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Abstract. We provide a finite basis for the (in)equational theory of phecess
algebra BCCS modulo the weak failures preorder and equigaléNe also give
positive and negative results regarding the axiomatigghif BCCS modulo
weak impossible futures semantics.

1 Introduction

Labeled transition systems constitute a widely used maoidebiecurrent computation.
They model processes by explicitly describing their stated their transitions from
state to state, together with the actions that produce thassitions. Several notions of
behavioral semantics have been proposed, with the aim tdifg¢hose states that af-
ford the same observations [9, 11]. For equational reaga@biout processes, one needs
to find an axiomatization that is sound am@und-completenodulo the semantics un-
der consideration, meaning that all equivalent closed setam be equated. Ideally,
such an axiomatization is alsg-completemeaning that all equivalepenterms can
be equated. If such a finite axiomatization exists, it is fadd there is dinite basisfor
the equational theory.

For concrete semantics, so in the absence of the silentactithe existence of
finite bases is well-studied [5,11,13], in the context of grecess algebra BCCSP,
containing the basic process algebraic operators from @@E£8&P. However, for weak
semantics, that take into account théhardly anything is known on finite bases. In [9],
Van Glabbeek presented a spectrum of weak semantics. Ferat®f the semantics
in this spectrum, a sound and ground-complete axiomatizdtas been given, in the
setting of the process algebra BCCS (BCCSP extended see, e.g., [10]. But only
for weak impossible futuresemantics has a finite basis been given [17], for BCCS, in
case of an infinite alphabet of actions. The reason for thlsdéresults on finite bases,
apart from the inherent difficulties arisen with weak serntantmay be that it is usually
not so straightforward to define a notion of unique normaihfdor openterms in a
weaksemantics. Here we will employ a saturation technique, ifrckvihormal forms
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are saturated with subterms (instead of the usual approaelhich normal forms are
made as small as possible).

In this paper, we focus on two closely related weak semattaesed on failures and
impossible futures. Aveak failureconsists of a trace; - - - a,, and a se#d, both of con-
crete actions. A state exhibits this weak failure pair ifahgerform the trace; - - - a,,
(possibly intertwined withr’s) to a state that cannot perform any actiorfieven after
performing7’s). In aweak impossible futured can be a set of traces. Weak failures
semantics plays an essential role for the process algelPd2}SFor convergent pro-
cesses, it coincides with testing semantics [6, 14], and ihthe coarsest congruence
for the CCS parallel composition that respects deadlockvieh Weak impossible fu-
tures semantics [16] is a natural variant of possible figgmmantics [15]. In [12] it is
shown that weak impossible futures semantics, with an mdditroot condition, is the
coarsest congruence containing weak bisimilarity withlieklivergence that respects
deadlock/livelock traces (or fair testing, or any livenpssperty under a global fairness
assumption) and assigns unique solutions to recursivetiegsa

The heart of our paper is a finite basis for the inequatioredth of BCCS modulo
the weak failurepreorder. The axiomatization consists of the standard axioms Alr4 fo
bisimulation, three extra axioms WF1-3 for failures seritantand in case of a finite
alphabetA, an extra axiom WE. The proof that A1-4 and WF1-3 are a finite basis
in case of an infinite alphabet is actually a sub-proof of theopthat A1-4, WF1-3
and WF4 are a finite basis in case of a finite alphabet. Pivotal for pineof is the
construction of “saturated” sets of actions within a terhis thotion was introduced
in [6]. Since here we want to obtain ancompleteness result, we need to extend this
notion to variables. We also apply an algorithm from [1, 8ptuiain a finite basis for
BCCS modulo weak failuresquivalencdor free.

At the end, we investigate the equational theory of BCCS rodeak impossible
futures semantics. This shows a remarkable differencewstik failures semantics, in
spite of the strong similarity between the definitions ofstasemantics (and between
their ground-complete axiomatizations). As said, in cdsgndnfinite alphabet, BCCS
modulo the weak impossible futures preorder has a finitestyagi. However, we show
that in case of a finite alphabet, such a finite basis does risit &foreover, in case
of weak impossible futuresquivalencethere is no ground-complete axiomatization,
regardless of the cardinality of the alphabet.

