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Abstract

We prove a general result demonstrating the power of Lagrangian relaxation in solving
constrained maximization problems with arbitrary objective functions. This yields a unified
approach for solving a wide class of subset selection problems with linear constraints. Given a
problem in this class and some small ε ∈ (0, 1), we show that if there exists a ρ-approximation
algorithm for the Lagrangian relaxation of the problem, for some ρ ∈ (0, 1), then our technique
achieves a ratio of ρ

ρ+1
−ε to the optimal, and this ratio is tight.

The number of calls to the ρ-approximation algorithm, used by our algorithms, is linear
in the input size and in log(1/ε) for inputs with cardinality constraint, and polynomial in the
input size and in log(1/ε) for inputs with arbitrary linear constraint. Using the technique
we obtain approximation algorithms for natural variants of classic subset selection problems,
including real-time scheduling, the maximum generalized assignment problem (GAP) and max-
imum weight independent set.

1 Introduction

Lagrangian relaxation is a fundamental technique in combinatorial optimization. It has been
used extensively in the design of approximation algorithms for a variety of problems (see e.g.,
[12, 11, 18, 16, 17, 4] and a comprehensive survey in [19]). In this paper we prove a general result
demonstrating the power of Lagrangian relaxation in solving constrained maximization problems
of the following form. Given a universe U , a weight function w : U → R

+, a function f : U → N

and an integer L ≥ 1, we want to solve

Π : maxs∈U f(s) (1)

subject to: w(s) ≤ L.

We solve Π by finding efficient solution for the Lagrangian relaxation of Π, given by

Π(λ) : max
s∈U

f(s) − λ · w(s), (2)

for some λ ≥ 0.
A traditional approach for using Lagrangian relaxation in approximation algorithms (see, e.g.,

[11, 16, 4]) is based on initially finding two solutions, SOL1, SOL2, for Π(λ1),Π(λ2), respec-
tively, for some λ1, λ2, such that each of the solutions is an approximation for the corresponding
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Lagrangian relaxation; while one of these solutions is feasible for Π (i.e., satisfies the weight con-
straint), the other is not. A main challenge is then to find a way to combine SOL1 and SOL2 to
a feasible solution which yields approximation for Π. We prove (in Theorem 1) a general result,
which allows to obtain a solution for Π based on one of the solutions only, namely, we show that
with appropriate selection of the parameters λ1, λ2 in the Lagrangian relaxation we can obtain
solutions SOL1, SOL2 such that one of them can be used to derive efficient approximation for our
original problem Π. The resulting technique leads to fast and simple approximation algorithms
for a wide class of subset selection problems with linear constraints.

1.1 Subset Selection Problems

Subset selection problems form a large class encompassing such NP-hard problems as real-time
scheduling, the generalized assignment problem (GAP) and maximum weight independent set,
among others. In these problems, a subset of elements satisfying certain properties needs to be
selected out of a universe, so as to maximize some objective function. (We give a formal definition
in Section 3.) We apply our general technique to obtain efficient approximate solutions for the
following natural variants of some classic subset selection problems.

Budgeted Real Time Scheduling (BRS): Given is a set of activities, A = {A1, . . . , Am},
where each activity consists of a set of instances; an instance I ∈ Ai is defined by a half open
time interval [s(I), e(I)) in which the instance can be scheduled (s(I) is the start time, and e(I)
is the end time), some cost c(I) ∈ N, and a profit p(I) ∈ N. A schedule is feasible if it contains at
most one instance of each activity, and for any t ≥ 0, at most one instance is scheduled at time
t. The goal is to find a feasible schedule, in which the total cost of all the scheduled instances is
bounded by a given budget L ∈ N, and the total profit of the scheduled instances is maximized.
Budgeted continuous real-time scheduling (BCRS) is a variant of this problem where each instance
is associated with a time window I = [s(I), e(I)) and length `(I). An instance I can be scheduled
at any time interval [τ, τ + `(I)), such that s(I) ≤ τ ≤ e(I) − `(I)). BRS and BCRS arise in
many scenarios in which we need to schedule activities subject to resource constraints, e.g., storage
requirements for the outputs of the activities.

Budgeted Generalized Assignment Problem (BGAP): Given is a set of bins with (possibly
different) capacity constraints, and a set of items that have possibly different size, value and
deduced cost for each bin; also, given is a budget L ≥ 0. The goal is to pack a maximum valued
subset of items into the bins subject to the capacity constraints, such that the total cost of the
selected items is at most L. BGAP arises in many real-life scenarios, such as inventory planning
with delivery costs.

Budgeted Maximum Weight Independent Set (BWIS): Given is a budget L and a graph
G = (V,E), where each vertex v ∈ V has an associated profit pv (or, weight) and associated cost
cv, choose a subset V ′ ⊆ V such that V ′ is an independent set (for any e = (v, u) ∈ E, v /∈ V ′ or
u /∈ V ′), the total cost of vertices in V ′, given by

∑

v∈V ′ cv , is bounded by L, and the total profit
of V ′,

∑

v∈V ′ pv, is maximized. BWIS is a generalization of the classical maximum independent
set (IS) and maximum weight independent set (WIS) problems.

1.2 Contribution

We prove (in Theorem 1) a general result demonstrating the power of Lagrangian relaxation in
solving constrained maximization problems with arbitrary objective functions.

We use this result to develop a unified approach for solving subset selection problems with
linear constraint. Specifically, given a problem in this class and some small ε ∈ (0, 1), we show
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that if there exists a ρ-approximation algorithm for the Lagrangian relaxation of the problem, for
some ρ ∈ (0, 1), then our technique achieves a ratio of ρ

ρ+1 −ε to the optimal. In the Appendix we
give an example for a subset selection problem Γ and show that, if there exists a ρ-approximation
algorithm for the Lagrangian relaxation of Γ, for some ρ ∈ (0, 1), then there exists an input I
for which finding the solutions SOL1 and SOL2 (for the Lagrangian relaxation) and combining
the solutions yields at most a ratio of ρ

ρ+1 to the optimal. This shows the tightness of our
bound, within additive of ε. The number of calls to the ρ-approximation algorithm, used by our
algorithms, is linear in the input size and in log(1/ε), for inputs with cardinality constraint (i.e.,
where w(s) = 1 for all s ∈ U), and polynomial in the input size and in log(1/ε) for inputs with
arbitrary linear constraint (i.e., arbitrary weights w(s) ≥ 0).

We apply the technique to obtain efficient approximations for natural variants of some classic
subset selection problems. In particular, for the budgeted variants of the real-time scheduling
problem we obtain (in Section 4.1 a bound of (1/3 − ε) for BRS and (1/4 − ε) for BCRS. For

budgeted GAP we give (in Section 4.2) an approximation ratio of 1−e−1

2−e−1 − ε.
For BWIS we show (in Section 4.3) how an approximation algorithm A for WIS can be used

to obtain an approximation algorithm for BWIS with the same asymptotic approximation ratio.
More specifically, let A be a polynomial time algorithm that finds in a graph G an independent set
whose profit is at least f(n) of the optimal, where (i) f(n) = o(1) and (ii) log(f(n)) is polynomial
in the input size.1 Our technique yields an approximation algorithm which runs in polynomial
time and achieves an approximation ratio of g(n) = Θ(f(n)). Moreover, limn→∞

g(n)
f(n) = 1. Since

BWIS generalizes WIS, this implies that the two problems are essentially equivalent in terms of
hardness of approximation.

Our technique can be applied iteratively to obtain a ( ρ
1+dρ

− ε)-approximation algorithm for
subset selection problems with d linear constraints, when there exists a ρ-approximation algorithm
for the non-constrained version of the problem, for some ρ ∈ (0, 1) (we give the details in the
Appendix).

It is important to note that the above results, which apply to maximization problems with
linear constraints, do not exploit the result in Theorem 1 in its full generality. We believe that
the theorem will find more uses, e.g., in deriving approximation algorithms for subset selection
problems with non-linear constraints.

1.3 Related Work

Most of the approximation techniques based on Lagrangian relaxation are tailored to handle
specific optimization problems. In solving the k-median problem through a relation to facility
location, Jain and Vazirani developed in [16] a general framework for using Lagrangian relaxation
to derive approximation algorithms (see also [11]). The framework, that is based on a primal-dual
approach, finds initially two approximate solutions SOL1, SOL2 for the Lagrangian relaxations
Π(λ1), Π(λ2) of a problem Π, for carefully selected values of λ1, λ2; a convex combination of
these solutions yields a (fractional) solution which uses the budget L. This solution is then
rounded to obtain an integral solution that is a good approximation for the original problem. Our
approximation technique (in Section 2) differs from the technique of [16] in two ways. First, it does
not require rounding a fractional solution: in fact, we do not attempt to combine the solutions
SOL1, SOL2, but rather, examine each separately and compare the two feasible solutions which
can be easily derived from SOL1, SOL2, using an efficient transformation of the non-feasible
solution, SOL2, to a feasible one. Secondly, the framework of [16] crucially depends on a primal-

1These two requirements hold for most approximation algorithm for the problem.
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dual interpretation of the approximation algorithm for the relaxed problem, which is not required
here.

Könemann et al. considered in [17] a technique for solving general partial cover problems.
The technique builds on the framework of [16], namely, an instance of a problem in this class is
solved by initially finding the two solutions SOL1, SOL2 and generating a solution SOL, which
combined these two solutions. For a comprehensive survey of other work see, e.g., [19].2

There has been some earlier work on using Lagrangian relaxation to solve subset selection
problems. The paper [20] considered a subclass of the class of subset selection problems that we
study here. Using the framework of [16], the paper claims to obtain an approximation ratio of ρ−ε
for any problem in this subclass,3 given a ρ-approximation algorithm for the Lagrangian relaxation
of the problem (which satisfies certain properties). Unfortunately, this approximation ratio was
shown to be incorrect [21]. Recently, Berget et al. considered in [4] the budgeted matching
problem and the budgeted matroid intersection problem. The paper gives the first polynomial
time approximation schemes for these problems. The schemes, which are based on Lagrangian
relaxation, merge the two obtained solutions using some strong combinatorial properties of the
problems.

The non-constrained variants of the subset selection problems that we study here are well
studied. For known results on real-time scheduling and related problems see, e.g., [2, 6, 3, 7].
Surveys of known results for the generalized assignment problem are given, e.g., in [5, 8, 9, 10].

Numerous approximation algorithms have been proposed and analyzed for the maximum
(weight) independent set problem. Alon at al. [1] showed that IS cannot be approximated within
factor n−ε in polynomial time, where n = |V | and ε > 0 is some constant, unless P = NP . The

best known approximation ratio of Ω( log2 n
n

) for WIS on general graphs is due to Halldórsson [14].
A survey of other known results for a IS and WIS can be found e.g., in [13, 15].

To the best of our knowledge, approximation algorithms for the budgeted variants of the above
problems are given here for the first time.

2 Lagrangian Relaxation Technique

Given a universe U , let f : U → N be some objective function, and let w : U → R
+ be a non-

negative weight function. Consider the problem Π of maximizing f subject to a budget constraint
L for w, as given in (1), and the Lagrangian relaxation of Π, as given in (2).

We assume that the value of an optimal solution s∗ for Π satisfies f(s∗) ≥ 1. For some ε′ > 0,
suppose that

λ2 ≤ λ1 ≤ λ2 + ε′. (3)

The heart of our approximation technique is the next result.
Theorem 1 For any ε > 0 and λ1, λ2 that satisfy (3) with ε′ = ε/L, let s1 = SOL1 and
s2 = SOL2 be ρ-approximate solutions for Π(λ1),Π(λ2), such that w(s1) ≤ L ≤ w(s2). Then for
any α ∈ [1 − ρ, 1], at least one of the following holds:

1. f(s1) ≥ αρf(s∗)

2. f(s2) > (1 − α − ε)f(s∗)w(s2)
L

.

2For conditions under which Lagrangian relaxation can be used to solve discrete/continuous optimization prob-
lems see e.g., [22].

3This subclass includes the real-time scheduling problem.
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Proof: Let Li = w(si), i = 1, 2, and L∗ = w(s∗). From (2) we have that

f(si) − ρf(s∗) ≥ λi(Li − ρL∗). (4)

Assume that, for some α ≥ 1 − ρ, f(s1) < αρf(s∗), then

(α − 1)ρf(s∗) > f(s1) − ρf(s∗) ≥ λ1(L1 − ρL∗) ≥ −ρλ1L
∗ ≥ −ρλ1L.

The second inequality follows from (4), the third inequality from the fact that λ1L1 ≥ 0, and the
last inequality holds due to the fact that L∗ ≤ L. Using (3), we have

(1 − α)f(s∗)

L
< λ1 < λ2 + ε′. (5)

Since ε′ = ε/L, we have that

f(s2) ≥ λ2(L2 − L∗) + ρf(s∗) > (
(1 − α)f(s∗)

L
− ε′)(L2 − L) + ρf(s∗)

≥ (1 − α)f(s∗)
L2

L
− ε′L2 ≥ (1 − α − ε′L)

L2

L
f(s∗) = (1 − α − ε)

L2

L
f(s∗)

The first inequality follows from (4), by taking i = 2, and the second inequality is due to (5) and
the fact that L∗ ≤ L. The third inequality holds since ρ ≥ 1 − α, and the last inequality follows
from the fact that f(s∗) ≥ 1. �

Theorem 1 asserts that at least one of the solutions s1, s2 is good in solving our original problem,
Π. If s1 is a good solution then we have an αρ-approximation for Π, otherwise we need to find
a way to convert s2 to a solution s′ such that w(s′) ≤ L and f(s′) is a good approximation for
Π. Such conversions are presented in Section 3 for a class of subset selection problems with linear
constraints. Next, we show how to find two solutions which satisfy the conditions of Theorem 1.

2.1 Finding the Solutions s1, s2

Suppose that we have an algorithm A which finds a ρ-approximation for Π(λ), for any λ ≥ 0.
Given an input I for Π, denote the solution which A returns for Π(λ) by A(λ), and assume that
it is sufficient to consider Π(λ) for λ ∈ (0, λmax), where λmax = λmax(I) and w(A(λmax)) ≤ L.

Note that if w(A(0)) ≤ L then A(0) is a ρ-approximation for Π; otherwise, there exist λ1, λ2 ∈
(0, λmax) such that λ1, λ2, and s1 = A(λ1), s2 = A(λ2) satisfy (3) and the conditions of Theorem
1, and λ1, λ2 can be easily found using binary search. Each iteration of the binary search requires
a single execution of A and reduces the size of the search range by half. Therefore, after R =
dlog(λmax) + log(L) + log(ε−1)e iterations, we have two solutions which satisfy the conditions of
the theorem.

Theorem 2 Given an algorithm A which outputs a ρ-approximation for Π(λ), and λmax, such
w(A(λmax)) ≤ L, a ρ-approximate solution or two solutions s1, s2 which satisfy the conditions of
Theorem 1 can be found by using binary search. This requires dlog(λmax) + log(L) + log(ε−1)e
executions of A.

We note that when A is a randomized approximation algorithm whose expected performance
ratio is ρ, a simple binary search may not output solutions that satisfy the conditions of Theorem
1. In this case, we repeat the executions of A for the same input and select the solution of maximal
value. For some pre-selected values β > 0 and δ > 0, we can guarantee that the probability that
any of the used solutions is not a (ρ−β)-approximation is bounded by δ. Thus, with appropriate
selection of the values of β and δ, we get a result similar to the result in Theorem 1. We discuss
this case in detail in the full version of the paper.
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3 Approximation Algorithms for Subset Selection Problems

In this section we develop an approximation technique for subset selection problems. We start
with some definitions and notation. Given a universe U , let X ⊆ 2U be a domain, and f : X → N

a set function. For a subset S ⊆ U , let w(S) =
∑

s∈S ws, where ws ≥ 0 is the weight of the
element s ∈ U .

Definition 3.1 The problem

Γ : maxS∈X f(S) subject to:

w(S) ≤ L (6)

is a subset selection problem with a linear constraint if X is a lower ideal, namely, if S ∈ X and
S′ ⊆ S then S′ ∈ X, and f is a linear non-decreasing set function4 with f(∅) = 0.

Note that subset selection problems with linear constraints are in the form of (1), and the
Lagrangian relaxation of any problem Γ in this class is Γ(λ) = maxS∈X f(S)−λw(S). Hence, the
results of Section 2 hold.

Thus, for example, BGAP can be formulated as the following subset selection problem with
linear constraint. The universe U consists of all pairs (i, j) of item 1 ≤ i ≤ n and bin 1 ≤ j ≤ m.
The domain X consists of all the subsets S of U , such that each item appears at most once (i.e.,
for any item 1 ≤ i ≤ n, |{(i′, j′) ∈ S : i′ = i}| ≤ 1), and the collection of items that appears with
a bin j, i.e., {i : (i, j) ∈ S} defines a feasible assignment of items to bin j. It is easy to see that
X is indeed a lower ideal. The function f is f(S) =

∑

(i,j)∈S fi,j, where fi,j is the profit from
the assignment of item i to bin j, and w(S) =

∑

(i,j)∈S wi,j where wi,j is the size of item i when
assigned to bin j.

The Lagrangian relaxation of BGAP is then maxS∈X f(S)− λw(S) = maxS∈X

∑

(i,j)∈S(fi,j −
λwi,j). The latter can be interpreted as the following instance of GAP: if fi,j −λwi,j ≥ 0 then set
fi,j − λwi,j to be the profit from assigning item i to bin j; otherwise, make item i infeasible for
bin j (set the size of item i to be greater than the capacity of bin j).

We now show how the Lagrangian relaxation technique described in Section 2 can be applied to
subset selection problems. Given a problem Γ in this class, suppose that A is a ρ-approximation
algorithm for Γ(λ), for some ρ ∈ (0, 1]. To find λ1, λ2 and SOL1, SOL2, the binary search of
Section 2.1 can be applied over the range [0, pmax], where

pmax = max
s∈U

f(s) (7)

is the maximum cost of any element in the universe U . To obtain the solutions S1, S2 which
correspond to λ1, λ2, the number of calls to A in the binary search is bounded by O(log( L·pmax

ε
)).

Given the solutions S1, S2 satisfying the conditions of Theorem 1, consider the case where, for
some α ∈ [1 − ρ, 1], property 2 (in the theorem) holds. Denote the value of an optimal solution
for Γ by OPT . Given a solution S2 such that

f(S2) ≥ (1 − α − ε)
w(S2)

L
· OPT, (8)

our goal is to find a solution S ′ such that w(S ′) ≤ L (i.e., S ′ is valid for Γ), and f(S ′) is an
approximation for OPT . We show below how S ′ can be obtained from S2. We first consider (in

4For simplicity, we assume throughout the discussion that f(·) is a linear function; however, all of the results in
this section hold also for the more general case where f(S) is a non-decreasing sub-modular set function, for any
S ∈ X.
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Section 3.1) instances with unit weights. We then describe (in Section 3.2) a scheme for general
weights. Finally, we give (in Section 3.3) a scheme which yields improved approximation ratio for
general instances, by applying enumeration.

3.1 Unit Weights

Consider first the special case where ws = 1 for any s ∈ U (i.e., w(S) = |S|; we refer to (6) in this
case as cardinality constraint).

Suppose that we have solutions S1, S2 which satisfy the conditions of Theorem 1, then by
taking α = 1

1+ρ
we get that either f(S1) ≥ ( ρ

1+ρ
− ε)OPT , or f(S2) ≥ ( ρ

1+ρ
− ε)w(S2)

L
OPT . If

the former holds then we have a ( ρ
1+ρ

− ε)-approximation for the optimum; otherwise, f(S2) ≥

( ρ
1+ρ

−ε)w(S2)
L

OPT . To obtain S ′, select the L elements in S2 with the highest profits.5 It follows

from (8) that f(S ′) ≥ (1 − α − ε) · OPT = ( ρ
1+ρ

− ε)OPT . Combining the above with the result
of Theorem 2, we get the following.
Theorem 3 Given a subset selection problem Γ with unit weights, an algorithm A which yields
a ρ-approximation for Γ(λ) and λmax, such w(A(λmax)) ≤ L, a ( ρ

ρ+1 − ε)-approximation for Γ

can be derived by using A and selecting among S1, S
′ the set with highest profit. The number of

calls for A is O(log(L·pmax

ε
)), where pmax is given in (7).

