Skip to main content

Effects of HIV-1 Proteins on the Fas-Mediated Apoptotic Signaling Cascade: A Computational Study of Latent CD4+ T Cell Activation

  • Conference paper
Membrane Computing (WMC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5391))

Included in the following conference series:

Abstract

We present a new model for simulating Fas-induced apoptosis in HIV-1-infected CD4+ T cells. Moreover, the reactivation of latently infected cells is explored. The work, an extension of our previous modeling efforts, is the first attempt in systems biology for modeling the Fas pathway in the latently infected cells. These enigmatic cells are considered the last barrier in the elimination of HIV infection. In building the model, we gathered what reaction rates and initial conditions are available from the literature. For the unknown constants, we fit the model to the available information on the observed effects of HIV-1 proteins in activated CD4+ T cells. We provide results, using the Nondeterministic Waiting Time (NWT) algorithm, from the model, simulating the infection of activated CD4+ T cells as well as the reactivation of a latently infected cells. These two model versions are distinct with respect to the initial conditions – multiplicities and locations of proteins at the beginning of the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algeciras-Schimnich, A., et al.: CCR5 Mediates Fas- and Caspase 8 Dependent Apoptosis of Both Uninfected and HIV Infected Primary Human CD4 T cells. AIDS 16, 1467–1478 (2002)

    Article  Google Scholar 

  2. Alimonti, J., et al.: Mechanisms of CD4 T Lymphocyte cell death in human immunodeficiency virus infection and AIDS. J. Gen. Vir. 84, 1649–1661 (2003)

    Article  Google Scholar 

  3. Ashkenazi, A., Dixit, V.: Death receptors: signaling and modulation. Science 281, 1305–1308 (1998)

    Article  Google Scholar 

  4. Bartz, S., Emerman, M.: Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/Caspase 8. J. Vir. 73, 1956–1963 (1999)

    Google Scholar 

  5. Biard-Piechaczyk, M., et al.: Caspase-dependent apoptosis of cells expressing the chemokine receptor CXCR4 is induced by cell membrane-associated human immunodeficiency virus type 1 envelope glycoprotein (gp120). Vir. 268, 329–344 (2000)

    Article  Google Scholar 

  6. Briggs, J., et al.: The stoichiometry of Gag protein in HIV-1. Nature Struct. Mol. Bio. 11, 672–675 (2004)

    Article  Google Scholar 

  7. Blankson, J.N., et al.: Biphasic decay of latently infected CD4+ T cells in acute HIV-1 infection. J. Infect. Dis. 182, 1636–1642 (2000)

    Article  Google Scholar 

  8. Chan, D., Kim, P.: HIV entry and its inhibition. Cell 93, 681–684 (1998)

    Article  Google Scholar 

  9. Chun, T.W., et al.: In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nature Med. 1, 1284–1290 (1995)

    Article  Google Scholar 

  10. Chun, T.W., et al.: Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188 (1997)

    Article  Google Scholar 

  11. Cicala, C., et al.: HIV-1 envelope induces activation of caspase-3 and cleavage of focal adhesion kinase in primary human CD4(+) T cells. Proc. Natl. Acad. Sci. U.S.A. 97, 1178–1183 (2000)

    Article  Google Scholar 

  12. Conti, L., et al.: The HIV-1 vpr protein acts as a negative regulator of apoptosis in a human lymphoblastoid T cell line possible implications for the pathogenesis of aids. J. Exp. Med. 187, 403–413 (1998)

    Article  Google Scholar 

  13. Farnet, C., Haseltine, W.: Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J. Vir. 65, 1910–1915 (1991)

    Google Scholar 

  14. Finkel, T.: Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nature Med. 1, 129–134 (1995)

    Article  Google Scholar 

  15. Finzi, D., et al.: Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Med. 5, 512–517 (1999)

    Article  Google Scholar 

  16. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phy. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  17. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The J. Phy. Chem. 81, 2340–2361 (1997)

    Article  Google Scholar 

  18. Han, T., et al.: Experimental approaches to the study of HIV-1 latency. Microbio. 5, 95–106 (2007)

    Google Scholar 

  19. Hashimoto, F., et al.: Modulation of Bcl-2 Protein by CD4 Cross-Linking a possible mechanism for lympphocyte apoptosis in human immunodeficiency virus infection. Blood 90, 745–753 (1997)

    Google Scholar 

  20. Hua, F., et al.: Effects of Bcl-2 levels on FAS signaling-induced caspase-3 activation: molecular genetic tests of computational model predictions. J. of Immun. 175, 6235–6237 (2005)

    Article  Google Scholar 

  21. Igney, F., Krammer, P.: Death and anti-death: tumour resistance to apoptosis. Nature Rev. Can. 2, 277–288 (2002)

    Article  Google Scholar 

  22. Jack, J., et al.: Discrete nondeterministic modeling of the Fas pathway. Intern. J. Found. Computer Sci. (accepted, 2008)

