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Abstract. This paper presents a method to facilitate performance com-
parisons between different spectrogram track detection algorithms tested
upon different data sets. There is no standard test database which is
carefully tailored to test the different aspects of such algorithms and real
data is often proprietary in nature. This naturally hinders the ability to
perform comparisons between a developing algorithm and those which
exist in the literature using the same test database. The method pre-
sented in this paper will allow researchers to present, in a graphical way,
information regarding the data on which they test their algorithm while
not disclosing proprietary information.

1 Introduction

Acoustic data received via passive sonar systems is conventionally transformed
from the time domain into the frequency domain using the Fast Fourier Trans-
form. This allows for the construction of a spectrogram image, in which time
and frequency are the axes and intensity is representative of the power received
at a particular time and frequency. It follows from this that, if a source which
emits narrowband energy is present during some consecutive time frames a track,
or line, will be present within the spectrogram. The problem of detecting these
tracks is an ongoing area of research with contributions from a variety of back-
grounds ranging from statistical modelling [1] to image processing [2–4]. This
research area forms a critical stage in the detection and classification of sources
in passive sonar systems and the analysis of vibration data. Applications are
wide and include identifying and tracking marine mammals via their calls [5,
6], identifying ships, torpedoes or submarines via the noise radiated by their
mechanics [7, 8], distinguishing underwater events such as ice cracking [9] and
earth quakes [10] from different types of source, meteor detection and speech
formant tracking [11]. The field of research is hindered by a lack of a publicly
available spectrogram datasets and, therefore, the ability to compare results
from different solutions. A majority of real world datasets used for this research
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contain proprietary data and therefore it is impossible to publish results and
descriptions of the data. When synthetic spectrograms are used, there is a large
variation between authors of the type of data which are tested upon. Also, be-
tween applications, there is a large variation in the appearance of tracks which
an algorithm is expected to detect. For example, a whale song is very different to
a Doppler shifted tonal emitted from an engine. It is therefore unclear whether
an algorithm which is developed for use in one application will be successful in
another. It is the aim of this paper to address these issues by enabling authors to
quantitatively compare algorithm performance without publishing actual data.

The Spectrogram Complexity Measure (SCM) presented in this paper allows
the visual representation of the complexity of a data set without publishing the
specific nature of the data. This is achieved through two means, forming a mea-
sure of spectrogram track detection complexity, and, forming a distribution plot
which allows an author to denote which spectrograms are within the detection
ability of an algorithm. This allows researchers to determine and publish in which
ranges their algorithm is successful and which it fails. Using this measure in pub-
lications will also allow, as close as possible, comparisons with other methods,
something which is lacking in this field. As with any classification/detection sce-
nario, ground truth data is needed to form a training/testing phase. In this area
the ground truth data is commonly in the form of a list of coordinate locations
where track pixels are located or a binary image. We propose to use this data in
conjunction with the spectrogram images to calculate the proposed measures.

The complexity measures proposed are Signal-to-Noise ratio (SNR) and track
shape. SNR is a complicating factor in all detection strategies; as SNR lowers,
class overlaps become more prominent and the classification task more com-
plicated. Track shape is another important factor, as a track’s shape becomes
more irregular more sophisticated detection mechanisms are required. Statisti-
cally representing a track’s evolution in hidden Markov models becomes more
complex [1] and image analysis techniques and search strategies require greater
degrees of freedom [12].

This paper is structured as follows: in Section 2 the metrics and measures are
presented, along with a method to convert binary map grounds truth data into
coordinate lists. In Section 3 example spectrogram images and their SCM scores
are presented along with an example distribution using the proposed measures.
Finally, in Section 4, we conclude this paper.

2 Method

In this section we present track and spectrogram complexity metrics and combine
them to form a two-dimensional distribution. Prior to presenting the metrics we
propose a simple algorithm to convert ground truth binary images into ordered
lists of (x, y) coordinates depicting the track location in a spectrogram.
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Fig. 1. Ground truth binary map, 1 (black) depicts signal locations and 0 (white) noise
locations.

2.1 Ground Truth Conversion

An example of a ground truth binary map is presented in Fig. 1. If no ordered
list of (x, y) coordinates depicting track locations is available the information
needs to be extracted from the binary map prior to calculating the proposed
metrics. The modified region grow algorithm presented in Alg. 1 can be used
to achieve this. It is assumed that only the centre (strongest) frequency bin for
each track is marked and therefore that one frequency bin (for each track) is
marked in each time frame.

