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Abstract. We provide a finite basis for the (in)equational theory of theprocess
algebra BCCS modulo the weak failures preorder and equivalence. We also give
positive and negative results regarding the axiomatizability of BCCS modulo
weak impossible futures semantics.

1 Introduction

Labeled transition systems constitute a widely used model of concurrent computation.
They model processes by explicitly describing their statesand their transitions from
state to state, together with the actions that produce thesetransitions. Several notions of
behavioral semantics have been proposed, with the aim to identify those states that af-
ford the same observations [9, 11]. For equational reasoning about processes, one needs
to find an axiomatization that is sound andground-completemodulo the semantics un-
der consideration, meaning that all equivalent closed terms can be equated. Ideally,
such an axiomatization is alsoω-complete, meaning that all equivalentopenterms can
be equated. If such a finite axiomatization exists, it is saidthat there is afinite basisfor
the equational theory.

For concrete semantics, so in the absence of the silent action τ , the existence of
finite bases is well-studied [5, 11, 13], in the context of theprocess algebra BCCSP,
containing the basic process algebraic operators from CCS and CSP. However, for weak
semantics, that take into account theτ , hardly anything is known on finite bases. In [9],
Van Glabbeek presented a spectrum of weak semantics. For several of the semantics
in this spectrum, a sound and ground-complete axiomatization has been given, in the
setting of the process algebra BCCS (BCCSP extended byτ ), see, e.g., [10]. But only
for weak impossible futuressemantics has a finite basis been given [17], for BCCS, in
case of an infinite alphabet of actions. The reason for this lack of results on finite bases,
apart from the inherent difficulties arisen with weak semantics, may be that it is usually
not so straightforward to define a notion of unique normal form for openterms in a
weaksemantics. Here we will employ a saturation technique, in which normal forms
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are saturated with subterms (instead of the usual approach,in which normal forms are
made as small as possible).

In this paper, we focus on two closely related weak semantics, based on failures and
impossible futures. Aweak failureconsists of a tracea1 · · · an and a setA, both of con-
crete actions. A state exhibits this weak failure pair if it can perform the tracea1 · · · an

(possibly intertwined withτ ’s) to a state that cannot perform any action inA (even after
performingτ ’s). In a weak impossible future, A can be a set of traces. Weak failures
semantics plays an essential role for the process algebra CSP [2]. For convergent pro-
cesses, it coincides with testing semantics [6, 14], and thus is the coarsest congruence
for the CCS parallel composition that respects deadlock behavior. Weak impossible fu-
tures semantics [16] is a natural variant of possible futures semantics [15]. In [12] it is
shown that weak impossible futures semantics, with an additional root condition, is the
coarsest congruence containing weak bisimilarity with explicit divergence that respects
deadlock/livelock traces (or fair testing, or any livenessproperty under a global fairness
assumption) and assigns unique solutions to recursive equations.

The heart of our paper is a finite basis for the inequational theory of BCCS modulo
the weak failurespreorder. The axiomatization consists of the standard axioms A1-4 for
bisimulation, three extra axioms WF1-3 for failures semantics, and in case of a finite
alphabetA, an extra axiom WFA. The proof that A1-4 and WF1-3 are a finite basis
in case of an infinite alphabet is actually a sub-proof of the proof that A1-4, WF1-3
and WFA are a finite basis in case of a finite alphabet. Pivotal for thisproof is the
construction of “saturated” sets of actions within a term; this notion was introduced
in [6]. Since here we want to obtain anω-completeness result, we need to extend this
notion to variables. We also apply an algorithm from [1, 8] toobtain a finite basis for
BCCS modulo weak failuresequivalencefor free.

At the end, we investigate the equational theory of BCCS modulo weak impossible
futures semantics. This shows a remarkable difference withweak failures semantics, in
spite of the strong similarity between the definitions of these semantics (and between
their ground-complete axiomatizations). As said, in case of an infinite alphabet, BCCS
modulo the weak impossible futures preorder has a finite basis [17]. However, we show
that in case of a finite alphabet, such a finite basis does not exist. Moreover, in case
of weak impossible futuresequivalence, there is no ground-complete axiomatization,
regardless of the cardinality of the alphabet.

