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Summary. This paper investigates the suitability of recently developed models based on the phys-
ical field phenomena for classification problems with incomplete datasets. An original approach
to exploiting incomplete training data with missing features and labels, involving extensive use
of electrostatic charge analogy, has been proposed. Classification of incomplete patterns has been
investigated using a local dimensionality reduction technique, which aims at exploiting all available
information rather than trying to estimate the missing values. The performance of all proposed
methods has been tested on a number of benchmark datasets for a wide range of missing data sce-
narios and compared to the performance of some standard techniques. Several modifications of the
original electrostatic field classifier aiming at improving speed and robustness in higher dimensional
spaces are also discussed.

1 Introduction

Physics of information has recently emerged as a popular theme. The research on quantum
computing and the concept of ‘it from bit’ [16] have motivated researchers to exploit physical
models for design of learning machines.
One example of such learning model is the Information Theoretic Learning framework de-

rived in [9]. The framework enables online manipulation of entropy and mutual information
by employing the concept of Information Potential and Forces. Using higher order statis-
tics of the probability density functions, the common ‘Gaussianity’ assumption has been
lifted, resulting in efficient methods for problems like Blind Source Separation [6], nonlinear
dimensionality reduction [14] or training of MLPs without error backpropagation [9].
Another example are the Coulomb classifiers described in [7] which form a family of

models based on analogy to a system of charged conductors, trained by minimizing the
Coulomb energy. The classifiers are in fact Support Vector Machines but the physical analogy
leads to novel types of them, comparable or even superior to standard SVMs.
The dynamic physical field analogy forms a basis of a universal machine learning frame-

work derived in [12]. The Electrostatic Field Classifier is a model of particular interest. By
exploiting a direct analogy with the electrostatic field, the approach treats all data samples
as particles able to interact with each other. EFC has proven to be a robust solution [11]
featuring relatively high level of diversity, which made it suitable for classifier fusion.
The missing data problem is typical for many research areas. There are many reasons

why data might be missing and many ways of dealing with it. For probabilistic models the
Expectation Maximization algorithm [3] is the commonly used approach, which allows to
obtain maximum likelihood estimates of model parameters (e.g. learn the parameters of
mixture models). Maximum likelihood based training neural networks has been described
in [15], where Radial Basis Networks are used to obtain a closed-form solution instead of
expensive integration over the unknown data. The missing data problem has been mainly
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treated in the statistics literature. The ideas and various types of missingness introduced in
[10] are still in use today and the multiple imputation method is considered as state of the
art alongside the EM algorithm [13].
A different approach not requiring imputation of missing values based on hyperbox fuzzy

sets has been presented in [5]. The architecture of the General Fuzzy Min-Max Neural
Networks naturally supports incomplete datasets, exploiting all available information in
order to reduce a number of viable alternatives before making the classification decision.
The GFMM networks are also able to quantify the uncertainty caused by missing data.
All physically inspired models mentioned above have been designed to handle complete

data patterns only. This paper describes an extension of EFC to support incomplete data
as well as some other improvements of it.
This document is structured as follows. Section 2 contains a description of data field

models which are the subject of this paper. Section 3 has been devoted to the missing data
problem, giving a brief overview of the issue, describing some traditional approaches to
missingness and a data field model approach used in experiments. The experimental results
have been given in section 4, while the conclusions can be found in section 5.

2 Data field model classifiers

2.1 Gravity Field Classifier (GFC)

The simplest, attractive field model has been based on the gravity field [12]. The model treats
all data patterns as charged particles and assumes a static field with all sources (training
patterns) fixed to their initial positions.
Denoting by X a set of n training samples and by Y a set of N test samples the potential

generated by the field source xi in the point yj is given by:

Vij = −csi
1

rij
(1)

where c is the field constant, si is the source charge and rij is some distance measure between
xi and yj . For simplicity and for the sake of conformity with the physical model, Euclidean
distance has been chosen.
The superposition of individual contributions of all training samples defines the field in

any particular point of the input space:

Vj = −c
n∑

i=1

si

rij
(2)

and the overall potential energy in point yj is then given by:

Uj = sjVj = −csj
n∑

i=1

si

rij
(3)

Assuming that all samples have the same, unit charge, si and sj can be dropped from the
equations and the force exerted on yj by the field (negative gradient of Uj) can be calculated
as:

Fj = −c
n∑

i=1

yj − xi
r3ij

(4)

The training dataset uniquely identifies the field, which implies that no training is re-
quired and all calculations are performed during classification. The potential results in a
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force able to move an unlabelled test sample to finally meet one of the fixed field sources
and share its label. Only force directions are followed, taking a small, fixed step d at a time
(which makes the field constant c irrelevant). This allows to avoid problems in the vicinity
of field sources, as rij → 0 implies Fj →∞. The field is then recalculated and the procedure
repeats until all testing samples approach one of the sources at a distance equal to or lower
than d and are labelled accordingly. Due to the fact that d is fixed in all dimensions, the
data should be rescaled to fit within the 0 − 1 range. The lower bound of the distance is
also set to d, to avoid division by zero and overshooting the sources. Note, that all possible
trajectories end up in one of the field sources, the space is thus divided into distinct regions
representing classes.