Initially the algorithm detects a seed point for each track by scanning through
the ground truth from top to bottom and left to right. Once a seed point has
been found its coordinates are stored as the current point and the track’s next
point is searched for. The next row of the ground truth is extracted and if this
contains a track point with a distance less than g from the current point, i.e.
the track has not ended, its coordinates are added to the track list. The current
point is updated to the new point’s coordinates and the process is repeated for
each row in the ground truth until the track’s end is reached.

The distance threshold g prevents the end of a traced track being linked to
other tracks in the data. Algorithm 1 has the limitation that it does not account
for crossing tracks. If such a condition is needed a hidden Markov model with a
state space which accounts for track gradient can be implemented [1].

2.2 Spectrogram Complexity Measure (SCM)

It is assumed that a linear vertical track is much easier to detect than a linear
track with unknown gradient which are, in turn, both more simple to detect than
a curvilinear or irregular tracks. Also, independent to this, a set of high SNR
tracks are much easier to detect than a set of low SNR tracks. Thus, we have the
following factors which complicate the detection of tracks within a spectrogram
image:

– Signal-to-Noise Ratio (SNR)

– Complexity of tracks

- Gradient

- Curvature



Algorithm 1 Convert a binary map into a coordinate list
Input: G, ground truth binary map.
Output: T , an ordered list of coordinates representing each track’s locations.
1: c← 0
2: T ← ∅
3: for m = 1 to height of G do {scan for seed point}
4: for n = 1 to width of G do

5: if Gn,m is a track point then {start grouping track}
6: cp ← [n, m]
7: p← m + 1
8: R ← [G1,p, G2,p, . . . , Gn,p]
9: Find track point np = [x, p] in R which is closest to cp

10: while (np 6= ∅) ∧ (|np − cp| < g) ∧ (p < height of G) do

11: Push np onto Tc

12: cp← np

13: p← p + 1
14: R← [G1,p, G2,p, . . . , Gn,p]
15: Find track point np = [x, p] in G which is closest to cp

16: end while

17: Set pixels in G contained in Tc to 0
18: c← c + 1
19: end if

20: end for

21: end for

22: return T

As above, these factors are naturally grouped into two subsets of conditions; SNR
related complexity and track shape related complexity. This separation allows
for the construction of a two-dimensional plot on which each axis represents
one of these factors; the y-axis SNR and the x-axis track complexity. Such a
construction is shown in Fig. 2.

We reverse the SNR axis to reflect the increasing difficulty as SNR decreases,
in this manner the hardest detection problems (e.g. curvilinear and irregular
tracks in low SNR spectrograms) are located in the top right and the easiest
(e.g. linear, vertical tracks in high SNR spectrograms) at the bottom left of the
distribution and variations are captured between these extremes.

Signal-to-Noise Ratio Complexity After applying Alg. 1 we have an enu-
merated set of coordinate pairs T , through (1), containing the locations of tracks
in a spectrogram S.

T =

C
⋃

c=1

Tc (1)

An additional set H can be defined which contains all the coordinate pairs
possible in S and therefore N = H\T , contains the noise pixel locations. The
average intensity value of S at the track locations, P̄t, and noise locations, P̄n
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Fig. 2. Intended classification boundaries of the proposed distribution.

can then be calculated through (2) and (3).

P̄t =
1

|T |

∑

t∈T

St1,t2 (2)

P̄n =
1

|N |

∑

n∈N

Sn1,n2
(3)

Allowing the SNR of S, in terms of decibels, to be calculated (4). Which forms
the y-axis of our plot in Fig. 2.

SNR = 10 log10

(

P̄t

P̄n

)

(4)

Track Complexity The second metric is also calculated upon the set, T , de-
rived with Alg. 1 and is formed to measure the detection complexity of each
track within a spectrogram.

As outlined, we propose that the complicating factors in track detection are
the track’s gradient and shape. The averaged absolute values of a tracks’ first and
second derivatives will form measures of these properties and can be discretely
approximated [13] by (5) and (6) (respectively).

