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Abstract. Carefully studied in-situ hybridization Gene expression pat-
terns (GEP) can provide a first glance at possible relationships among
genes. Automatic comparative analysis tools are an indispensable re-
quirement to manage the constantly growing amount of such GEP im-
ages. We present here an automated processing pipeline for Segmenting,
Classification, and Clustering large-scale sets of Drosophila melanogaster
GEP images that facilitates automatic GEP analysis.

1 Introduction

With the advent of large-scale automated whole-mount in-situ hybridization
(ISH), the boom in high throughput techniques has also seized modern devel-
opmental biology [1, 2, 3, 4]. The spatio-temporal expression patterns of genes
often provide rapid direct insight in the potential functional roles of novel or
poorly studied genes and allows at least a first glance at possible relationships
among genes. This can be exploited to develop new diagnostic methods. Where
single genetic markers are not sufficient to distinguish healthy tissue from a
diseased phenotype, combinations of genes can enhance diagnostic strength [5].
Microscopy and comparative analysis of images is therefore becoming an impor-
tant tool to study the spatio-temporal distribution of multiple gene products.
For Drosophila, gene expression patterns for all (about 13,500) genes across a set
of developmental stages are being generated systematically, leading to the accu-
mulation of a wealth of high dimensional data with complex encoding. Bioinfor-
matics currently helps with data management, storage, access, and integration
(e.g. BDGP [6, 4, 7, 8] and FlyBase [9]), but could also assist in data process-
ing, data analysis and provide an observation tool for researchers in the field.
Such an attempt has been made by Fly Express [10]. With 57,083 images map-
ping the expression patterns of 3,366 genes (April 30, 2008), it is currently the
largest database that computes and holds standardized images. It offers the
Basic Expression Search Tool, BEST, [11], to retrieve genes with expression pat-
ters similar to a given query pattern. An alternative and more robust set of
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algorithms was proposed by Peng et al. [12, 13]. Here, we describe a processing
pipeline for automatic segmentation, classification and clustering of ISH images,
which is based on the representation of expression patterns by means of Bessel
eigenfunctions. This spectral representation facilitates a faster and easier pat-
tern classification once the coefficients are calculated. We apply our approach
to a subset of 681 genes for which images are available in Fly Express for all 6
developmental stages.

2 Materials and methods

As previously explained in our recent publication [14] the elaborated processing
pipeline include six basic steps. The preprocessing (i) consists of a shading cor-
rection and a contrast optimization method resulting in a ”‘clean image”’. The
shape segmentation (ii) is executed on the clean image by computing the mag-
nitude of the gradient followed by a fragmentation of the gradient feature space
with the Gaussian Mixture Model [15, 16] instead of using a static threshold.
The result is a probability map describing the probability for the membership
to one of the classes (background, embryo). After filtering with a total variation
filter, a smoothed mask is obtained with an unpredictable count of holes in it,
because some areas in the embryo have feature values similar to the background.
We close the holes and obtain the binary Segmentation Result. Gradient vector
field snakes are used in case of several touching embryos, to isolate the embryo
(iii) [17, 18]. The binary images are rigidly registered onto an ellipse prior to the
snake segmentation, to allow an automatic placement of the initial contour.

The registration (iv) of the extracted embryo outline onto an ellipse is a
necessary step to align the shapes and hence the patterns consequently. This is
done in two steps: first, we apply a rigid registration [19] and second, a nonlinear
registration onto the ellipse [20, 21]. The found transformations onto an ellipse,
computed from the registration of the embryo outlines, are then applied to the
masked embryo images to obtain the expression pattern mapped onto an ellipse.
Due to the fact that the orthonormal system that we have chosen for the pattern
representation is defined on a circle, the ellipse is finally stretched to circular
shape.

The GEP extraction (v) step has been modified from the GMM method
described in [14] to a HSV color space transformation. The pattern is extracted
by taking the color intensity information from the V-channel and setting all
values smaller than 20 percent to zero (denoising).

Finally the pattern classification (vi) step can be computed on the extracted
GEP sets. Thereby the patterns P(r, φ) are described by a set of Fourier coeffi-
cients:

P(r, φ) =
∞∑

j=1

∞∑

k=0

aj,k ψj,k(r, φ) (1)

As basis, the eigenfunctions of the Laplace operator on a circle of radius `,

ψj,k(r, φ) = Nj,k eikφJk

(
rjk,j

`

)
, (2)
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are used, where ` is the radius of the circle, Jk(z) are the k-th Bessel function,
jk,j is the j zero of the k-th Bessel function and Nj,k is a normalization factor.

3 Results

The gradient based GMM shape segmentation (ii) produces a reliable and ac-
curate separation of the embryos on the border of the focal plane. About 30
percent of the examined images contain several touching embryos. In this case
additional knowledge about the expected shape must be included to obtain the
mask of a single embryo. This is accomplished by using the active contour ap-
proach (iii). The subsequently application of the rigid and nonlinear registration
steps (iv) minimizes the distortions produced by the nonlinear registration. The
pattern extraction step (v) using the HSV color space transformation is a simple
but effective method. In cases of different staining colors or very dark (black)
staining regions the HSV extraction method provides robust results.

The reason for choosing the Bessel base functions for the pattern represen-
tation is that they form a complete orthonormal system. Our empirical studies
and reflections about the possible complexity of the GEP shows that every pat-
tern can be adequately expressed by a set of 420 eigenfunctions (k ∈ [0, . . . , 20],
j ∈ [1, . . . , 20]). Fig. 1 summarizes the processing pipeline using the example of
one image showing several coherent embryos.

(d) (e) (f)

(g) (h) (i)

Fig. 1. Illustration of the process flow steps. (a) original image showing several co-
herent embryos. (b) preprocessing and shape segmentation result (c) isolation of the
embryo by snake segmentation (d) registration to circular shape (e) GEP extraction
(f) reconstructed GEP from the 420 Fourier coefficients.
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Fig. 2. Hierarchical clustering on a set of 8 images that demonstrates that images
representing the same genes (CG5690, rg, knrl) in the same developmental stage (Stage
5) are correctly grouped together.

4 Discussion

Naturally, the pictures of Drosophila embryos are much simpler in structure
than many other ISH data, which show expression patterns superimposed on
complex morphologies (such as mouse or zebrafish embryos). However, the ex-
amined images show a lot of difficulties such as blurred contours, background
shading, coherent partial embryos, and different staining colors. Our approach is
capable of dealing with such complications and achieve a considerable reduction
of the data amount needed to represent the patterns. The Euclidean distance
in the truncated 420 dimensional space of Fourier coefficients can be used for
hierarchical clustering. This allows a classification of expression patterns. As
an example, Fig. 2 shows that similar expression patterns, in this case different
image representing the same gene, are indeed clustered together. Larger data
sets of images show a similar agreement with the visual expectation (data not
shown). In particular, images showing the same gene in the same developmental
stage are most often grouped together.

In practical applications, the orientation of the embryo with respect to the
two axis of symmetry of the ellipse is important. At present, the correct orien-
tation is not generated automatically. Unless annotated in the initial image, all
four orientations are included in the clustering and in the end an expert control
[6] is inevitable.
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