2.2 Electrostatic Field Classifier (EFC)

During classification the GFC does not take advantage of training data labels until the
very end of the procedure. This information is thus wasted. The way to exploit it is to
use the electrostatic field analogy, by introducing a repelling force into the model, so that
samples from the same class would attract each other, while samples from different classes
– repel. Since class label of a test sample is not known, it cannot directly interact with the
field. To facilitate this interaction, each testing sample must be decomposed into a number
of subsamples belonging to one of the target classes. This can be achieved by using some
density estimator (e.g. Parzen window). In order not to introduce additional parameters,
those partial memberships can be assigned in proportion to the GFC potential of all classes
in the test point.
Denoting by L the vector of labels of the field sources and by V kj the potential generated

by kth of C classes in point yj , the partial membership pjk of the sample yj in the k
th class

is given by:

pjk =

∣
∣V kj

∣
∣

∑C
i=1

∣
∣V ij
∣
∣

(5)

while the overall potential in point yj can be calculated as:

Vj =

n∑

i=1

(∑
k 6=Li

pjk − pjLi
rij

)

=

n∑

i=1

1− 2pjLi
rij

(6)

The resultant force calculation formula then becomes:

Fj =

n∑

i=1

[

(1− 2pjLi)
yj − xi
r3ij

]

(7)

Note however, if there are more than two classes, repelling force may dominate the field,
as it would come from multiple classes, while the attracting force would come from only
one. According to [12], to restore the balance between repelling and attracting forces it is
sufficient to satisfy the following condition:

N∑

j=1

Vj =

N∑

j=1

n∑

i=1

1− qpjLi
rij

= 0 (8)

by estimating a value of the regularization coefficient q. This coefficient controls the balance
between the total amount of attracting and repelling force in the field but as discussed in
the following section, the condition given above may in fact not be sufficient. This can result
in some test samples being repelled by the field, which would prevent the algorithm from
converging.
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The classification process follows the same rules as in the case of gravity field model. As
expected, classification performance and generalisation properties are better than in the case
of the simpler model due to improved class separation and smoother decision boundaries
[12].

2.3 Improvements of the Electrostatic Field Classifier

In some applications the EFC tends to suffer from a number of issues:
• Excess of repelling force. The regularization coefficient q satisfying Eq. 8 is often too

small to restore the force balance and the algorithm diverges. The formula also makes the
field landscape dependant on the test data, thus a new way to estimate q was needed. An
artificial test set is generated by placing samples in the corners of the field (Fig. 1(a)) and the
value of q is estimated so that forces in all test locations point into the field. If the training
dataset is representative, this ensures that no test sample will escape during classification.
The coefficient can then be stored and reused for other test sets.
• Distance concentration. When the number of dimensions grows roughly above 5 or

6, EFC tends to diverge or produce a very high classification error. This behavior can
be explained by the properties of Euclidean distance, which is a natural choice for 2 or 3
dimensional spaces but looses its discriminative power as the number of dimensions grows [1].
Under a broad set of conditions the mean value of the Euclidean distance distribution grows
with dimensionality, while the variance remains approximately constant, which results in the
ratio of distances to the nearest and farthest neighbour tending to 1 [4]. This ‘concentration’
issue is usually slower for norms of lower order and thus by relaxing the Lp−norm assumption
that p ≥ 1, a family of concentration resistant similarity measures called ‘fractional distances’
has been derived in [1] and incorporated into EFC to ensure robustness in high dimensional
spaces.
Some other improvements regarding adaptive simulation step size manipulation and label

assigning procedure have also been included in the current implementation of EFC.