A finite basis for the equational theory of BCCSP modulo (concrete) failures se-
mantics was given in [7]. And the equational theory of BCCSP modulo (concrete) im-
possible futures semantics is studied in [3]. It is interesting to see that our results for
weak semantics coincide with their concrete counterparts,which raises some challeng-
ing open question: can one establish a general theorem to link the axiomatizability (or
nonaxiomatizability) of concrete and weak semantics? We conjecture that this might be
relatively easier for the semantics in the linear-time spectrum while much more difficult
for the ones in the branching-time spectrum.

Due to space restriction, some proofs, remarks and examplesare omitted in the
current paper. These include, in particular, proofs of Lem.1, Lem. 3 and those in Sec. 4.
However, they can be found in the full version of this paper [4].
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2 Preliminaries

BCCS(A) is a basic process algebra for expressing finite process behavior. Its signature
consists of the constant0, the binary operator+ , and unary prefix operatorsτ and
a , wherea is taken from a nonempty setA of visible actions, called thealphabet,
ranged over bya, b, c. We assume thatτ /∈ A and writeAτ for A∪{τ}, ranged over by
α.

t ::= 0 | at | τt | t + t | x

ClosedBCCS(A) terms, ranged over byp, q, represent finite process behaviors, where
0 does not exhibit any behavior,p + q offers a choice between the behaviors ofp and
q, andαp executes actionα to transform intop. This intuition is captured by the tran-
sition rules below, in whichα ranges overAτ . They give rise toAτ -labeled transitions
between closed BCCS terms.

αx
α
→ x

x
α
→ x′

x + y
α
→ x′

y
α
→ y′

x + y
α
→ y′

We assume a countably infinite setV of variables;w, x, y, z denote elements ofV . Open
BCCS terms, denoted byt, u, v, may contain variables fromV . It is technically conve-
nient to extend the operational semantics to open terms. We do not include additional
rules for variables. We writet ⇒ u if there is a sequence ofτ -transitionst

τ
→ · · ·

τ
→ u.

The depthof a termt, denoted by|t|, is the length of thelongesttrace oft, not
countingτ -transitions. It is defined inductively as follows:|0| = |x| = 0; |at| = 1+ |t|;
|τt| = |t|; |t + u| = max{|t|, |u|}.

A (closed) substitution, denoted byρ, σ, maps variables inV to (closed) terms. For
open termst andu, and a preorder� (or equivalence≃) on closed terms, we define
t � u (or t ≃ u) if ρ(t) � ρ(u) (resp.ρ(t) ≃ ρ(u)) for all closed substitutionsρ.
Clearly,t

a
→ t′ implies thatσ(t)

a
→ σ(t′) for all substitutionsσ.

An axiomatizationis a collection of equationst ≈ u or of inequationst 4 u. The
(in)equations in an axiomatizationE are referred to asaxioms. If E is an equational
axiomatization, we writeE ⊢ t ≈ u if the equationt ≈ u is derivable from the axioms
in E using the rules of equational logic (reflexivity, symmetry,transitivity, substitution,
and closure under BCCS contexts). For the derivation of an inequationt 4 u from an
inequational axiomatizationE, denoted byE ⊢ t 4 u, the rule for symmetry is omitted.
We will also allow equationst ≈ u in inequational axiomatizations, as an abbreviation
of t 4 u andu 4 t.

An axiomatizationE is soundmodulo a preorder� (or equivalence≃) if for any
termst, u, fromE ⊢ t 4 u (orE ⊢ t ≈ u) it follows thatt � u (or t ≃ u). E is ground-
completefor � (or≃) if for any closed termsp, q, p � q (or p ≃ q) impliesE ⊢ p 4 q
(or E ⊢ p ≈ q). And E is ω-completeif for any termst, u with E ⊢ ρ(t) 4 ρ(u) (or
E ⊢ ρ(t) ≈ ρ(u)) for all closed substitutionsρ, we haveE ⊢ t 4 u (or E ⊢ t ≈ u).
The equational theory of BCCS modulo a preorder� (or equivalence≃) is said to
be finitely basedif there exists a finite,ω-complete axiomatization that is sound and
ground-complete for BCCS modulo� (or≃).
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A1-4 below are the core axioms for BCCS modulo bisimulation semantics. We write
t = u if A1-4 ⊢ t ≈ u.

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

Summation
∑

i∈{1,...,n} ti denotest1 + · · · + tn, where summation over the empty set
denotes0. As binding convention,+ and summation bind weaker thanα . For every
term t there exists a finite set{αiti | i ∈ I} of terms and a finite setY of variables
such thatt =

∑
i∈I αiti +

∑
y∈Y y. Theαiti for i ∈ I and they ∈ Y are called the

summandsof t. WhenY is a set of variables, we often denote the term
∑

y∈Y y by Y .

Definition 1 (Initial actions). For any termt, the setI(t) of initial actions is defined
asI(t) = {a ∈ A | t ⇒

a
→}.

Definition 2 (Weak failures).

– A pair (a1 · · · ak, B), with k ≥ 0 andB ⊆ A, is aweak failure pairof a processp0

if there is a pathp0 ⇒
a1→⇒ · · · ⇒

ak→⇒ pk with I(pk) ∩ B = ∅.
– p -WF q if the weak failure pairs ofp are also weak failure pairs ofq.
– p �WF q if (1) p -WF q and (2)p

τ
→ implies thatq

τ
→.

– ≃WF=�WF ∩ �−1
WF.

�WF is aprecongruencefor BCCS, meaning thatp1 �WF q1 andp2 �WF q2 implies
p1 + p2 �WF q1 + q2 andαp1 �WF αq1 for α ∈ Aτ . Likewise,≃WF is acongruence
for BCCS.

3 A Finite Basis for Weak Failures Semantics

3.1 Axioms for the Weak Failures Preorder

WF1 ax + ay ≈ a(τx + τy)
WF2 τ (x + y) 4 τx + y

WF3 x 4 τx + y

Table 1.Axiomatization for the weak failures preorder

An axiomatization for�WF is presented in Tab. 1. It is not hard to see that A1-4+WF1-3
is sound and ground-complete forBCCS(A) modulo�WF (cf. [6]).

Theorem 1. A1-4+WF1-3 is sound and ground-complete for BCCS(A) modulo�WF.

In this section, we extend this completeness result with twoω-completeness results. The
first one says, in combination with Theorem 1, that as long as our alphabet of actions is
infinite, the axioms A1-4+WF1-3 constitute a finite basis forthe inequational theory of
BCCS(A) modulo�WF.
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Theorem 2. If |A| = ∞, then A1-4+WF1-3 isω-complete for BCCS(A) modulo�WF.

To get a finite basis for the inequational theory of BCCS modulo�WF in case|A| < ∞,
we need to add the following axiom:

WFA

∑

a∈A

axa 4
∑

a∈A

axa + y

where thexa for a ∈ A andy are distinct variables.

Theorem 3. If |A| < ∞, then A1-4+WF1-3+WFA is ω-complete for BCCS(A) modulo
�WF.

For a start, the inequations in Tab. 2 can be derived from A1-4+WF1-3:

D1 τ (x + y) + x ≈ τ (x + y)
D2 τ (τx + y) ≈ τx + y

D3 ax + τ (ay + z) ≈ τ (ax + ay + z)
D4 τx 4 τx + y

D5
P

i∈I
axi ≈ a(

P

i∈I
τxi) for finite index setsI

D6 τx + y ≈ τx + τ (x + y)

Table 2.Derived inequations

Lemma 1. D1-D6 are derivable from A1-4+WF1-3.

Proof. Cf. [4]. ⊓⊔

3.2 Normal Forms

The notion of a normal form, which is formulated in the following two definitions,
will play a key role in the forthcoming proofs. For any setL ⊆ A ∪ V of actions and
variables letAL = L ∩ A, the set of actions inL, andVL = L∩ V , the set of variables
in L.

Definition 3 (Saturated family). SupposeL is a finite family of finite sets of actions
and variables. We sayL is saturatedif it is nonempty and

– L1, L2 ∈ L implies thatL1 ∪ L2 ∈ L; and
– L1, L2 ∈ L andL1 ⊆ L3 ⊆ L2 imply thatL3 ∈ L.

Definition 4 (Normal form).

(i) A term t is in τ normal form if

t =
∑

L∈L

τ(
∑

a∈AL

ata + VL)

where theta are in normal form andL is a saturated family of sets of actions and
variables. We writeL(t) for

⋃
L∈L L; note thatL(t) ∈ L.
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(ii) t is in action normal form if

t =
∑

a∈AL

ata + VL

where theta are in normal form andL ⊆ A ∪ V . We writeL(t) for L.

(iii) t is in normal form if it is either inτ normal form or in action normal form.

Remark 1.In the notion of a normal form, it is required that for anya ∈ A, if t ⇒
a
→ t1

andt ⇒
a
→ t2, thent1 andt2 are syntactically identical. Because of this, we can use a

more suggestive notationta to denote the unique term such thatt ⇒
a
→ ta.

We prove that every term can be equated to a normal form.

Lemma 2. For any termt, ⊢ t ≈ t′ for some normal formt′.

Proof. By induction on|t|. We distinguish two cases.

– t 6
τ
→. Let t =

∑
i∈I aiti + Y . By D5,

⊢ t ≈
∑

a∈I(t)

a(
∑

i∈I,ai=a

τti) + Y

By induction, for eacha ∈ I(t),

⊢
∑

i∈I,ai=a

τti ≈ ta

for some normal formta. So we are done.

– t
τ
→. By applying D2, we can derive

⊢ t ≈
∑

i∈I

τti +
∑

j∈J

ajtj + X (1)

with I 6= ∅, where for eachi ∈ I, ti 6
τ
→, and thus

ti =
∑

k∈Ki

ckt′k + Yi (2)

By (1), (2) and D1,

⊢ t ≈
∑

i∈I

τti +
∑

i∈I

∑

k∈Ki

ckt′k +
∑

j∈J

ajtj + Y (3)

whereY = X ∪
⋃

i∈I Yi. For eacha ∈ I(t), we define

ua =
∑

i∈I

∑

k∈Ki,ck=a

ckt′k +
∑

j∈J,aj=a

ajtj (4)



On Finite Bases for Weak Semantics: Failures versus Impossible Futures 7

By (3),

⊢ t ≈
∑

i∈I

τti +
∑

a∈I(t)

ua + Y (5)

Define
L = {L | I(ti) ∪ Yi ⊆ L ⊆ I(t) ∪ Y for somei ∈ I}

Clearly,L is a saturated family. For eachi ∈ I, by D3,

⊢ τti +
∑

a∈I(ti)

ua ≈ τ(ti +
∑

a∈I(ti)

ua) = τ(
∑

a∈I(ti)

ua + Yi) (6)

It follows from (5) and (6) that

⊢ t ≈
∑

i∈I

τ(
∑

a∈I(ti)

ua + Yi) +
∑

a∈I(t)

ua + Y (7)

For eachL ∈ L, by definition, there exists somei(L) ∈ I such thatI(ti(L)) ∪
Yi(L) ⊆ L. Hence by D6,

⊢ τ(
∑

a∈I(ti(L))

ua +Yi(L))+
∑

a∈AL

ua +VL ≈ τ(
∑

a∈I(ti(L))

ua +Yi(L))+τ(
∑

a∈AL

ua +VL) (8)

We note that, sinceI(ti) ∪ Yi ∈ L for eachi ∈ I, not only the second but also the
first summand at the right-hand side of (8) is a summand of

∑
L∈L τ(

∑
a∈AL

ua +
VL). Hence, (usingI 6= ∅) it follows from (7) and (8) that

⊢ t ≈
∑

L∈L

τ(
∑

a∈AL

ua + VL) (9)

Fora ∈ I(t), by (4) and D5,

⊢ ua ≈ a(
∑

i∈I

∑

k∈Ki,ck=a

τt′k +
∑

j∈J,aj=a

τtj) (10)

And by induction,
⊢

∑

i∈I

∑

k∈Ki,ck=a

τt′k +
∑

j∈J,aj=a

τtj ≈ ta (11)

for some normal formta. Hence, by (9), (10) and (11),

⊢ t ≈
∑

L∈L

τ(
∑

a∈AL

ata + VL)

This completes the proof. ⊓⊔

Lemma 3. Supposet andu are both in normal forms andt �WF u. If t ⇒
a
→ ta, then

there exists a termua such thatu ⇒
a
→ ua andta -WF ua.

Proof. Cf. [4]. ⊓⊔
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3.3 ω-Completeness Proof

We are now in a position to prove Theo. 2 (ω-completeness in case of an infinite al-
phabet) and Theo. 3 (ω-completeness in case of a finite alphabet), along with Theo.1
(ground completeness). We will prove these three theorems in one go. Namely, in the
proof, two cases are distinguished; only in the second case (I(t) = A), in which theA
is guaranteed to be finite, will the axiom WFA play a role.

Proof. Let t �WF u. We need to show that⊢ t 4 u. We apply induction on|t| + |u|.
By Lem. 2, we can writet andu in normal form.

We first prove thatL(t) ⊆ L(u). Suppose this is not the case. Then there exists
somea ∈ AL(t) \AL(u) or somex ∈ VL(t) \ VL(u). In the first case, letρ be the closed
substitution withρ(w) = 0 for all w ∈ V ; we find that(a, ∅) is a weak failure pair
of ρ(t) but not ofρ(u), which contradicts the fact thatρ(t) �WF ρ(u). In the second
case, pick somed > max{|t|, |u|}, and consider the closed substitutionρ(x) = ad

0

andρ(w) = 0 for w 6= x. Then(ad, ∅) is weak failure pair ofρ(t). However, it cannot
be a weak failure pair ofρ(u), again contradictingρ(t) �WF ρ(u).

We distinguish two cases, depending on whetherI(t) = A or not.

1. I(t) 6= A. We distinguish three cases. Due to the condition thatt
τ
→ impliesu

τ
→,

it cannot be the case thatt is an action normal form andu a τ normal form.

(a) t andu are both action normal forms. Sot =
∑

a∈AL
ata + VL and u =∑

a∈AM
aua +VM . We show thatL(t) = L(u). Namely, pickb ∈ A\AL, and

let ρ be the closed substitution withρ(w) = 0 for anyw ∈ VL, andρ(w) = b0
for w 6∈ VL. As (ε, A \ I(t)) is a weak failure pair oft, and hence ofu, it
must be thatL(u) ⊆ L(t). Together withL(t) ⊆ L(u) this givesL(t) = L(u).
By Lem. 3, for eacha ∈ I(t), ta - ua, and thus clearlyta �WF τua. By
induction,⊢ ta 4 τua and hence⊢ ata 4 aua. It follows that

⊢ t =
∑

a∈AL

ata + VL 4
∑

a∈AL

aua + VL =
∑

a∈AM

aua + VM = u

(b) Botht andu areτ normal forms:

t =
∑

L∈L

τ(
∑

a∈AL

ata + VL)

and
u =

∑

M∈M

τ(
∑

a∈AM

aua + VM )

By Lem. 3, for eacha ∈ I(t), ta - ua, and thus clearlyta �WF τua. By
induction,⊢ ta 4 τua. By these inequalities, together with D4,