A finite basis for the equational theory of BCCSP modulo (cete) failures se-
mantics was given in [7]. And the equational theory of BCCS#®luaio (concrete) im-
possible futures semantics is studied in [3]. It is inténgsto see that our results for
weak semantics coincide with their concrete counterpatiih raises some challeng-
ing open question: can one establish a general theoremkithknaxiomatizability (or
nonaxiomatizability) of concrete and weak semantics? Wigembure that this might be
relatively easier for the semantics in the linear-time sp@e while much more difficult
for the ones in the branching-time spectrum.

Due to space restriction, some proofs, remarks and exarapdesmitted in the
current paper. These include, in particular, proofs of LEpbem. 3 and those in Sec. 4.
However, they can be found in the full version of this papér [4
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2 Preliminaries

BCCS(A) is a basic process algebra for expressing finite processioehés signature
consists of the constaft the binary operatar+ _, and unary prefix operators and
a_, whereaq is taken from a nonempty set of visible actions, called thalphabet
ranged over by, b, c. We assume that ¢ A and writeA. for AU {7}, ranged over by
Q.

tu=0at|7t|t+t]|x

ClosedBCCS(A) terms, ranged over by, g, represent finite process behaviors, where
0 does not exhibit any behavigr,+ ¢ offers a choice between the behaviorgaind

q, andap executes action to transform intgp. This intuition is captured by the tran-
sition rules below, in whiclx ranges overl... They give rise tod-labeled transitions
between closed BCCS terms.

@ @

ar Sz T4y Tty Sy

We assume a countably infinite $ébf variablesuw, x, y, 2 denote elements &f. Open
BCCS terms, denoted kiyu, v, may contain variables froi. It is technically conve-
nient to extend the operational semantics to open terms.dNetinclude additional
rules for variables. We write = « if there is a sequence oftransitionst = - -- = w.

The depthof a termt, denoted byj¢|, is the length of thdongesttrace oft, not
countingr-transitions. It is defined inductively as follow®] = |x| = 0; |at| = 1+ |¢];
|7t = [t]; [t 4 uf = max{[t], |ul}.

A (closed) substitution, denoted by, maps variables i to (closed) terms. For
open termg andu, and a preorder (or equivalence~) on closed terms, we define
t < u(ort ~ u)if p(t) < p(u) (resp.p(t) = p(u)) for all closed substitutions.
Clearly,t % t" implies thato(t) % o(¢') for all substitutionss.

An axiomatizationis a collection of equations~ w or of inequationg < u. The
(in)equations in an axiomatizatiafd are referred to aaxioms If E is an equational
axiomatization, we writd? - ¢ ~ v if the equatiornt ~  is derivable from the axioms
in £ using the rules of equational logic (reflexivity, symmetrgnsitivity, substitution,
and closure under BCCS contexts). For the derivation of aquationt < « from an
inequational axiomatizatiof, denoted by I ¢ < u, the rule for symmetry is omitted.
We will also allow equations = v in inequational axiomatizations, as an abbreviation
oft < wandu < t.

An axiomatizationZ' is soundmodulo a preorder (or equivalence~) if for any
termst, u, fromE Ft < u (or B + t =~ u) it follows thatt < u (ort ~ ). F isground-
completdor < (or ~) if for any closed termp, g, p < g (orp ~ q) impliesE F p < ¢
(or E + p =~ q). And E is w-completdf for any termst, u with E - p(t) < p(u) (or
E + p(t) = p(u)) for all closed substitutions, we haveE F t < u (or E - ¢ = u).
The equational theory of BCCS modulo a preordefor equivalence~) is said to
be finitely basedf there exists a finitew-complete axiomatization that is sound and
ground-complete for BCCS module (or ~).
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Al-4 below are the core axioms for BCCS modulo bisimulatemantics. We write
t=uifAl-4 -t~ u.

Al r+y =~ y+zx

A2 (z+y)+z = z+(y+2)
A3 rT+r X x

A4 r+0 ~ =z

Summation ;. (; ;¢ denotes; + - - - +¢,,, where summation over the empty set
denoted). As binding convention,+ _ and summation bind weaker than. For every
term¢ there exists a finite seiw;t; | ¢ € I} of terms and a finite sét” of variables
such that = Eie] a;t; + Zyey y. Theqt; fori € I and they € Y are called the
summandsf ¢. WhenY is a set of variables, we often denote the t@gey ybyY.

Definition 1 (Initial actions). For any tern¥, the setZ(¢) of initial actions is defined
asI(t) ={ac A|t=>5).

Definition 2 (Weak failures).

— Apair(ay ---a, B),withk > 0andB C A, is aweak failure pairof a procesgg
if there is a pathyy == --- =% = p;, with Z(px) N B = 0.

— p Zwr ¢ if the weak failure pairs of are also weak failure pairs of

— p =wr qif (1) p Swr ¢and (2)p = implies thaty 5.

— ~wr==wr N Jyp-

=<wr Is aprecongruencéor BCCS, meaning that; <wr ¢1 andps <wr g2 implies
p1 + P2 =wr q1 + g2 andap; <wr aq; for a € A,. Likewise,~wr IS acongruence
for BCCS.

3 A Finite Basis for Weak Failures Semantics
3.1 Axioms for the Weak Failures Preorder

WF1 ax + ay =~ a(7z + TY)
WF2 r(z+y) < 72 +y
WF3 rxT1x+Yy

Table 1. Axiomatization for the weak failures preorder

An axiomatization for<y is presented in Tab. 1. Itis not hard to see that A1-4+WF1-3
is sound and ground-complete BCCS(A) modulo<wr (cf. [6]).

Theorem 1. A1-4+WF1-3 is sound and ground-complete for BC&Shodulo=<ywr.

In this section, we extend this completeness result withdvemmpleteness results. The
first one says, in combination with Theorem 1, that as longuasiphabet of actions is
infinite, the axioms A1-4+WF1-3 constitute a finite basistfar inequational theory of
BCCS(A) modulo=wE.
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Theorem 2. If |A| = oo, then A1-4+WF1-3 is;-complete for BCCS{) modulo<yyr.

To get afinite basis for the inequational theory of BCCS modulr in casg A| < oo,
we need to add the following axiom:

WEF 4 Zaxa<Zaxa+y
acA acA

where ther, for a € A andy are distinct variables.

Theorem 3. If | 4| < oo, then A1-4+WF1-3+WH is w-complete for BCCS{) modulo
“WF-

For a start, the inequations in Tab. 2 can be derived from AMA1-3;

Dl r(z4+y)t+z~71(x+y)

D2 T(re+y)~T0+Y

D3 azx + 7(ay + 2) ~ T(ax + ay + 2)

D4 T T+ Y

D5 Y icrawi = a3, Tx;) for finite index setd
D6 Te+y~Tte+T1(r+y)

Table 2. Derived inequations

Lemma 1. D1-D6 are derivable from A1-4+WF1-3.
Proof. Cf. [4]. a

3.2 Normal Forms

The notion of a normal form, which is formulated in the folimg two definitions,

will play a key role in the forthcoming proofs. For any 9etC A U V of actions and
variables letA;, = L N A, the set of actions ifh, andV;, = L NV, the set of variables
in L.

Definition 3 (Saturated family). SupposeC is a finite family of finite sets of actions
and variables. We sa§ is saturatedif it is nonempty and

— L1, Ly € LimpliesthatL; U Ly € £; and
— Ly, L5 € LandL, C L3 C Ly Imply thatLg eL.

Definition 4 (Normal form).

() Atermtisin7 normal form if
t=>_7() ata+Vy)
LeLl ac€Aq

where thet, are in normal form and’ is a saturated family of sets of actions and
variables. We write.(t) for | J, . . L; note thatL(t) € L.
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(ii) tisin action normal form if

t = Z ate + Vi,

a€AL

where the, are in normal form and. C AU V. We write L(t) for L.

(i) t¢isin normal form if it is either inr normal form or in action normal form.

Remark 1.In the notion of a normal form, it is required that for amy A, if t = ¢,
andt =-% t,, thent, andt, are syntactically identical. Because of this, we can use a
more suggestive notatidp to denote the unique term such that- ¢,.

We prove that every term can be equated to a normal form.
Lemma 2. For any termt, - ¢ ~ t’ for some normal form’.
Proof. By induction on|t|. We distinguish two cases.
-t Lett =3, ;a;it; +Y.ByD5,
Fit Z a(z Tt;) +Y
a€Z(t) i€l,a;=a
By induction, for eaclu € Z(t),
Y rtint
i€l,a;=a
for some normal form,. So we are done.
— t 5. By applying D2, we can derive
Ft%ZTti—FZajtj-i-X (1)
icl jed
with I # (), where for eachi € I, t; -, and thus
ti= Y ety +Y; (2)
keEK;
By (1), (2) and D1,
'—t%ZTti—I—ZZC;Ct;C-FZaJ‘tj-FY 3)
i€l icl keK; jeJ

whereY = X UJ,.,; Y;. For eachu € Z(¢), we define

Ug = Z Z th;C + Z ajt; (4)

i€l keK;,cp=a j€Ja;=a

icl
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By (3),
Fta Y T Y ug+Y (5)
i€l a€Z(t)

Define
L={L|I{;)VY; CLCI(t)UY forsomei € I}

Clearly, L is a saturated family. For ea¢ke I, by D3,
Frtit Y uam T+ Y ua) =T( Y ua+ ) (6)
a€Z(t;) a€Z(t;) a€Z(t;)
It follows from (5) and (6) that
Ftad r () ua YY)+ D> uat+Y (7
i€l a€Z(t;) a€Z(t)

For eachL < L, by definition, there exists soméL) € I such thatZ(t;,) U
Yiry € L. Hence by D6,

- T(Z Uq+Yir)) + Z ue + Vi, ~ T(Z U+ Yir)) +7( Z ue+V5) (8)

an(ti(L)) a€Ar aEZ(ti(L)) a€AL

We note that, sinc&(t;) UY; € L for eachi € I, not only the second but also the
first summand at the right-hand side of (8) is a summandef - 7(>_,c 4, ta +
V1). Hence, (using # () it follows from (7) and (8) that

Ft%ZT(ZuG—l-VL) )
LeLl a€Ay
Fora € Z(t), by (4) and D5,

Fug = a(z Z Tt), + Z Tt;) (20)

i€l keK;,cp=a j€Ja;=a

FY O e+ Y i mta (11)

i€l keK;,cp=a j€J,a;=a
for some normal forni,. Hence, by (9), (10) and (11),

Ftr Y T() ] ata+ Vi)

LeL a€Ap

And by induction,

This completes the proof. a0

Lemma 3. Suppose andu are both in normal forms antl <wr u. If t =% ¢,, then
there exists a term, such thatu =% u, andt, Jwr ua.

Proof. Cf. [4]. a
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3.3 w-Completeness Proof

We are now in a position to prove Theo. @-¢ompleteness in case of an infinite al-
phabet) and Theo. 3.tcompleteness in case of a finite alphabet), along with Theo.
(ground completeness). We will prove these three theorarngé go. Namely, in the
proof, two cases are distinguished; only in the second &&ge £ A), in which theA

is guaranteed to be finite, will the axiom Viplay a role.

Proof. Lett <wr u. We need to show that ¢ < u. We apply induction ofi¢| + |ul.
By Lem. 2, we can write¢ andu in normal form.

We first prove thatl.(t) C L(u). Suppose this is not the case. Then there exists
somea € Ap) \ A Or somex € Vi \ V(. Inthe first case, lgt be the closed
substitution withp(w) = 0 for all w € V; we find that(a, })) is a weak failure pair
of p(t) but not of p(u), which contradicts the fact tha{t) <wr p(u). In the second
case, pick somé > max{|t], |u|}, and consider the closed substitutipfr) = a0
andp(w) = 0 for w # . Then(a?, () is weak failure pair op(t). However, it camot
be a weak failure pair gf(u), again contradicting(t) <wr p(u).

We distinguish two cases, depending on wheff{¢j = A or not.

1. Z(t) # A. We distinguish three cases. Due to the condition thatimpliesu =,
it cannot be the case thais an action normal form andar normal form.

(a) t andu are both action normal forms. So= ZGGAL ate + Vi andu =
> acA, W+ Var. We show thatll(t) = L(u). Namely, pickb € A\ A, and
let p be the closed substitution wig{w) = 0 for anyw € Vz,, andp(w) = b0
forw ¢ V5. As (e, A \ Z(t)) is a weak failure pair of, and hence of;, it
must be thaf.(u) C L(t). Together withL(¢t) C L(u) this givesL(t) = L(u).
By Lem. 3, for eachu € Z(¢), to 3 uq, and thus clearly, <wr Tu,. By
induction,t- ¢, < Tu, and hencé- at, < au,. It follows that

Ft:Zata+VL<Zaua+VL: Zaua—i-VM:u
a€AL a€Ar a€AN
(b) Botht andu areT normal forms:

t:ZT(Z at, + Vi)

LeLl a€AL

U= Z 7( Z aug + Var)

MeM a€Apm

By Lem. 3, for eachu € Z(¢), to 3 uq, and thus clearly, <wr Tu,. By
induction,i- ¢, < Tu,. By these inequalities, together with D4,

Ft%ZT(Z aug, + Vi) +u (12)

LeLl a€AL

and

We now show that C M. Take anyL € L, pickb € A\ Ay, and consider
the closed substitutiop(w) = 0 for anyw € V,, andp(w) = b0 for w & V..
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Sincep(t) = p(3 .1 ata) andp(t) <wr p(u), there exists ad/ € M with
Ay C Ap andVy, C Vi, Since alsdl C L(t) C L(u), and M is saturated,
it follows that L € M. Hence L C M.

Sincel C M,
ZT(Z avg + Vi) +tu=u (13)

Lel ac€Aq
By (12) and (13)f t < u.

(c) t is an action normal form and is a~ normal form. Thenrt <wr u. Note
thatrt is ar normal form, so according to the previous case,

Frt<u

By WF3,
Fitttxu

2. I(t) = A. Note that in this caséA| < co. So, according to Theorem 3, axiom
WF4 is at our disposal. As before, we distinguish three cases.

(a) Botht andu are action normal forms. Sinck(t) C L(u) we havet =
Yogcaata+Wandu =3, au, + X with W C X. By WFy,

I—Zataszma—i—u
a€A acA

By Lem. 3, for eachu € A, t, Swr uq, and thus clearly, <wr Tu,. By
induction,t- ¢, < Tu,. It follows, usingiv C X, that

l—t:Zata—i-W#Zaua—i—u—i—W:u
a€A acA

(b) Botht andu arer normal forms.

t:ZT(Z at, + Vi)

LeLl a€AL

U= Z 7( Z aug + Var)

MeM a€An
By D1 and WF; (clearly, in this casel; ) = A),

and

Ftat+ Y ata St+ Y atet+u (14)
a€A acA

By Lem. 3, for eachu € A, t, Zwr uq, and thus clearly, <wr Tus. By
induction,i- ¢, < Tu,. By these inequalities, together with (14),

Fit< ZT(Z aua—i-VL)—i—Zaua—i—u

LelL a€ApL acA
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So by D1,

Ft%ZT(Z aug, + Vi) +u (15)

LelL a€ApL
Now for L € £ with A, # A we havelL € M using the same reasoning as
in 1(b). ForL € L with Ay, = A we haveVy, C Vi C Vi(,. By WFa we
have
Fr( Z aug + V1) < T(Z atg + Vi(u)) (16)

a€AL acA

As the latter is a summand afwe obtaint < u.

(c) tis an action normal form andis a normal form. This can be dealt with as
in case 1(c).

This completes the proof. a0

3.4 Weak Failures Equivalence

In[1, 8] an algorithm is presented which takes as input a d@und ground-complete in-
equational axiomatizatio’ for BCCSP modulo a preorder in the linear time - branch-
ing time spectrum that includes the ready simulation preg@hd generates as output
an equational axiomatizatioA(F) which is sound and ground-complete for BCCSP
modulo the corresponding equivalence. Moreover, if thgioal axiomatization® is
w-complete, so is the resulting axiomatization. The axiorasibn A(E) generated by
the algorithm fromE contains the axioms Al1-4 for bisimulation equivalence arel t
axiomsB(ax + z) + Blax + ay + 2) = fBlax + ay + 2) for o, 3 € A, that are
valid in ready simulation semantics, together with thedwihg equations, for each
inequational axiom < u in E:

—t+u~uwu;and
- a(t+x)+a(u+ ) ~ a(u+ z) (for eacha € A,, and some variable that does
not occur int + w).

WF1 ar + ay = a(tx + TY)
WFE2 Tx+y)+Te~TC+Y
WFE3 ax + 7(ay + z) = 7(ax + ay + 2)

WFE4 b(zaeA atq + z) + b(ZaeA aTo+y+2) & b(zaeA atqe + Y+ 2)

Table 3. Axiomatization for weak failures equivalence

Since weak failures is coarser than (strong) ready sinalatie can run the algorithm
from [1, 8], and thus, after simplification and omission aduadant axioms, obtain the
axiomatization for weak failures equivalence in Tab. 3. @kimms WF1, WFE2-3 al-
ready appeared in [10]. A1-4+WF1+WFE2-3 is sound and grezordplete for BCCS
modulo~yr (see also [10]). Moreover, by Theo. 2 and Theo. 3, we have:

Corollary 1. If | A] = oo, then the axiomatization A1-4+WF1+WFE2-3dscomplete
for BCCS@A) modulo~wE.

Corollary 2. If |A| < oo, then the axiomatization A1-4+WF1+WFE2-3+WEE w-
complete for BCCS{) modulo~wr.
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4 Weak Impossible Futures Semantics

Weak impossible futuresemantics is closely related to weak failures semantick, On
instead of the set of actions in the second argument of a wglake pair (see Def. 2),
an impossible future pair contains a setraces

Definition 5 (Weak impossible futures).

— Asequence; ---a € A*, with k > 0, is atraceof a proces9y if there is a path
po =5B= ... =%= p,. LetT(p) denote the set of traces of process

— A pair (a; - - -ax, B), with £ > 0 and B C A*, is aweak impossible futuref a
procesgy if there is a pathpy == - .. == p, with T (p,) N B = 0.

— p =wrr ¢ if (1) the weak impossible futures pfare also weak impossible futures
of ¢, (2) T (p) = T (¢q) and (3)p = implies thatg .

— ~wIr==wIr j\}/llF-

<wir IS a precongruence, angyr a congruence, for BCCS [17].

A sound and ground-complete axiomatization fé&4r is obtained by replacing
axiom WF3 in Tab. 1 by the following axiom (cf. [17], where &$ltly more compli-
cated, but equivalent, axiomatization is given):

WIF3 z < 72

However, surprisingly, there is no finite sound and grouadyglete axiomatization for
~wir. A similar difference between the impossible futures pdeoand equivalence in
the concrete case (so in the absence)afas found earlier in [3]. We note that, since
weak impossible futures semantics is not coarser than reatlylation semantics, the
algorithm from [1, 8], to generate an axiomatization for #tpiivalence from the one
for the preorder, does not work in this case.

We have also proved that the sound and ground-complete atization for BCCS
modulo<wr is w-complete in cased| = co. And that there is no such finite basis
for the inequational theory of BCCS moduldwr in case|A| < oo. Again, these
results correspond to (in)axiomatizability results fog tmpossible futures preorder in
the concrete case [3].

Theorem 4. There is no finite sound and ground-complete axiomatization
for BCCS(A) modulo~yr.

Theorem 5. If |A| = oo, then A1-4+WF1-2+WIF3 is;-complete foBCCS(A) mod-
ulo ~MWIF-

Theorem 6. If |A| < oo, then the inequational theory BfCCS(A) modulo=ywr does
not have a finite basis.

Concluding, in spite of the close resemblance between waidlkvds and weak im-
possible futures semantics, there is a striking differdsateveen their axiomatizability
properties.
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