3 Handling incomplete data

3.1 The missing data problem

The missing data problem is typical for many research areas. The reason of missingness has
important implications, thus data can be divided into [10]:
• Missing Completely At Random (MCAR), if the probability that the particular feature

is missing is not related to the missing value or to the values of any other features. The best
kind of missingness one can hope for [8].
• Missing At Random (MAR), if the probability that the particular feature is missing

is not related to its own value but is related to the values of other features. There is no way
to test if MAR holds but usually false assumption of MAR may have only minor influence
on the result [13].
• Missing Not At Random (MNAR), if the probability that some feature is missing is

a function of this feature value. The missingness should be somehow modelled in this case
but the model for missingness is rarely known, which makes the whole procedure a difficult
and application specific task [8].
EFC is a purely data-driven approach, thus the type of missingness does not directly

influence its operation, although it can influence the results. This dependency is however
not investigated here and MCAR data was assumed.
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3.2 Basic approaches to missingness

There exist some basic approaches to the missing data problem, based on editing. In statis-
tical inference, usefulness of most of them is limited to a number of specific cases [8, 13] but
their performance within the data field framework is in some cases quite reasonable. The
techniques are:
• Casewise deletion, which simply excludes incomplete data samples from further analy-

sis. If their number is relatively small, this technique performs surprisingly well. This method
has been extensively used in the experiments in section 4 as a base for performance com-
parison with other methods.
• Pairwise deletion, which also ignores missing data but instead of dropping incomplete

samples the approach uses only the features which are present. A similar method forms a
basis of the data field specific approach to classification of incomplete patterns, as described
in the following subsection.
• Mean substitution, which replaces all missing features with appropriate mean values.

Although commonly criticized in the literature [8, 13], as shown in section 4, in many cases
class conditional mean imputation turns out to perform very well in conjunction with the
data field model specific approach.

3.3 EFC approach to missingness

Various modifications were required to facilitate handling of deficient data within the EFC
framework. The modifications include distance calculation, force calculation and label as-
signment routines and are discussed below.
• Classification of incomplete data. To exploit all available information, EFC acts on the

incomplete test sample working only in available dimensions – the feature space dimension-
ality is locally reduced. As a result, distance and force calculations take place in the reduced
feature space and the test sample is only able to move within it (Fig. 1(b)). The pattern
can also no longer simply share the class of the nearest source as it might lead to ambiguity.
Instead, a soft, probability-like output is produced, proportional to the class conditional
density for the current position of the test sample in the reduced feature space.
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Fig. 1. Representation and classification of incomplete test patterns

• Learning from incomplete data. The missing feature scenario can be addressed by
reintroducing the charge concept – if the charge is allowed to vary between field sources,
the incomplete training patterns can be exploited by an intelligent charge redistribution
mechanism. The algorithm starts with assigning a unit charge to all training samples. It then
examines each incomplete sample in turn and redistributes its charge among all complete
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patterns from the same class in proportion to their distance. Thus the closer the complete
sample is, the more charge it receives. After all incomplete patterns are processed they are
dropped and the remaining samples become field sources. The missing labels scenario has
been addressed in 2 different ways: by treating unlabelled samples as gravity field sources
(GFC fallback) or by redistributing the charge among all complete field sources regardless
of their class.

4 Experimental results

The experiments include evaluation of classification error for various levels of missing data
on a number of benchmark datasets from the UCI Machine Learning Repository [2]. All
recognition rates given have been averaged over 10 runs with randomly removed features
and labels (MCAR). The results for the following scenarios are provided: (1) deficient test
data, (2) deficient training data, (3) deficient both types of data with missing labels and (4)
deficient both types of data with labels given.

Table 1. Iris dataset results for scenarios (1), (2) and (3)

deficiency type/level3 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(1) local dim reduction 95.5 94.7 94.4 93.8 91.6 89.4 88.4 84.0 83.8 82.4 77.5
(1) mean imputation 95.5 92.8 90.2 85.2 80.5 76.9 71.3 67.5 61.1 55.8 50.4

(2) charge redistribution 95.4 95.7 94.8 94.7 95.0 94.6 92.6 89.1 87.0 85.0 85.2
(2) mean imputation 95.4 95.3 95.1 94.7 94.5 95.4 94.0 93.5 93.0 92.0 92.3
(2) casewise deletion 95.4 95.3 93.9 91.8 90.7 90.6 86.2 78.1 74.8 72.5 75.6

(3) best methods4 95.1 94.2 93.7 92.3 90.9 86.9 85.9 82.4 80.9 71.1 73.5
(3) casewise deletion 95.1 93.5 93.0 89.7 85.8 80.8 72.8 69.5 73.2 69.3 71.2
3
0 for complete and 1 for maximally incomplete data (one feature left for each object)

4
combination of best performing methods from previous experiments

Table 2. Wine dataset results for scenarios (1), (2) and (3)

deficiency type/level 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(1) local dim reduction 96.9 95.2 94.8 93.8 91.9 90.3 88.1 84.4 79.2 72.9 71.4
(1) mean imputation 96.9 93.1 89.6 84.5 78.9 75.9 70.5 66.0 57.5 53.6 51.8

(2) charge redistribution 96.4 94.8 92.7 86.1 83.3 82.1 82.8 80.6 82.1 83.2 81.5
(2) mean imputation 96.4 96.3 96.7 96.9 96.1 96.1 96.1 96.1 96.4 94.4 92.7
(2) casewise deletion 96.4 87.9 72.3 62.9 72.0 72.9 73.3 70.8 74.9 73.6 76.4