3.2 Arbitrary Weights

For general element weights, we may assume w.l.o.g. that for any s ∈ U , ws ≤ L. We partition
S2 to a collection of up to 2W (S2)

L
disjoint sets T1, T2, . . . such that w(Ti) ≤ L for all i ≥ 1. A

simple way to obtain such sets is by adding elements of S2 in arbitrary order to Ti as long as we
do not exceed the budget L. A slightly more efficient implementation has a running time that is
linear in the size of S2 (details omitted).

Lemma 4 Suppose that S2 satisfies (8) for some α ∈ [1 − ρ, 1], then there exists i ≥ 1 such that
f(Ti) ≥

1−α−ε
2 · OPT .

Proof: Clearly, f(T1)+ ... + f(TN ) = f(S2), where N ≤ 2w(S2)
L

is the number of disjoint sets. By

the pigeon hole principle there is 1 ≤ i ≤ N such that f(Ti) ≥ f(S2)
N

≥ L·f(S2)
2w(S2)

≥ 1−α−ε
2 · OPT .

�

Assuming we have solutions S1, S2 which satisfy the conditions of Theorem 1, by taking
α = 1

1+2ρ
we get that either f(S1) ≥ ( ρ

1+2ρ
− ε)OPT , or f(S2) ≥ ( 2ρ

1+2ρ
− ε)w(S2)

L
OPT and

can be converted to S ′ (by setting S ′ = Ti for Ti which maximizes f(Ti)), such that f(S ′) ≥
( ρ
1+2ρ

− ε)OPT , i.e., we get a ( ρ
1+2ρ

− ε)-approximation for Γ.
Combining the above with the result of Theorem 2, we get the following.

Theorem 5 Given a subset selection problem with a linear constraint Γ, an algorithm A which
yields a ρ-approximation for Γ(λ), and λmax, such w(A(λmax)) ≤ L, a ( ρ

2ρ+1 − ε)-approximation

for Γ can be obtained using A. The number of calls for A is O(log( L·pmax

ε
)), where pmax is given

in (7).

3.3 Improving the Bounds via Enumeration

In this section we present an algorithm which uses enumeration to obtain a new problem, for
which we apply our Lagrangian relaxation technique. This enables to improve the approximation

5When f is a submodular function, iteratively select the element s ∈ S2 which maximizes f(T ∪ {s}), where T

is the subset of elements chosen in the previous iterations.
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ratio in Section 3.2 to match the bound obtained for unit weight inputs (in Section 3.1).6

For some k ≥ 1, our algorithm ‘guesses’ a subset of elements T of a size bounded by k, which
appears in some optimal solution S∗ for Γ. The subset T has the property that the profit of
T (= f(T )), is the highest in this optimal solution; then, we add to the solution elements in U
(whose contribution to the solution is bounded by f(T )/|T |), to obtain an approximate solution.
Given a subset T ⊆ U , we define the problem ΓT , which can be viewed as the problem that
remains from Γ after selection of T to be part of the solution. Thus, we refer to this problem
below as residual problem with respect to T. Let

XT =

{

S| S ∩ T = ∅, S ∪ T ∈ X, and ∀s ∈ S : f({s}) ≤
f(T )

|T |

}

(9)

Consider the residual problem ΓT and its Lagrangian relaxation ΓT (λ):

ΓT maximize f(S)
subject to : S ∈ XT

w(S) ≤ L − w(T )

ΓT (λ) maximize f(S) − λw(S)
subject to : S ∈ XT

In all of our examples, the residual problem ΓT is a smaller instance of the problem Γ, and
therefore, its Lagrangian relaxation is an instance of the Lagrangian relaxation of the original
problem. Assume that we have an approximation algorithm A which, given λ and a pre-selected
set T ⊆ U of at most k elements, for some constant k > 1, returns a ρ-approximation for ΓT (λ)
in polynomial time (if there is a feasible solution for ΓT ). Consider the following algorithm, in
which we take k = 2:

1. For any T ⊆ U such that |T | ≤ k, find solutions S1, S2 (for
ΓT (λ1),ΓT (λ2) respectively) satisfying the conditions of Theorem 1 with
respect to the problem ΓT . Evaluate the following solutions:

(a) T ∪ S1

(b) Let S′ = ∅, add elements to S ′ in the following manner:

Find an element x ∈ S2\S
′ which maximizes the ratio f({x})

wx
. If

w(S′ ∪ {x}) ≤ L − w(T ) then add x to S ′ and repeat the process,
otherwise return S ′ ∪ T as a solution.

2. Return the best of the solutions found in Step 1.

Let OPT = f(S∗) be an optimal solution for Γ, where S∗ = {x1, . . . , xh}. Order the elements in
S∗ such that f({x1}) ≥ f({x2}) ≥ . . . ≥ f({xh}).

Lemma 6 Let Ti = {x1, . . . , xi}, for some 1 < i ≤ h, then for any j > i, f({xj}) ≤
f(Ti)

i
.

In analyzing our algorithm, we consider the iteration in which T = Tk. Then S∗ \ Tk is an
optimal solution for ΓT (since S∗ \ Tk ∈ XTk

as in (9)); thus, the optimal value for ΓTk
is at least

f(S∗\Tk) = f(S∗) − f(Tk).

6The running time when applying enumeration depends on the size of the universe (which may be super-
polynomial in the input size; we elaborate on that in Section 4.1).
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Lemma 7 Let S ′ be the set generated from S2 by the process in Step 1(b) of the algorithm. Then

f(S′) ≥ f(S2)
L−w(T )
w(S2)

− f(T )
|T |

Proof: Note that the process cannot terminate when S ′ = S2 since w(S2) > L−w(T ). Consider

the first element x that maximized the ratio f({x})
wx

, but was not added to S ′, since w(S ′ ∪ {x}) >
L − w(T ). By the linearity of f , it is clear that

(i) f(S′∪{x})
w(S′∪{x}) ≥ f({x})

wx
, and

(ii) For any y ∈ S2\(S
′ ∪ {x}), f({y}

wy
≤ f({x})

wx
.

Thus, we get that for any y ∈ S2\(S
′ ∪ {x}), f({y})

wy
≤ f(S′∪{x})

w(S′∪{x}) , and

f(S2) = f(S′ ∪ {x}) +
∑

y∈S2\(S′∪{x})

f({y}) ≤ f(S ′ ∪ {x})
w(S2)

w(S′ ∪ {x})
.

By the linearity of f , we get f(S ′) + f({x}) = f(S ′ ∪ {x}) ≥ f(S2)
L−w(T )
w(S2)

. Since x ∈ S2 ∈ XT ,

we get f({x}) ≤ f(T )
|T | . Hence f(S ′) ≥ f(S2)

L−w(T )
w(S2)

− f(T )
|T | .

�

Consider the iteration of Step 1. in the above algorithm, in which T = T2 (if there are at least
two elements in the optimal solution; else T = T1), and the values of the solutions found in this
iteration. By Theorem 1, taking α = 1

1+ρ
, one of the following holds:

1. f(S1) ≥
ρ

1+ρ
[f(S∗) − f(T )]

2. f(S2) ≥ (1 − ρ − ε)[f(S∗) − f(T )] w(S2)
L−w(T ) .

If 1. holds then we get f(S1 ∪ T ) ≥ f(T ) + ρ
1+ρ

[f(S∗)− f(T )] ≥ ( ρ
1+ρ

− ε)f(S∗), else we have

that f(S2) ≥ ( ρ
1+ρ

− ε)[f(S∗) − f(T )] w(S2)
L−w(T ) , and by Lemma 7,

f(S′) ≥ f(S2)
L − w(T )

w(S2)
−

f(T )

|T |
≥ (

ρ

1 + ρ
− ε)[f(S∗) − f(T )] −

f(T )

|T |
.

Hence, we have

f(S′ ∪ T ) = f(S′) + f(T ) ≥ f(T ) + (
ρ

1 + ρ
− ε)[f(S∗) − f(T )] −

f(T )

|T |

= (1 −
1

k
)f(T ) + (

ρ

1 + ρ
− ε)[f(S∗) − f(T )] ≥ (

ρ

1 + ρ
− ε)f(S∗).

The last inequality follows from choosing k = 2, and the fact that 1
2 ≥ ρ

1+ρ
− ε.

Theorem 8 The algorithm outputs a ( ρ
1+ρ

− ε)-approximation for Γ. The number of calls to

algorithm A is O((log(pmax) + log(L) + log(ε−1))n2), where n = |U | is the size of the universe of
elements for the problem Γ.

Submodular objective functions: In the more general case, where f is a submodular function,
we need to re-define the objective function for ΓT to be fT (S′) = f(S′∪T )−f(T ), and the condition

f({s}) ≤ f(T )
|T | should be modified to fT ({s}) ≤ f(T )

|T | . In Step 1(b) of the algorithm, the element

x to be chosen in each stage is x ∈ S2 \ S′ which maximizes the ratio fT (S′∪{x})−fT (S′)
wx

.
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4 Applications

In this section we show how the technique of Section 3 can be applied to obtain approximation
algorithms for several classic subset selection problems with linear constraint.

4.1 Budgeted Real Time Scheduling

The budgeted real-time scheduling problem can be interpreted as the following subset selection
problem with linear constraint. The universe U consists of all instances associated with the
activities {A1, . . . , Am}. The domain X is the set of all feasible schedules; f(S) (where S ∈ X) is
the profit from the instances in S, and w(S) is the total cost of the instances in S (note that each
instance is associated with specific time interval). The Lagrangian relaxation of this problem is the
classic interval scheduling problem discussed in [2]: the paper gives a 1

2 -approximation algorithm,
whose running time is O(n log n), where n is the total number of instances in the input. Clearly,
pmax (as defined in (7)) can be used as λmax. By Theorem 2, we can find two solutions S1, S2 which
satisfy the conditions of Theorem 1 in O(n log(n) log(Lpmax/ε)) steps. Then, a straightforward
implementation of the technique of Section 3.1 yields a

(

1
3 − ε

)

-approximation algorithm whose
running time is O(n log(n) log(Lpmax/ε)) for inputs where all instances have unit cost. The same
approximation ratio can be obtained in O(n3 · log(n) log(Lpmax/ε)) steps when the instances may
have arbitrary costs, using Theorem 8 (Note that the Lagrangian relaxation of the residual problem
with respect to a subset of elements T is also an instance of the interval scheduling problem.)

Consider now the continuous case, where each instance within some activity Ai, 1 ≤ i ≤ m, is
given by a time window. One way to interpret BCRS as a subset selection problem is by setting
the universe to be all the pairs of an instance and a time interval in which it can be scheduled.
The size of the resulting universe is unbounded: a more careful consideration of all possible start
times of any instance yields a universe of super-polynomial size. The Lagrangian relaxation of
this problem is known as single machine scheduling with release time and deadlines, for which a
(1
2 − ε)-approximation algorithm is given in [2]. Thus, we can apply our technique for finding

two solutions S1, S2 for which Theorem 1 holds. However, the running time of the algorithm
in Theorem 8 may be super-polynomial in the input size (since the number of the enumeration
steps depends on the size of the universe, which may be exponentially large). Thus, we derive an
approximation algorithm using the technique of Section 3.2. We summarize in the next result.

Theorem 9 There is a polynomial time algorithm that yields an approximation ratio of ( 1
3 − ε)

for BRS and the ratio
(

1
4 − ε

)

for BCRS.

Our results also hold for other budgeted variants of problems that appear in [2]. For the case

where all intervals have the same (unit) profit, an approximation ratio arbitrarily close to 1−e−1

2−e−1

can be obtained by using an algorithm of [6].

4.2 The Budgeted Generalized Assignment Problem

Consider the interpretation of GBAP as a subset selection problem, as given in Section 3. The
Lagrangian relaxation of BGAP (and also of the deduced residual problems) is an instance of
GAP, for which the paper [10] gives a (1 − e−1 − ε)-approximation algorithm. We can take in
Theorem 2 λmax = pmax, where pmax is defined by (7), and the two solutions S1, S2 that satisfy
the condition of Theorem 1 can be found in polynomial time. Applying the techniques of Sections
3.1 and 3.3, we get the next result.

Theorem 10 There is a polynomial time algorithm that yields an approximation ratio of 1−e−1

2−e−1 −
ε ≈ 0.387 − ε for BGAP.

10



A slightly better approximation ratio can be obtained by using an algorithm of [9]. More
generally, our result holds also for any constrained variant of the separable assignment problem
(SAP) that can be solved using a technique of [10].

4.3 Budgeted Maximum Weight Independent Set

BWIS can be interpreted as the following subset selection problem with linear constraint. The
universe U is the set of all vertices in the graph, i.e., U = V , the domain X consists of all subsets
V ′ of V , such that V ′ is an independent set in the given graph G. The objective function f is
f(V ′) =

∑

v∈V ′ pv, the weight function is w(V ′) =
∑

v∈V ′ cv, and the weight bound is L. The
Lagrangian relaxation of BWIS is an instance of the classic WIS problem (vertices with negative
profits in the relaxation are deleted, along with their edges). Thus, given an approximation
algorithm A for WIS with approximation ratio f(n) (n is the number of vertices in the graph),
by Theorem 8, the technique of Section 3.3 yields an approximation algorithm AI for BWIS. AI

achieves the approximation f(n)
1+f(n) −ε, and its running time is polynomial in the input size and in

log(1/ε). If log(1/f(n)) is polynomial, select ε = f(n)
n

; the value log(1/ε) = log(1/f(n)) + log(n)
is polynomial in the input size; thus, the algorithm remains polynomial. For this selection of ε,
we have the following result.

Theorem 11 Given an f(n)-approximation algorithm for WIS, where f(n) = o(n), for any L ≥ 1
there exists a polynomial time algorithm that outputs a g(n)-approximation ratio for any instance

of BWIS with the budget L, where g(n) = Θ(f(n)), and limn→∞
g(n)
f(n) = 1.

This means that the approximation ratios of A and AI are asymptotically the same. Thus,

for example, using the algorithm of [14], our technique achieves an Ω( log2 n
n

)-approximation for
BWIS.

Note that the above result holds for any constant number of linear constraints added to an
input for WIS, by repeatedly applying our Lagrangian relaxation technique.
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matroid intersection via the gasoline puzzle. In IPCO, 2008.

[5] C. Chekuri and S. Khanna. A ptas for the multiple knapsack problem. SIAM J. Comput.,
35(3):713–728, 2006.

[6] J. Chuzhoy, R. Ostrovsky, and Y. Rabani. Approximation algorithms for the job interval
selection problem and related scheduling problems. Math. Oper. Res., 31(4):730–738, 2006.

[7] B.-Y. R. M. B. Y. Cohen and D. Rawitz. Resource allocation in bounded degree trees.
Algorithmica, To appear.

