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Abstract. Confocal fluorescence microscopy has become an important
tool in biological and medical sciences for imaging thin specimen, even
living ones. Due to out-of-focus blurring and noise the acquired im-
ages are degraded and thus it is necessary to restore them. One of the
most popular methods is an iterative Richardson-Lucy algorithm with
total variation regularization. This algorithm while improving the image
quality is converging slowly whereas with a constantly increasing amount
of image data fast methods are required. In this paper, we present an
accelerated version of the algorithm and investigate the achieved speed
up. The acceleration method is based on a vector extrapolation tech-
nique and avoids a computational intensive evaluation of the underlying
cost function. To evaluate the acceleration two synthetic test images are
used. The accelerated algorithm reaches an acceptable result within 30%
to 40% less computational time.

1 Introduction

1.1 Image formation model

Confocal fluorescence microscopy images suffer from both blurring and Poisson
noise. The images are blurred due to the optical aperture and the physical
resolution of light itself. This blurring is described by a convolution with a
point spread function (PSF) [1]. In this paper, the PSF is noted as h and we
assume that it is known. In addition, since confocal microscopy is a low-photon
imaging technique the acquired images are degraded by Poisson noise φ(.). Thus
a suitable image formation model, where i is the observed image, o the original
image and ⊗ represents the convolution operator is given by:

i = φ(o⊗ h) (1)

The likelihood of an original image o for a recorded image i is given by the
following equation due to the Poisson process describing the low-photon imaging
nature of the confocal fluorescence microscopy. In this distribution, it is assumed
that the noise is statistically uncorrelated.

P (i|o) =
∏

x∈Ω

[(o⊗ h)(x)]i(x)
e−(o⊗h)(x)

i(x)!
(2)
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1.2 Deblurring methods

Maximizing the probability P (i|o) with respect to o using a multiplicative gra-
dient-based algorithm (expectation-maximization) leads to the Richardson-Lucy
(RL) algorithm [2], [3]:

ok+1(x) =
{[

i(x)
(ok ⊗ h)(x)

]
⊗ h(−x)

}
ok(x) (3)

The RL algorithm improves the image quality first but after several iterations
noise is amplified and the algorithm does not converge. In order to overcome
this problem a priori knowledge P (o) about the image is added and the a pos-
teriori distribution P (o|i) = P (i|o)P (o) is then maximized (MAP). The a priori
model is included by adding a regularization term and in the last decade sev-
eral regularization terms have been introduced. In [4] a Total Variation (TV)
regularization suppresses noise amplification by smoothing the image while at
the same time preserving the edges. Introduced in [5], TV was used to denoise
images. A TV regularized multiplicative RL algorithm (RLTV) with λ being the
regularization parameter and ∇ being the gradient is given by:

ok+1(x) =
{[

i(x)
(ok ⊗ h)(x)

]
⊗ h(−x)

}
ok(x)

1− λ∇ ∇ok(x)
|∇ok(x)|

(4)

1.3 Acceleration of RL algorithm

In [6], an adaptive accelerated Richardson-Lucy method is presented. The main
objective of this work is the acceleration of the convergence speed of the stan-
dard multiplicative RL algorithm presented in (3) by adding an exponent to the
multiplicative correction ratio. This exponenet is computed adaptively by using
the deblurred images from previous iteration steps. Since there is no regular-
ization in this method, noise amplification is a problem. Supervising the root
mean square error (RMSE) shows a considerable noise amplification after few
iterations. Thus, the authors suggest stopping the algorithm at the minimum
RMSE. In case of noise-free images, it is shown that the new accelerated methods
is able to obtain better results regarding the RMSE after less iterations.