(3) best methods 96.5 94.7 94.1 91.8 91.5 87.8 83.6 78.6 67.9 60.8 58.0
(3) casewise deletion 96.5 86.5 69.0 66.6 70.1 68.8 68.1 65.7 59.9 57.7 56.8

The results have been given in Tables 1 – 4. As it can be seen for all datasets, local
dimensionality reduction significantly outperforms mean imputation in the incomplete test
data scenario (1). The advantage margin steadily grows up to more than 27 percentage
points (Table 1), as the deficiency level increases.
The situation changes in favor of mean imputation, when the training dataset has missing

features (2). The performance of the method is always the best and in some cases (Table 1
and 2) does not drop almost at all even at the highest deficiency level. This phenomenon
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Table 3. Ionosphere dataset results for scenarios (1), (2) and (3)

deficiency type/level 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(1) local dim reduction 85.2 86.5 86.3 86.5 86.1 86.7 87.6 86.7 85.9 84.0 80.7
(1) mean imputation 85.2 84.5 82.0 78.3 75.7 72.6 69.3 68.1 66.6 65.4 64.9

(2) charge redistribution 85.6 71.4 60.9 58.7 61.8 62.6 62.7 63.1 61.6 62.6 60.7
(2) mean imputation 85.6 86.6 86.6 86.2 86.5 86.8 86.8 85.7 84.4 82.2 71.5
(2) casewise deletion 85.6 71.6 58.5 55.4 57.9 57.1 59.6 57.5 59.2 57.2 57.4

(3) best methods 85.8 85.5 86.3 85.4 84.5 84.3 81.2 77.1 72.3 62.7 58.6
(3) casewise deletion 85.8 72.3 56.9 57.1 55.9 55.8 56.8 57.1 56.9 55.7 56.3

Table 4. Segment dataset results for scenarios (1), (2) and (3)

deficiency type/level 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(1) local dim reduction 92.0 91.5 90.9 90.3 88.4 87.8 84.8 79.9 72.0 59.6 43.4
(1) mean imputation 92.0 86.4 80.2 72.5 64.2 56.3 48.5 40.8 33.4 25.3 18.5

(2) charge redistribution 92.3 87.5 70.6 62.7 65.7 64.2 63.5 62.4 63.3 63.0 59.6
(2) mean imputation 92.3 91.8 90.9 89.9 88.8 88.3 87.5 87.0 85.3 83.6 75.4
(2) casewise deletion 92.3 81.5 52.3 52.4 57.0 55.5 58.3 54.5 56.3 57.6 55.6

(3) best methods 91.9 90.5 87.8 85.4 82.2 78.2 72.8 65.8 56.9 44.5 34.8
(3) casewise deletion 91.9 78.4 51.3 54.2 53.1 55.2 51.4 47.3 44.7 39.6 31.5

must be however credited to good class separation of the Iris and Wine datasets, rather than
to the EFC model.
In the most difficult scenario (3) the proposed model always outperforms simple casewise

deletion, although at high deficiency level the performance margin is rather modest. Note
however, that the performance drop of the former is much smoother (for casewise deletion the
lowest recognition rate can be reached at 0.2 deficiency already) and even at the maximum
deficiency level allowed by the model, it is still better than random guessing.
The results for scenario (4) have been depicted in Fig. 2. Notice the superiority of class

conditional mean imputation and local dimensionality reduction combination and its smooth
performance decay. For Iris and Wine datasets, the latter method is almost entirely respon-
sible for the performance drop, as discussed before.

5 Conclusions

The underlying physical model of EFC appears well suited for incorporation of various miss-
ing data handling routines. The approaches investigated in this paper, although criticized
in the statistical literature, perform quite reasonably in conjunction with a non-parametric,
physical field model. The performance of those methods appears not as problem dependant
as one would expect – mean imputation, which intuitively should perform well only for
certain types of datasets with well separated classes, is the best method for dealing with
deficient training data in most experiments. There also emerges a pattern of what approach
is most likely to produce the best results with a particular type of data missing: (1) local
dimensionality reduction for incomplete test data, (2) class conditional mean imputation
for training data with missing features and (3) charge redistribution for missing labels. A
combination of above methods provides good recognition rates even for the most difficult
scenarios, for both low and moderate deficiency levels. A peculiarity of the model is its
limited sensitivity to removal of unlabelled training data – casewise deletion often performs
only slightly worse than charge redistribution.
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(a) Iris dataset
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(b) Wine dataset
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(c) Ionosphere dataset
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(d) Segment dataset

Fig. 2. Classification performance for deficient test and training data
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