⊢ t 4
∑

L∈L

τ(
∑

a∈AL

aua + VL) + u (12)

We now show thatL ⊆ M. Take anyL ∈ L, pick b ∈ A \ AL, and consider
the closed substitutionρ(w) = 0 for anyw ∈ VL, andρ(w) = b0 for w 6∈ VL.
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Sinceρ(t)
τ
→ ρ(

∑
a∈L ata) andρ(t) �WF ρ(u), there exists anM ∈ M with

AM ⊆ AL andVM ⊆ VL. Since alsoL ⊆ L(t) ⊆ L(u), andM is saturated,
it follows thatL ∈ M. Hence,L ⊆ M.

SinceL ⊆ M, ∑

L∈L

τ(
∑

a∈AL

aua + VL) + u = u (13)

By (12) and (13),⊢ t 4 u.

(c) t is an action normal form andu is a τ normal form. Thenτt �WF u. Note
thatτt is aτ normal form, so according to the previous case,

⊢ τt 4 u

By WF3,
⊢ t 4 τt 4 u

2. I(t) = A. Note that in this case,|A| < ∞. So, according to Theorem 3, axiom
WFA is at our disposal. As before, we distinguish three cases.

(a) Both t and u are action normal forms. SinceL(t) ⊆ L(u) we havet =∑
a∈A ata + W andu =

∑
a∈A aua + X with W ⊆ X . By WFA,

⊢
∑

a∈A

ata 4
∑

a∈A

ata + u

By Lem. 3, for eacha ∈ A, ta -WF ua, and thus clearlyta �WF τua. By
induction,⊢ ta 4 τua. It follows, usingW ⊆ X , that

⊢ t =
∑

a∈A

ata + W 4
∑

a∈A

aua + u + W = u

(b) Botht andu areτ normal forms.

t =
∑

L∈L

τ(
∑

a∈AL

ata + VL)

and
u =

∑

M∈M

τ(
∑

a∈AM

aua + VM )

By D1 and WFA (clearly, in this caseAL(t) = A),

⊢ t ≈ t +
∑

a∈A

ata 4 t +
∑

a∈A

ata + u (14)

By Lem. 3, for eacha ∈ A, ta -WF ua, and thus clearlyta �WF τua. By
induction,⊢ ta 4 τua. By these inequalities, together with (14),

⊢ t 4
∑

L∈L

τ(
∑

a∈AL

aua + VL) +
∑

a∈A

aua + u
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So by D1,
⊢ t 4

∑

L∈L

τ(
∑

a∈AL

aua + VL) + u (15)

Now for L ∈ L with AL 6= A we haveL ∈ M using the same reasoning as
in 1(b). ForL ∈ L with AL = A we haveVL ⊆ VL(t) ⊆ VL(u). By WFA we
have

⊢ τ(
∑

a∈AL

aua + VL) 4 τ(
∑

a∈A

aua + VL(u)) (16)

As the latter is a summand ofu we obtaint 4 u.

(c) t is an action normal form andu is aτ normal form. This can be dealt with as
in case 1(c).

This completes the proof. ⊓⊔

3.4 Weak Failures Equivalence

In [1, 8] an algorithm is presented which takes as input a sound and ground-complete in-
equational axiomatizationE for BCCSP modulo a preorder in the linear time - branch-
ing time spectrum that includes the ready simulation preorder, and generates as output
an equational axiomatizationA(E) which is sound and ground-complete for BCCSP
modulo the corresponding equivalence. Moreover, if the original axiomatizationE is
ω-complete, so is the resulting axiomatization. The axiomatizationA(E) generated by
the algorithm fromE contains the axioms A1-4 for bisimulation equivalence and the
axiomsβ(αx + z) + β(αx + αy + z) ≈ β(αx + αy + z) for α, β ∈ Aτ that are
valid in ready simulation semantics, together with the following equations, for each
inequational axiomt 4 u in E:

– t + u ≈ u; and
– α(t + x) + α(u + x) ≈ α(u + x) (for eachα ∈ Aτ , and some variablex that does

not occur int + u).