δTc

δy
≈

1

|Tc|

|Tc|−1
∑

y=1

|Tc,y − Tc,(y+1)| (5)

δ2Tc

δy2
≈

1

|Tc|

|Tc|−1
∑

y=2

|Tc,(y−1) − 2Tc,y + Tc,(y+1)| (6)

where |Tc| is the cardinality of track c and Tc,y is the yth point on track c.
Therefore, the gradient measure will be 0 for a linear vertical track and positive
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Fig. 3. Examples of spectrograms with varying complexities, giving measure values of:
top - 1st derivative = 0 and 2nd derivative = 0, middle - 1st derivative = 0.121 and 2nd

derivative = 0.241, and, bottom - 1st derivative = 0.299 and 2nd derivative = 0.593.

for a linear sloped track. Whilst the shape measure will be 0 for linear vertical
and sloped tracks and positive for a curvilinear and irregular tracks.

The average track measurement within a spectrogram (7) gives a metric
which represents a spectrogram’s track complexity.

TC =
1

C

C
∑

c=1

[

δTc

δy
+

δ2Tc

δy2

]

(7)

where C is the number of tracks and Tc is the cth track present in a spectrogram.
When these measures are used in conjunction with the distribution plot pre-

sented in Fig. 2 (with axes representing the SNR and TC), they allow us to
visually represent the complexity distribution of a set of spectrograms. With
this it is now possible to perform comparisons between algorithms through the
comparison of the range of points on the distribution which are within its de-
tection capabilities. Importantly, in the absence of a standard test database and
without disclosing sensitive datasets, it is possible without testing algorithms
on the same dataset. Including this diagram within publications will allow re-
searchers to make quick judgements on whether a newly developed algorithm has
superior performance and in which areas this occurs. It will also aid researchers
in tailoring their test dataset to sufficiently scrutinise an algorithm.

3 Results

Three spectrogram images of varying complexity are presented in Fig. 3. The
complexities of these spectrograms, according to the presented metrics, are; top -
SNR = 3.23 dB & TC = 0, middle - SNR = 2.31dB & TC = 0.362 and bottom -
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Fig. 4. A SCM distribution, an example of a distribution obtained by applying the
proposed measures on a synthetic set of spectrogram images.

SNR = 6.24 dB & TC = 0.892 (for readability sake the SNRs in the plot are not
representative of these figures). The track complexity of the template presented
in Fig. 1 is TC = 0.805, lower than the third spectrogram as it contains a section
of straight sloped track. Figure 4 demonstrates the SCM plot, this example is
determined using 2096 synthetic spectrograms. The complexity measurements
taken from the spectrograms in Fig. 3 are included (from top to bottom) as
diamond, square and circular points. The vertical clustering is due to the data
set containing spectrograms with similar track shapes but different SNRs.

Of the three spectrograms, the first contains the easiest track complexity to
detect, linear vertical tracks. This is reflected in the measure and, therefore, the
distribution plot - the point is located in the far left of the track complexity axis.
However, the SNR of this spectrogram is low and therefore the point is located
near the top in the SNR axis. The second has a medium track complexity as
it exhibits an increase in frequency (linear sloped track) and a similar SNR
to the first therefore it is located in a similar area but further to the right in
the track complexity axis. And finally, the third represents a more complicated
curvilinear track which exhibits high curvature and, therefore, its position in the
track complexity axis is towards the far right. Its SNR is relatively high and in
this axis it is located below the centre. As desired, the differences of these track
shapes are reflected in the proposed measures and distribution plot.

4 Conclusions

In this paper we have presented a novel technique to allow the publication of
results which have been derived from sensitive data. It allows for the compari-
son of algorithms’ detection results which have been determined using different
datasets and which may exhibit different complexities. Authors are able to in-



dicate whether an algorithm which is developed for a specific application will
be successful in another. We have achieved this by devising a plot and metrics
which express track detection complexity in terms of SNR and track shape.

We have presented some example spectrograms and their complexities ac-
cording to our metrics and have included these on a distribution plot derived
from a sample data set of synthetic spectrograms with varying track appear-
ances and SNRs. It has been shown that the measures successfully separate the
differing complexities of each of the spectrograms and that this is reflected in
the distribution plot. It is our hope that authors adopt this method to allow the
comparison of algorithms without disclosing sensitive datasets and without the
availability of a public dataset.

Nota bene we have presented measures which determine the difficulty of de-
tecting features contained within a spectrogram image, as such, these measures
are independent of the FFT resolution used to derive the spectrogram.
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