11



[8] R. Cohen, L. Katzir, and D. Raz. An efficient approximation for the generalized assignment
problem. Inf. Process. Lett., 100(4):162–166, 2006.
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A Lagrangian Relaxation – An Example

Consider the following problem. Given is a base set of elements A, where each element a ∈ A
has a (non-negative integral) profit p(a); also, given are three subsets of elements A1, A2, A3 ⊆ A,
and a bound k > 1. We need to select a subset S ⊆ A of size at most k, such that S ⊆ A1,
or S ⊆ A2, or S ⊆ A3, and the total profit (

∑

a∈S p(a)) from elements in S is maximized. The
problem can be easily interpreted as a subset selection problem, by taking the universe to be

12



U = A, the domain X consists of all the subsets S of U , such that S ⊆ A1 or S ⊆ A2, or S ⊆ A3.
The weight function is w(S) = |S|, with the weight bound L = k, and the profit of a subset S is
given by f(S) =

∑

a∈S p(a).
The Lagrangian relaxation of the problem with parameter λ is maxS∈X f(S)−λw(S). Assume

that we have an algorithm A which returns a ρ-approximation for the Lagrangian relaxation of
the problem.

For any 1
2 > δ > 0 and an integer k > 1

ρ
+ 4, consider the following input:

• A1 = {a1, . . . , ak−1, b}, where p(ai) = 1
ρ

for 1 ≤ i ≤ k − 1, and p(b) = k − 1.

• A2 = {c} where p(c) = k + δ.

• A3 = {d1, . . . , d`} where ` = d (1+ρ)(k−1)
δρ

e, and p(di) = 1 + δ for 1 ≤ i ≤ `.

• U = A = A1 ∪ A2 ∪ A3, and the set S to be chosen is of size at most k.

Denote the profit from a subset S ⊆ U by p(S), and the profit in the Lagrangian relaxation
with parameter λ by pλ(S). Clearly, the subset S = A1 is an optimal solution for the problem,
with the profit p(A1) = (k − 1) 1+ρ

ρ
. Consider the possible solutions the algorithm A returns for

different values of λ:

• For λ < 1: the profit from any subset of A1 is bounded by the original profit of A1, given
by p(A1) = (k − 1) 1+ρ

ρ
; the profit from the set S = A3 is equal to p(A3) = (1 + δ − λ)` ≥

δ` ≥ (k − 1) (1+ρ)
ρ

, i.e., A3 has higher profit than A1.

• For 1 ≤ λ ≤ 1
ρ
: the profit from any subset of A1 is bounded by the total profit of A1 (all

elements are of non-negative profit in the relaxation). Consider the difference:

ρ · pλ(A1) − pλ(A2) = ρ

(

k − 1 − λ + (k − 1)(
1

ρ
− λ)

)

− (k − λ) =

= ρk − ρ − ρλ + k −−ρλk + ρk − k + λ = (1 − λ)(ρk − 1) − ρ ≤ 0

This implies that in case the optimal set is A1 (or a subset of A1), the algorithm A may
choose the set A2.

• For λ > 1
ρ
: the maximal profit from any subset of A1 is bounded in this case by max{k −

1 − λ, 0}, whereas the profit from A2 is max{k − λ, 0}.

From the above, we get that A may return a subset of A2 or A3 for any value of λ. However,
no combination of elements of A2 and A3 yields a solution for the original problem with profit
greater than k(1 + δ). This means that, by combining the solutions returned by the Lagrangian

relaxation, one cannot achieve approximation ratio better than k(1+δ)

(k−1)(1+ 1

ρ
)

= ρ
1+ρ

· k(1+δ)
k−1 . Since

ρ
1+ρ

· k(1+δ)
k−1 → ρ

1+ρ
for (k, δ) → (∞, 0), one cannot achieve approximation ratio better than ρ

1+ρ
.

B Solving Multi-budgeted Subset Selection Problems

In the following we extend our technique as given in Section 3 to handle subset selection problems
with d linear constraints, for some d > 1. More formally, consider the problem:

max
S∈X

f(S) subject to: (10)

∀1≤i≤d : wi(S) ≤ Li,
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where X is a lower ideal, and the functions f and wi for every 1 ≤ i ≤ d are non-decreasing linear
set function, such that f(∅) = wi(∅) = 0. This problem can be interpreted as the following subset
selection problem with (a single) linear constraint. Let X ′ = {S ∈ X|∀1≤i≤d−1 : wi(S) ≤ Li};
the linear constraint is wd(S) ≤ Ld, the function f remains as defined above. The Lagrangian
relaxation of (10) has the same form (after removing in the relaxation elements with negative
profits), but the number of constraints is now d − 1. This implies that, by repeatedly applying
the technique in Section 3.3, we can obtain an approximation algorithm for (10) from an ap-
proximation algorithm for the non-constrained problem (in which we want to find maxS∈X f ′(X),
where f ′ is some linear function). Thus, given a ρ-approximation algorithm for the problem after
“relaxing” d constraints, we derive a ( ρ

1+dρ
− ε)-approximation algorithm for (10).

Note that there is a simple reduction7 of the problem in (10) to the same problem with
d = 1, which yields a ρ

d
-approximation for (10), given a ρ-approximation algorithm A for the

problem with single constraint. For sufficiently small ε > 0, the ratio of ρ
1+(d−1)ρ − ε obtained by

repeatedly applying Lagrangian relaxation and using the approximation algorithm A is better,
for any ρ ∈ (0, 1).

7Assume w.l.o.g that Li = 1 for every 1 ≤ i ≤ d, and set the weight of an element e to be we = max1≤i≤d wi({e})
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