    Google Scholar 

  23. Jacotet, E., et al.: The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J. Exp. Med. 191, 33–45 (2000)

    Article  Google Scholar 

  24. Kim, S., et al.: Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J. Vir. 63, 3708–3713 (1989)

    Google Scholar 

  25. Kinoshita, S., et al.: The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. Immun. 6, 235–244 (1997)

    Article  Google Scholar 

  26. Lassen, K., et al.: Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS Pathogens 2, 650–661 (2006)

    Article  Google Scholar 

  27. Liu, X., et al.: DFF, a heterodimeric protein that functions downstream of Caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175–184 (1997)

    Article  Google Scholar 

  28. McCloskey, T., et al.: Dual role of HIV Tat in regulation of apoptosis in T cells. J. Immun. 158, 1014–1019 (1997)

    Google Scholar 

  29. Nabel, G., Baltimore, D.: An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 344, 711–713 (1987)

    Article  Google Scholar 

  30. Napolitano, G., et al.: CDK9 has the intrinsic property to shuttle between nucleus and cytoplasm, and enhanced expression of CyclinT1 promotes its nuclear localization. J. Cell. Phys. 192, 209–215 (2002)

    Article  Google Scholar 

  31. Nie, Z., et al.: HIV-1 protease processes procaspase 8 to cause mitochondrial release of cytochrome c, caspase cleavage and nuclear fragmentation. Cell Death Diff. 9, 1172–1184 (2002)

    Article  Google Scholar 

  32. Oyaizu, N., et al.: Cross-linking of CD4 molecules upregulates Fas antigen expression in lymphocytes by inducing interferon-gamma and tumor necrosis factor- alpha secretion. Blood 84, 2622–2631 (1994)

    Google Scholar 

  33. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  34. Perelson, A.S., et al.: Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997)

    Article  Google Scholar 

  35. Pierson, T.C., et al.: Molecular characterization of preintegration latency in HIV-1 infection. J. Virol. 76, 8518–8531 (2002)

    Article  Google Scholar 

  36. Rieux-Laucat, F., et al.: Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Diff. 10, 124–133 (2003)

    Article  Google Scholar 

  37. Roland-Jones, S.L., Whittle, H.C.: Out of Africa: what can we learn from HIV-2 about protective immunity to HIV-1. Nature Imm. 9, 329–331 (2007)

    Article  Google Scholar 

  38. Ross, T.: Using death to one’s advantage: HIV modulation and apoptosis. Leuk. 15, 332–341 (2001)

    Article  Google Scholar 

  39. Scaffidi, C., et al.: Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687 (1998)

    Article  Google Scholar 

  40. Selliah, N., Finkel, T.: Biochemical mechanisms of HIV induced T cell apoptosis. Cell Death Diff. 8, 127–136 (2001)

    Article  Google Scholar 

  41. Siliciano, J.D., et al.: Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nature Med. 9, 727–728 (2003)

    Article  Google Scholar 

  42. Strack, L., et al.: Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2. Proc. Natl. Acad. Sci. U.S.A. 93, 9571–9576 (1996)

    Article  Google Scholar 

  43. Strain, M.C., et al.: Heterogeneous clearance rates of long-lived lymphocytes infected with HIV: intrinsic stability predicts lifelong persistence. Proc. Natl. Acad. Sci. U.S.A. 100, 4819–4824 (2003)

    Article  Google Scholar 

  44. World Health Organization 2007 AIDS Epidemic Update, http://www.who.int/hiv/en/

  45. Wyatt, R., Sodroski, J.: The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280, 1884–1888 (1998)

    Article  Google Scholar 

  46. Yang, Y., et al.: HIV Tat binds Egr proteins and enhances Egr-dependent transactivation of the Fas ligand promoter. J. Bio. Chem. 277, 19482–19487 (2002)

    Article  Google Scholar 

  47. Zack, J.A., et al.: HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61, 213–222 (1990)

    Article  Google Scholar 

  48. Zack, J.A., et al.: Incompletely reverse-transcribed human immunodeficiency virus type I genomes function as intermediates in the retroviral life cycle. J. Vir. 66, 1717–1725 (1992)

    Google Scholar 

  49. Zauli, G., et al.: Human immunodeficiency virus type 1 Nef protein sensitizes CD4+ T lymphoid cells to apoptosis via functional upregulation of the CD95/CD95 ligand pathway. Blood 93, 1000–1010 (1999)

    Google Scholar 

  50. Zhou, Y., et al.: Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J. Vir. 79, 2199–2210 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jack, J., Păun, A., Rodríguez-Patón, A. (2009). Effects of HIV-1 Proteins on the Fas-Mediated Apoptotic Signaling Cascade: A Computational Study of Latent CD4+ T Cell Activation. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2008. Lecture Notes in Computer Science, vol 5391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95885-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95885-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95884-0

  • Online ISBN: 978-3-540-95885-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics