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Abstract. Probabilistic ω-automata are variants of nondeterministic automata
for infinite words where all choices are resolved by probabilistic distributions.
Acceptance of an infinite input word requires that the probability for the accepting
runs is positive. In this paper, we provide a summary of the fundamental properties
of probabilistic ω-automata concerning expressiveness, efficiency, composition-
ality and decision problems.

While classical finite automata can serve to recognize languages over finite words or
tree-like structures, ω-automata are acceptors for languages consisting of infinite ob-
jects. ω-automata play a central role for verification purposes, reasoning about infinite
games and logics that specify nondeterministic behaviors. Many variants of ω-automata
have been studied in the literature that can be classified according to their inputs (e.g.,
words or trees), their acceptance conditions (e.g., Büchi, Rabin, Streett, Muller or parity
acceptance) and their semantics of the branching structure (e.g., deterministic, nonde-
terministic, or alternating). See, e.g., [Tho97, GTW02] for an overview of automata
over infinite objects.

In this paper, we study probabilistic variants of ω-automata for languages over infi-
nite words. Although probabilistic finite automata (PFA) have attracted many
researchers, see e.g. [Rab63, Paz66, Fre81, MHC03, DS90, BC03], probabilistic lan-
guage acceptors for infinite words just have recently been studied. The formal definition
of probabilistic ω-automata is roughly the same as for nondeterministic ω-automata,
except that all choices are resolved by probabilistic distributions. Acceptance of an in-
finite word σ = a1 a2 a3 . . . requires that the generated sample run for σ (i.e., sequence
of states that are passed in the automaton while reading σ letter by letter) meets the ac-
ceptance condition with positive probability. For instance, in the case of a probabilistic
Büchi automaton (PBA), certain states are declared to be accepting and the acceptance
condition requires to visit some accepting state infinitely often with positive probability.

As this definition of the accepted language via the criterion “the probability for the
accepting runs is > 0” appears to be the natural adaption of the definition of the ac-
cepted language of a nondeterministic automaton which relies on the criterion “there
is at least one accepting run”, one might expect that probabilistic and nondeterminis-
tic ω-automata are rather close and enjoy similar properties. This, however, is not the
case. The first surprising result is that PBA are more expressive than nondeterministic
Büchi automata (NBA). Second, concerning the sizes of smallest automata for a given
language, probabilistic and nondeterministic ω-automata are not comparable. That is,
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there are languages that can be accepted by PBA of polynomial size, while all NBA for
these languages have at least exponentially many states, and vice versa. Another inter-
esting observation is that in the probabilistic setting the Büchi condition is somehow
more powerful than in the nondeterministic case, as there exists a polynomial transfor-
mation from PBA to probabilistic automata with Streett acceptance. This is known to
be impossible in the nondeterministic case [SV89].

On the other hand, the price we have to pay for this extra power of PBA is that
we lose decidability of algorithmic problems, such as the emptiness, universality or
equivalence problem. The undecidability results for PBA have several important con-
sequences. First, the concept of PBA is not adequate for solving algorithmic prob-
lems that are related to the emptiness or universality problems. This, e.g., applies to
the verification of nondeterministic systems against PBA-specifications. Second, PBA
can be viewed as a special instance of partially-observable Markov decision processes
(POMDPs) which are widely used in various areas, including robotics and stochastic
planning (see, e.g., [Son71, PT87, Lov91]) and the negative results established for PBA
yield the undecidability of various verification problems for POMDPs.

Organization. Section 1 recalls the definition of nondeterministic ω-automata with
Büchi, Rabin or Streett acceptance conditions and introduces their probabilistic vari-
ants. Results on the expressiveness and efficiency of probabilistic Büchi, Rabin and
Streett automata are summarized in Section 2. Composition operators for PBA are ad-
dressed in Section 3. Decision problems for PBA and the relation to POMDPs will be
discussed in Section 4. Finally, Section 5 contains some concluding remarks.

The material of this paper is a summary of the results presented in the papers
[BG05, BBG08]. Further details can be found there and in the thesis by Marcus Größer
[Grö08].

1 From Nondeterministic to Probabilistic ω-Automata

We assume some familarity with classical nondeterministic automata over finite or infi-
nite words; see e.g. [Tho97, GTW02]. We just recall some basic concepts of nondeter-
ministic ω-automata. Later we will adapt these concepts to the probabilistic setting.

Definition 1 (Nondeterministic ω-automata). A nondeterministic ω-automaton is a
tuple N = (Q,Σ,δ,Q0,Acc), where

– Q is a finite nonempty set of states,
– Σ is a finite nonempty input alphabet,
– δ : Q×Σ → 2Q is a transition function that assigns to each state q and letter a∈ Σ

a (possibly empty) set δ(q,a) of states,
– Q0 ⊆ Q is the set of initial states,
– Acc is an acceptance condition (which will be explained later).

N is called deterministic if |Q0| = 1 and |δ(q,a)| = 1 for all q ∈ Q and a ∈ Σ.

The intuitive operational behavior of a nondeterministic ω-automaton N for some in-
finite input word σ = a1 a2 a3 . . . ∈ Σω is as follows. The automaton selects nonde-
terministically an initial state q0 ∈ Q0. Then, it attempts to read the first letter a1 in
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state q0. If q0 does not have an outgoing a1-transition (i.e., δ(q0,a1) = /0) then the au-
tomaton rejects. Otherwise, the automaton reads the first letter a1 and moves to some
a1-successor q1 of q0 (i.e., some state q1 ∈ δ(q0,a1)) and attempts to read the remaining
word a2 a3 . . . from state q1. That is, the automaton rejects if δ(q1,a2) = /0. Otherwise
the automaton reads letter a2 and moves to some state q2 ∈ δ(q1,a2) which is chosen
nondeterministically, and so on.

Any maximal state-sequence π = q0 q1 q2 . . . that can be obtained in this way is
called a run for σ. We write inf(π) for the set of states p ∈ Q such that p = qi for
infinitely many indices i ≥ 0.

Each finite run q0 q1 . . .qi (where N fails to read letter ai+1 in the last state qi because
δ(qi,ai+1) is empty) is said to be rejecting. The acceptance condition Acc imposes a
condition on infinite runs and declares which of the infinite runs are accepting. Several
acceptance conditions are known for nondeterministic ω-automata. We will consider
three types of acceptance conditions:

Büchi: A Büchi acceptance condition Acc is a subset F of Q. The elements in F are
called final or accepting states. An infinite run π = q0 q1 q2 . . . is called (Büchi)
accepting if π visits F infinitely often, i.e., inf(π)∩F (= /0.

Streett: A Streett acceptance condition Acc is a finite set of pairs (Hl ,Kl) consisting
of subsets Hl,Kl of Q, i.e., Acc = {(H1,K1), . . . ,(H!,K!)}. An infinite run π =
q0 q1 q2 . . . is called (Streett) accepting if for each l ∈ {1, . . . ,!} we have:

inf(π)∩Hl (= /0 or inf(π)∩Kl = /0.

Rabin: A Rabin acceptance condition Acc is syntactically the same as a Streett accep-
tance condition, i.e., a finite set Acc = {(H1,K1), . . . ,(H!,K!)} where Hl,Kl ⊆ Q
for 1 ≤ l ≤ !. An infinite run π = q0 q1 q2 . . . is called (Rabin) accepting if there is
some l ∈ {1, . . . ,!} such that

inf(π)∩Hl = /0 and inf(π)∩Kl (= /0.

Note that the semantics of Streett and Rabin acceptance conditions are duals of each
other, i.e., for each infinite run π we have: π is accepting according to the Rabin con-
dition Acc iff π is rejecting (i.e., not accepting) according to the Streett condition Acc.
Furthermore, a Büchi acceptance condition F can be viewed as a special case of a Streett
and Rabin condition with a single acceptance pair, namely {(F,Q)} for the Streett con-
dition and {( /0,F)} for the Rabin condition.

The accepted language of a nondeterministic ω-automaton N with the alphabet Σ,
denoted L(N ), is defined as the set of infinite words σ ∈ Σω that have at least one
accepting run in N .

L(N ) =
{

σ ∈ Σω : there exists an accepting run for σ in N
}

In what follows, we write NBA to denote a nondeterministic Büchi automaton, NRA for
nondeterministic Rabin automata and NSA for nondeterministic Streett automata. Sim-
ilarly, the notations DBA, DRA and DSA are used to denote deterministic ω-automata
with a Büchi, Rabin or Streett acceptance condition.
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It is well-known that the classes of languages that can be accepted by NBA, DRA,
NRA, DSA or NSA are the same. These languages are often called ω-regular and repre-
sented by ω-regular expressions, i.e., finite sums of expressions of the form α.βω where
α and β are ordinary regular expressions (representing regular languages over finite
words) and the language associated with β is nonempty and does not contain the empty
word. In the sequel, we will identify ω-regular expressions with the induced ω-regular
language.

While deterministic ω-automata with Rabin and Streett acceptance (DRA and DSA)
cover the full class of ω-regular languages, DBA are less powerful as, e.g., the language
(a + b)∗aω cannot be recognized by a DBA. Hence, the class of DBA-recognizable
languages is a proper subclass of the class of ω-regular languages.

Probabilistic ω-automata can be viewed as nondeterministic ω-automata where all
nondeterministic choices are resolved probabilistically. That is, for any state p and letter
a ∈ Σ either p does not have any a-successor or there is a probability distribution for the
a-successors of p.

Definition 2 (Probabilistic ω-automata). A probabilistic ω-automaton is a tuple P =
(Q,Σ,δ,µ0,Acc), where

– Q is a finite nonempty set of states,
– Σ is a finite nonempty input alphabet,
– δ : Q×Σ×Q→ [0,1] is a transition probability function such that for all p∈ Q and

a ∈ Σ either ∑q∈Q δ(p,a,q) = 1 or δ(p,a, .) is the null-function (i.e. δ(p,a,q) = 0
for all q ∈ Q),

– µ0 is the initial distribution, i.e., a function µ0 : Q → [0,1] such that ∑q∈Q µ0(q) = 1,
– Acc is an acceptance condition (as for nondeterministic ω-automata).

We refer to the states q0 ∈ Q where µ0(q0) > 0 as initial states. If p is a state such that
δ(q,a, p) > 0 then we say that q has an outgoing a-transition to state p.

Acceptance conditions can be defined as in the nondeterministic case. In this paper, we
just regard Büchi, Rabin and Streett acceptance and use the abbreviations PBA, PRA
and PSA for probabilistic Büchi automata, probabilistic Rabin automata, and proba-
bilistic Streett automata, respectively.

The intuitive operational behavior of a probabilistic ω-automaton P for a given in-
put word σ = a1a2 . . . ∈ Σω is similar to the nondeterministic setting, except that the
nondeterminism is resolved internally by the probabilistic distributions µ0 in the initial
configuration and δ(q,a, ·) if the current state is q and the next letter to consume is a.
That is, initially P chooses at random an initial state p0 according to the initial distri-
bution µ0. If P has consumed the first i input symbols a1, . . . ,ai and the current state is
pi then P moves with probability δ(pi,ai+1, p) to state p and tries to read the next input
symbol ai+2 in state p = pi+1. If there is no outgoing ai+1-transition from the current
state pi, then P rejects.

As in the nondeterministic case, the resulting state-sequence π = p0 p1 p2 . . . ∈
Q∗ ∪Qω is called a run for σ in P . If P rejects in state pi, i.e., δ(pi,ai+1, ·) is the null
function, then the obtained run is finite (and ends in state pi). If the automaton never
rejects while reading the letters ai of the input word σ = a1a2a3 . . . ∈ Σω, the generated
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run is an infinite state-sequence π = p0 p1 p2 . . . ∈ Qω. Acceptance of a run according
to a Büchi, Rabin or Streett acceptance condition is defined as in the nondeterministic
setting.

Semantics of probabilistic ω-automata. While acceptance of an infinite word in a non-
deterministic ω-automata requires the existence of an accepting run, a probabilistic ω-
automaton accepts an infinite input word σ if the acceptance probability PrP (σ) is
> 0. The formal definition of the acceptance probability relies on the view of an input
word σ ∈ Σω as a scheduler when P is treated as a Markov decision process, i.e., an
operational model for a probabilistic system where in each state q the letters that can
be consumed in q are treated as actions that are enabled in q. Given a word/scheduler
σ = a1 a2 a3 . . . ∈ Σω, the behavior of P under σ is given by a Markov chain Mσ where
the states are pairs (q, i) where q∈Q stands for the current state and i is a natural number
≥ 1 that denotes the current word position. Stated differently, state (q, i) in the Markov
chain Mσ stands for the configuration that P might have reached after having consumed
the first i−1 letters a1, . . . ,ai−1 of the input word σ. Assuming that δ(q,ai+1, ·) is not
the null function, the transition probabilities from state (q, i) are given by the distri-
bution δ(q,ai+1, ·), i.e., from state (q, i) the Markov chain Mσ moves with probability
δ(q,ai+1, p) to state (p, i + 1). In case that δ(q,ai+1, ·) = 0 then (q, i) is an absorbing
state, i.e., a state without any outgoing transition. The runs for σ in P correspond to
the paths in Mσ. We can now apply the standard concepts for Markov chains to reason
about the probabilities of infinite paths and define the acceptance probability for the
infinite word σ in P , denoted PrP (σ) or briefly Pr(σ), as the probability measure of the
accepting runs for σ in the Markov chain Mσ.

The formal definition of the accepted language of P is

L(P ) =
{

σ ∈ Σω : PrP (σ) > 0
}

Sometimes we will add the subscript “Büchi”, “Streett’ or “Rabin” to make clear which
type of acceptance condition is assumed and write LBüchi(P ), LRabin(P ) or LStreett(P ),
respectively.

Example 1 (Probabilistic Büchi automata). Let us have a look at a few examples of
probabilistic ω-automata. In the pictures, if δ(q,a, ·) (= 0 then the probability δ(q,a, p)
is attached to the a-transition from q to p. If δ(q,a, p)= 1 then the edge is simply labeled
with a. Similarly, if there is a single initial state q0 (i.e., µ0(q0) = 1, while µ0(q) = 0 for
all other states q) we simply depict an incoming arrow to q0. For PBA, we depict the
accepting states (i.e., the states q ∈ F) by squares, non-accepting states by circles.

Consider the PBA P over the alphabet Σ = {a,b} in the left part of Figure 1. State
q0 is initial, while state q1 is accepting. More precisely, the initial distribution is given
by µ0(q0) = 1 and µ0(q1) = 0, while the Büchi acceptance condition is given by the
singleton F = {q1}.

The accepted language L(P ) = LBüchi(P ) is (a+b)∗aω. If we feed P with an infinite
input word σ ∈ (a + b)∗aω, then P stays with positive probability in the initial state q0
until the last b in σ has been read. From then on, P moves almost surely to the accepting
state q1 and stays there forever when reading the infinite suffix aω. Thus, the acceptance
probability for all words in (a + b)∗aω is positive. This yields that (a + b)∗aω ⊆ L(P ).
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q0 q1
a, 1

2

a
a, 1

2
b

p0

p1 p2

a, 1
2 a, 1

2

b b,c

PBA P for (a+b)∗aω PBA P ′ for (ab+ac)∗(ab)ω

Fig. 1. Examples for PBA P (left) and P ′ (right)

It remains to show that L(P ) is contained in (a + b)∗aω. In fact, all words in L(P )
contain only finitely many b’s because only state q1 is accepting and only letter a can
be read in state q1. Hence, each accepted word σ ∈ L(P ) must have the suffix aω.

For another example, regard the PBA P ′ over the alphabet Σ = {a,b,c} shown in the
right part of Figure 1. Let us first observe that the underlying nondeterministic Büchi
automaton (NBA) that we obtain by ignoring the probabilities has an accepting run
for each infinite word in (ab + ac)ω with infinitely many b’s, no matter whether there
are only finitely c’s or infinitely many c’s. Thus, the accepted language of the NBA
is

(
(ac)∗ab

)ω. This language is different from the accepted language of the PBA P ′

which is
L(P ′) = (ab + ac)∗(ab)ω.

Given an input word σ ∈ (ab + ac)∗(ab)ω, say σ = x(ab)ω where x ∈ (ab + ac)∗, then
with positive probability P generates the run fragment p0 p2 p0 p2 . . . p0 p2 p0 when
reading x. For the remaining suffix (ab)ω, P can always consume the next letter and
almost surely P will visit p1 and p2 infinitely often. This yields PrP ′

(σ) > 0 and
σ ∈ L(P ′). Vice versa, we have to show that L(P ′) is a subset of (ab + ac)∗(ab)ω.
It is obvious that all accepted words σ ∈ L(P ′) belong to ((ac)∗ab)ω.3 The intuitive
argument why any word σ in (ab+ac)ω with infinitely many c’s is rejected by P ′ relies
on the observation that almost all runs for σ are finite and end in state p1, where the
next input symbol is c and cannot be consumed in state p1. (The formulation “almost all
runs have property X” means that the probability measure of the runs where property X
does not hold is 0.) !

Note that each DBA can be viewed as a PBA (we just have to assign probability 1 to all
edges in the DBA and deal with the initial distribution that assigns probability 1 to the
unique initial state). As shown in Example 1 there is a PBA for the language (a+b)∗aω

which cannot be accepted by DBA. As a consequence we obtain that the class of DBA-
recognizable languages is a proper subclass of the class of languages L(P ) for some
PBA P .

3 In fact, for each PBA P all words in L(P ) have at least one accepting run. Thus, L(P ) is
always contained in the accepted language of the NBA that results by ignoring the transition
probabilities.
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Fig. 2. PSA PS with acceptance condition Acc = {({p2},{p1})}

Example 2 (Probabilistic Streett automaton). The PSA PS shown in Figure 2 accepts
the language of all infinite words σ over Σ = {a,b,c} such that either σ contains only
finitely many a’s or σ contains infinitely many b’s (or both). That is,

LStreett(PS) = (a + b + c)∗(b + c)ω + ((a + b + c)∗b)ω.

Note that each word in (a + b + c)∗(b + c)ω has an accepting run π which never leaves
state p0. This run π = pω

0 is accepting (as inf(π) = {p0} and therefore inf(π)∩{p1} =
/0) and has positive measure. More precisely, the acceptance probability PrPS(σ) for a
word σ = xy with x ∈ {a,b,c}∗ and y ∈ {b,c}ω is ≥ 1/2k where k is the number of a’s
in x. Hence, σ = xy ∈ LStreett(PS). For the infinite words σ with infinitely many b’s all
runs are accepting, since they either visit p1, p2 only finitely many times (in which case
inf(π)∩ {p1} = /0) or they visit p2 infinitely often (as σ contains infinitely many b’s).
Hence, PrPS(σ) = 1 which yields σ ∈ LStreett(PS).

Vice versa, for each word in LStreett(PS) which contains infinitely many a’s, almost
all runs will enter state p1 infinitely often. But then an accepting run must also visit state
p2 infinitely often, which is only possible by reading letter b. Thus, all words accepted
by PS either contain only finitely many a’s or infinitely many b’s. !
Equivalence of ω-automata means that their accepted languages agree. The notion of
the size, denoted |P |, of an ω-automaton P is used here as follows. The size of a PBA
is simply the number of states. The size of a probabilistic Rabin or Streett automaton
denotes the number of states plus the number of acceptance pairs.

2 Expressiveness of Probabilistic ω-Automata

The three types of probabilistic ω-automata (Büchi, Rabin, Streett) are equally expres-
sive. As the Büchi acceptance condition can be rewritten as a Rabin or Streett accep-
tance condition, each PBA can be viewed as a PRA or as a PSA with the same accepted
language. Vice versa, there are polynomial transformations from PRA and PSA to PBA:

Theorem 1 (Equivalence of PBA, PRA and PSA [BG05])

(a) For each PBA there is an equivalent PRA and an equivalent PSA of the same size.
(b) Given a PRA PR with ! acceptance pairs there exists an equivalent PBA of size

O(!|PR|).
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(c) Given a PSA PS with ! acceptance pairs there exists an equivalent PBA of size
O(!2|PS|).

The transformation from PRA to PBA is roughly the same as in the nondeterminis-
tic case. The construction of a PBA of size O(!2|PS|) from a given PSA PS, however,
crucially relies on the probabilistic semantics. In fact, it is worth noting that in the non-
probabilistic case it is known (see [SV89]) that there are families (Ln)n≥0 of languages
Ln ⊆ Σω that are recognizable by nondeterministic Streett automata of size O(n), while
each nondeterministic Büchi automaton for Ln has 2n or more states. Thus, the poly-
nomial transformation from Streett to Büchi acceptance is specific for the probabilistic
case.

