0.000255 0.003799 0.003657 2
10 0.000067 0.009916 0.004774 0.001326 0.001295 4
11 0.346695 5.139203 0.587316 0.404988 0.058293 9
12 14.647219 0.002118 10.987607 0.010785 0.008667 14
13 0.880068 0.019464 0.014308 0.029652 0.015344 5
14 0.240348 0.003415 0.002391 0.010367 0.007976 4

These results show that the use of competitive or-parallelism allows us to quickly
find a sequence of steps of acceptable length to solve different configurations of
the water jug problem. Moreover, given that we do not know a priori which
search method will be the fastest for a specific measuring problem, competitive
or-parallelism is a better solution than any of the individual search methods.

The overhead of the competitive or-parallelism calls is due to the implicit
thread and memory management, plus low-level Prolog synchronization tasks.

The asynchronous nature of thread cancellation implies a delay between the
successful termination of a thread and the cancellation of the other competing
threads. Moreover, the current Logtalk implementation only returns the result
of a competitive or-parallelism call after all spawned threads are terminated.

9 The experiments can be easily reproduced by the reader by running the query
logtalk load(mtbatch(loader)), mtbatch(swi)::run(search, 30).



An alternative implementation where cancelled threads are detached in order to
avoid waiting for them to terminate and being joined proved tricky and unreliable
due to the reuse of thread identifiers by the back-end Prolog compilers.

The initial thread data area sizes and the amount of memory that must
be reclaimed when a thread terminates can play a significant role on observed
overheads, depending on the Prolog compiler memory model and on the host
operating system. Memory allocation and release is a possible contention point
at the operating-system level, as testified by past and current work on optimized,
multi-threading aware memory allocators. (see e.g. [20]).

Low-level SWI-Prolog synchronization tasks also contribute to the observed
overheads. In the current SWI-Prolog version, dynamic predicates are mutex
locked even when they are declared thread local (in this case collisions occur
when accessing the shared data structures used by SWI-Prolog to find and up-
date local predicate definitions). Logtalk uses dynamic predicates to represent
the method lookup caches associated with dynamic binding. While in previous
versions the lookup caches are thread shared, the current Logtalk release uses
thread local lookup caches. This change had a small impact on performance in
Linux but provided a noticeable performance boost on MacOS X. Table 2 shows
the results for the dynamic predicate used for the main lookup cache when run-
ning the query mtbatch(swi)::run(search, 20) in both Linux and MacOS.

Table 2. Mutex locks and collisions.

Linux MacOS X

Locks Collisions Locks Collisions

Thread shared 1022796427 3470000 907725567 17045455
Thread local 512935818 846213 458574690 814574

Thus, by simply making the lookup caches thread local, we reduced the number
of collisions by 75% in Linux and 94% in MacOS X. Although different hardware
is used in each case, is worth noting that, with a thread shared lookup cache, the
number of collisions in MacOS X is five times the number of collisions in Linux.
This is in accordance with our experience with other multi-threading tests where
the Linux implementation of POSIX threads consistently outperforms that of
MacOS X (and also the emulation of POSIX threads in Windows).

We are optimizing our implementation in order to minimize the thread man-
agement overhead. There is also room for further optimizations on the Prolog
implementations of core multi-threading support. Nevertheless, even with the
current implementations, our experimental results are promising.

5 The Role of Tabling

In complex problems, such as the ones discussed in the previous section, some of
the competing threads, even if not successful, may generate intermediate results
useful to other threads. Thus, dynamic programming in general, and tabling [21,
22] in particular, is expected to play an important role in effective problem
solving when using competitive or-parallelism.



In multi-threading Prolog systems supporting tabling, tables may be either
private or shared between threads. In the latter case, a table may be shared once
completed or two or more threads may collaborate in filling it. For applications
using competitive or-parallelism, the most interesting uses of tabling will likely
require the use of shared tables.

While thread-private tables are relatively easy to implement, all other cases
imply sharing a dynamic data structure between threads, with all the associated
issues of locking, synchronization, and potential deadlock cases. Thus, despite
the availability of both threads and tabling in Prolog compilers such as XSB,
Yap, and recently Ciao [23], the implementation of these two features such that
they work together seamlessly implies complex ties to one another and to the un-
derlying Prolog virtual machine. Nevertheless, promising results are described in
a recent PhD thesis [24] and currently implemented in XSB [25]. In the current
Yap version, tabling and threads are incompatible features; users must chose
one or the other when building Yap. Work is planned to make Yap threads
and tabling compatible. Ciao features a higher-level implementation of tabling
when compared with XSB and Yap, which requires minimal modifications to
the compiler and the abstract machine. This tabling support, however, is not
yet available in the current Ciao stable release [26]. It will be interesting to see if
this higher-level implementation makes the use of tabled predicates and thread-
shared tables easier to implement in a multi-threading environment. These Pro-
log implementations are expected to eventually provide robust integration of
these two key features. Together with the expected increase on the number of
cores per processor, we can foresee a programming environment that provides
all the building blocks for taking full advantage of competitive or-parallelism.

6 Potential Application Areas

Competitive or-parallelism support is useful when we have several algorithms to
perform some computation and we do not know a priori which algorithm will
be successful or will provide the best performance. This pattern is common to
several classes of problems in different application areas. Problems where optimal
solutions are sought may also be targeted when optimality conditions or quality
thresholds can be incorporated in the individual algorithms.10

Interesting applications usually involve solving problems whose computa-
tional complexity implies using heuristic approaches with suboptimal solutions.
In these cases, each thread in a competitive or-parallelism call can tackle a dif-
ferent starting point, or apply a different heuristic, in order to find a solution
that, even if not optimal, is considered good enough for practical purposes.

A good example are biclustering applications (see e.g [27, 28]), which pro-
vide multiple opportunities for applying speculative threading approaches, such
as competitive or-parallelism. Most instances of the biclustering problem are

10 The cost or quality of the solutions being constructed by each algorithm may also
be shared between threads.



NP-hard. As such, most algorithmic approaches presented to date are heuris-
tic and thus not guaranteed to find optimal solutions [27]. Common application
areas include biological data analysis, information retrieval and text mining,
collaborative filtering, recommendation systems, target marketing and database
research. Given the complexity of the biclustering problem, the most promising
algorithmic approaches are greedy iterative search and distribution parameter

identification [27]. Both are amenable to speculative threading formulations.
Greedy iterative search methods are characterized by aggressively looking

for a solution by making locally optimal choices, hoping to quickly converge to
a globally good solution [29]. These methods may make wrong decisions and
miss good biclusters when trapped in suboptimal solutions. Finding a solution
satisfying a quality threshold often implies several runs using different starting
points and possibly different greedy search strategies. Therefore, we may spec-
ulatively try the same or several greedy algorithms, with the same or different
starting points, hopefully leading to different solutions satisfying a given quality
threshold. In this case, the returned solution will be the first solution found that
satisfies the quality metric and not necessarily the best solution. Note that this is
a characteristic of greedy search, irrespective of the use of speculative threading.

Distribution parameter identification approaches assume that biclusters were
generated from an underlying statistical model. Models are assumed to be defined
by a fixed statistical distribution, whose set of parameters may be inferred from
data. Different learning algorithms can be used to identify the parameters more
likely to have generated the data [30]. This may be accomplished by iteratively
minimizing a certain criterion. In this context, we can speculatively try different
algorithms to infer the statistical model given the same initialization parameters,
try different initialization parameters for the same distribution (using the same
or different algorithms), or even assume different statistical models.

With the increasing availability of powerful multi-core systems, the parallel
use of both greedy search and distribution parameter identification in bicluster-
ing applications is a promising alternative to current biclustering algorithms. In
this context, high-level concepts, such as competitive or-parallelism, can play an
important role in making speculative threading applications common place.

7 Conclusions and Future Work

We presented the logic programming concept of thread-based competitive or-
parallelism, resulting from combining key ideas of competitive or-parallelism,
committed-choice nondeterminism, speculative threading, and declarative pro-
gramming. This concept is fully supported by an implementation in Logtalk, an
open-source object-oriented logic programing language. We provided a descrip-
tion of our implementation and discussed its semantic properties, complemented
with a discussion on thread cancellation and computational performance issues.
This concept is orthogonal to the object-oriented features of Logtalk and can
be implemented in plain Prolog and in non-declarative programming languages
supporting the necessary threading primitives.



Competitive and classical or-parallelism target different classes of problems.
Both forms of or-parallelism can be useful in non-trivial problems and can be
supported in the same programming language. Competitive or-parallelism pro-
vides fine-grained, explicit control at the goal level of the tasks that should be
executed in parallel, while classical parallel systems make use of implicit paral-
lelism with possible parallelization hints at the predicate level.

For small problems, the benefits of competitive or-parallelism may not out-
weigh its inherent overhead. For computationally hard problems, this overhead is
expected to be negligible. Interesting problems are characterized by the existence
of several algorithms and heuristics, operating in a large search-space. In this
context, we discussed potential applications where competitive or-parallelism
can be a useful tool for problem solving.

Meaningful experimental results, following from the application of compet-
itive or-parallelism to real-world problems, require hardware that is becoming
common place. Consumer and server-level computers containing from two to six-
teen cores, running mainstream operating-systems, are readily available. Each
processor generation is expected to increase the number of cores, broadening the
class of problems that can be handled using speculative threading in general,
and competitive or-parallelism in particular.

Most research on speculative threading focus on low-level support, such as
processor architectures and compiler support for automatic parallelization. In
contrast, competitive or-parallelism is a high-level concept, targeted to program-
mers of high-level languages. In the case of Logtalk, thread-based competitive
or-parallelism is supported by a single and simple to use built-in meta-predicate.

We found that core Prolog support for multi-threading programming provides
all the necessary support for implementing Logtalk parallelism features. From
a pragmatic perspective, this is an important result as (i) it leads to a simple,
high-level implementation of both competitive or-parallelism and independent
and-parallelism [31] that translates to only a few hundred lines of Prolog source
code; (ii) it ensures wide portability of our implementation (the programmer can
choose between SWI-Prolog, XSB, or Yap as the back-end compiler for exploring
Logtalk multi-threading features on POSIX and Windows operating-systems).

Ongoing work focuses on improving and expanding the Logtalk support
for multi-threading programming. In particular, we are fine-tuning the Logtalk
implementation and working closely with the Prolog developers in the spec-
ification and implementation of the ISO standardization proposal for Prolog
multi-threading programming. Major goals are minimizing the implicit over-
head of thread management and testing our implementation for robustness in
corner cases such as exhaustion of virtual memory address space in 32 bits sys-
tems. Future work will include exploring the role of tabling in competitive or-
parallelism, implementing a load-balancing mechanism, and applying competi-
tive or-parallelism to field problems.
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P., Puebla, G.: (Ciao Prolog System Manual) Available from
http://clip.dia.fi.upm.es/Software/Ciao.

27. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis:
a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics
1 (2004) 24–45

28. Mechelen, I.V., Bock, H.H., Boeck, P.D.: Two-mode clustering methods: a struc-
tured overview. Statistical Methods in Medical Research 13 (2004) 979–981

29. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
2nd edn. The MIT Electrical Engineering and Computer Science Series. The MIT
Press (2001)

30. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Data Mining, Inference and Prediction. Springer Series in Statistics (2001)

31. Moura, P., Crocker, P., Nunes, P.: High-Level Multi-threading Programming in
Logtalk. In: International Symposium on Practical Aspects of Declarative Lan-
guages. Volume 4902 of LNCS., Springer-Verlag (2008) 265–281

32. Moura, P., Rocha, R., Madeira, S.C.: Thread-Based Competitive Or-Parallelism.
In: International Conference on Logic Programming. LNCS, Springer-Verlag (2008)
To appear.