2 Materials and methods

2.1 Acceleration of RLTV

In order to accelerate the multiplicative RLTV (accRLTV) algorithm (4), we
use a method introduced by Biggs and Andrews [7]. This acceleration method
is based on vector extrapolation and does not require an evaluation of the cost
function. In general, the method can be applied to various techniques as long
as the basic iterative algorithm contains a known independent functional ψ that
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can be used to calculate the next iteration step (5). The multiplicative RLTV
fulfills this requirement.

ok+1 = ψ (ok) (5)

In the original algorithm the current iteration ok is used in the functional
ψ in order to get the next iteration ok+1. In the accelerated version, a virtual
point gk is calculated and this point is used in the functional ψ to determine
the next iteration ok+1 = ψ (gk). In order to determine the virtual point gk,
the direction dk = ok − ok−1 being the difference between the current and the
previous iteration is used. In addition, an acceleration parameter αk is needed
to weight the direction dk when calculating the virtual point gk:

gk = ok + αk · dk (6)

In the used method, αk is estimated by using the results of previous iteration
steps. A more accurate solution could be obtained by a line search but this
is no option because of the computational effort. In order to estimate αk, the
differences lk between the virtual point gk−1 and the respectively next iteration
ok are used lk = ok − gk−1. These differences describe the actual changes made
by the functional ψ. αk is then calculated using following formula where ¯
denotes an element-wise multipication and

∑
sums all elements in the data.

αk =
∑

Ω (lk−1 ¯ lk−2)∑
Ω (lk−1 ¯ lk−1)

(7)

In addition, each α has to fulfill the condition 0 ≤ α ≤ 1 and is modified
after the estimation accordingly in case this condition is not fulfilled. Figure 1
shows graphically how the acceleration influences the calculation. It can be seen
that instead of the original step size much larger changes can be achieved in each
iteration step by using the virtual points.

2.2 Numerical stability

The values in the fluorescence images are positive or zero since they represent a
photon count. The RLTV (4), however, is not well defined for zero values and
thus a modified version of the TV regularization is applied [8]. Additionally, the
values used for λ are restricted in order to avoid negative or zero values in the
denominator and we thus use 0.002 as suggested in [4].

Fig. 1. Illustration of acceleration
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Fig. 2. left to right: original image, blurred and noisy image, RLTV, accRLTV

2.3 Quality of the results

To quantify the quality of the restored images, it is usual to use the I-divergence
(IDiv) being equivalent to the likelihood distribution of the Poisson noise (2).
IDiv compares the recorded image i with the reblurred reconstructed image o⊗h.
Since the original image õ is known for our synthetic test images, we use the mean
square error (MSE) to compare õ with the reconstructed image o as well.

IdivA,B =
∑

x∈Ω

{
A(x)ln(

A(x)
B(x)

)− (A(x)−B(x))
}

(8)

3 Results

For our evaluation, we use two synthetic test images (3D) sized 100× 100× 60
voxels and 200× 200× 50 voxels. The images are blurred with a Gaussian PSF
of size 9×9×9 voxels with a variance of 1.8 voxel size and corrupted by Poisson
noise. One slice of each test image together with their degraded versions are
shown in figure (2). Furthermore, the results of the deblurring for the RLTV
and accRLTV are displayed.

In average, one iteration of the accRLTV algorithm takes 5% longer than
the RLTV (Average time for one iteration image 1: RLTV 1.38 seconds and

Fig. 3. a) MSE b) IDiv
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Table 1. Amount of iterations to deblur the images

RLTV(1) accRLTV(1) RLTV(2) accRLTV(2) RLTV(3) accRLTV(3)

first test image 29 18 31 21 30 19

second test image 25 15 25 14 26 16

accRLTV 1.45 seconds with a 2.6 GHz Quad Core CPU). Each test image was
degraded three times and restored with both the RLTV and the accRLTV. The
deblurring is stopped when a certain MSE is reached and the amount of necessary
iterations is shown in Table 1. The progress of both the MSE and the IDiv are
shown in Figure 3 for one test image.

4 Discussion

In Figure 2, it can be seen that the result images of both algorithms are nearly
identical. Since the differences in the computational time for both algorithms are
quite small the computational time can be neglected in the further evaluation.
For the first test image the desired MSE is reached by the accRLTV within 30%
less iterations compared with the RLTV. In case of the second test image the
improvement is even higher: it takes 40% less iterations to reach the specified
MSE for the accRLTV. The progress of the MSE and Idiv in figure 3 shows
graphically that the accRLTV reconstructs the image faster than the original
algorithm. In summary, the accRLTV produces acceptable results and requires
considerably less computational time than the RLTV.
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