WF1 ax + ay ≈ a(τx + τy)
WFE2 τ (x + y) + τx ≈ τx + y

WFE3 ax + τ (ay + z) ≈ τ (ax + ay + z)
WFEA b(

P

a∈A
axa + z) + b(

P

a∈A
axa + y + z) ≈ b(

P

a∈A
axa + y + z)

Table 3.Axiomatization for weak failures equivalence

Since weak failures is coarser than (strong) ready simulation, we can run the algorithm
from [1, 8], and thus, after simplification and omission of redundant axioms, obtain the
axiomatization for weak failures equivalence in Tab. 3. Theaxioms WF1, WFE2-3 al-
ready appeared in [10]. A1-4+WF1+WFE2-3 is sound and ground-complete for BCCS
modulo≃WF (see also [10]). Moreover, by Theo. 2 and Theo. 3, we have:

Corollary 1. If |A| = ∞, then the axiomatization A1-4+WF1+WFE2-3 isω-complete
for BCCS(A) modulo≃WF.

Corollary 2. If |A| < ∞, then the axiomatization A1-4+WF1+WFE2-3+WFEA is ω-
complete for BCCS(A) modulo≃WF.
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4 Weak Impossible Futures Semantics

Weak impossible futuressemantics is closely related to weak failures semantics. Only,
instead of the set of actions in the second argument of a weak failure pair (see Def. 2),
an impossible future pair contains a set oftraces.

Definition 5 (Weak impossible futures).

– A sequencea1 · · · ak ∈ A∗, with k ≥ 0, is atraceof a processp0 if there is a path
p0 ⇒

a1→⇒ · · · ⇒
ak→⇒ pk. LetT (p) denote the set of traces of processp.

– A pair (a1 · · ·ak, B), with k ≥ 0 andB ⊆ A∗, is aweak impossible futureof a
processp0 if there is a pathp0 ⇒

a1→⇒ · · · ⇒
ak→⇒ pk with T (pk) ∩ B = ∅.

– p �WIF q if (1) the weak impossible futures ofp are also weak impossible futures
of q, (2)T (p) = T (q) and (3)p

τ
→ implies thatq

τ
→.

– ≃WIF=�WIF ∩ �−1
WIF.

�WIF is a precongruence, and≃WF a congruence, for BCCS [17].
A sound and ground-complete axiomatization for�WIF is obtained by replacing

axiom WF3 in Tab. 1 by the following axiom (cf. [17], where a slightly more compli-
cated, but equivalent, axiomatization is given):

WIF3 x 4 τx

However, surprisingly, there is no finite sound and ground-complete axiomatization for
≃WIF. A similar difference between the impossible futures preorder and equivalence in
the concrete case (so in the absence ofτ ) was found earlier in [3]. We note that, since
weak impossible futures semantics is not coarser than readysimulation semantics, the
algorithm from [1, 8], to generate an axiomatization for theequivalence from the one
for the preorder, does not work in this case.

We have also proved that the sound and ground-complete axiomatization for BCCS
modulo�WIF is ω-complete in case|A| = ∞. And that there is no such finite basis
for the inequational theory of BCCS modulo�WIF in case|A| < ∞. Again, these
results correspond to (in)axiomatizability results for the impossible futures preorder in
the concrete case [3].

Theorem 4. There is no finite sound and ground-complete axiomatization
for BCCS(A) modulo≃WIF.

Theorem 5. If |A| = ∞, then A1-4+WF1-2+WIF3 isω-complete forBCCS(A) mod-
ulo≃WIF.

Theorem 6. If |A| < ∞, then the inequational theory ofBCCS(A) modulo�WIF does
not have a finite basis.

Concluding, in spite of the close resemblance between weak failures and weak im-
possible futures semantics, there is a striking differencebetween their axiomatizability
properties.
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