Let us now discuss the expressiveness of probabilistic ω-automata compared to their
nondeterministic counterparts. The first observation is that each NBA can be trans-
formed into an equivalent PBA. Hence, the class of languages that is recognizable by
a PBA subsumes the class of ω-regular languages. A transformation from NBA into
an equivalent PBA is obtained by using NBA that are deterministic-in-limit. These are
NBA such that for each state p that is reachable from some accepting state q ∈ F and
each letter a ∈ Σ state p has at most one outgoing a-transition. That is, as soon as an
accepting state has been reached the behavior from then on is deterministic. [CY95]
presented some kind of powerset construction which turns a given NBA N into an
equivalent NBA Ndet that is deterministic-in-limit. If we now resolve the nondetermin-
sitic choices in Ndet by uniform distributions4 then Ndet becomes a PBA that accepts
the same language as N (and Ndet). This yields:

Lemma 1 (see [BG05]). For each ω-regular language L ⊆ Σω there exists a PBA P
with the alphabet Σ such that L(P ) = L.

The powerset construction used in the transformation from N to Ndet can cause an
exponential blow-up. In fact, the worst-case exponential blow-up cannot be avoided for
the transformation from NBA to PBA since there are examples for families (Ln)n≥1 of
ω-regular languages that are accepted by NBA of linear size, while each PBA for Ln
has Ω(2n) states [BG05]. An example for such a family of languages is ((a + b)∗a(a +
b)nc)ω.

Vice versa, there are languages Ln that can be recognized by PBA of size O(n), while
any NSA for Ln has Ω(2n/n) states [BG05].

We now address the question whether each PBA can be transformed into an equiv-
alent NBA. Surprisingly, this is not the case, as there are PBA where the accepted lan-
guage is not ω-regular. An example is given in Figure 3 which shows a PBA Pλ where λ
is an arbitrary real number in the open interval ]0,1[. The PBA Pλ accepts the language

L(Pλ) =
{

ak1bak2bak3b . . . :
∞

∏
i=1

(
1−λki

)
> 0

}

4 If q is a state in Ndet and a ∈ Σ such that q has k a-successors q1, . . . ,qk then we define
δ(q,a,qi) = 1

k for 1 ≤ i ≤ k and δ(q,a, p) = 0 for all states p /∈ {q1, . . . ,qk}. Similarly, if Q0
is the set of initial states in Ndet and Q0 is nonempty then we deal with the initial distribution
µ0 that assigns probability 1/|Q0| to each state in Q0.
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q0 q1

a,1−λ

b

a,λ

a

Fig. 3. PBA Pλ accepts a non-ω-regular language

To see this, let us first observe that all words in L(Pλ) must contain infinitely many
b’s. As Pλ cannot consume two consecutive b’s, all words in L(Pλ) have the form
ak1bak2bak3b . . . where k1,k2, . . . is a sequence of positive natural numbers. We now
show that

PrPλ(ak1bak2bak3b . . .) =
∞

∏
i=1

(
1−λki

)

The factors 1−λki stand for the probability to move from state q0 to q1 when reading
the subword aki . With the remaining probability λki , the automaton Pλ stays in state
q0, but then letter b at position k1 + . . .+ ki + i of the input word ak1bak2bak3b . . . can-
not be consumed and Pλ rejects. Hence, the probability for run fragments of the form
q0 . . .q0q1 . . .q1 q0 that are generated while reading the subword akib is precisely 1−λki .
This yields that the infinite product of these values agrees with the acceptance proba-
bility for the input word ak1bak2bak3b . . ..

The convergence condition which requires the infinite product over the values 1−λki

to be positive can easily be shown to be non-ω-regular, i.e., L(Pλ) cannot be recognized
by an NBA. Together with Lemma 1 we get:

Theorem 2 (Expressiveness of PBA, [BG05]). The class of languages that are ac-
cepted by a PBA strictly subsumes the class of ω-regular languages.

This stands in contrast to the fact that probabilistic finite automata (PFA) with the accep-
tance criterion “the accepting runs have a positive probability measure” can be viewed
as nondeterministic finite automata, and hence, have exactly the power of regular lan-
guages.

The PBA Pλ can also serve to illustrate another interesting property of PBA. Con-
sider two values λ and ν ∈]0,1[ with λ < ν. For any sequence (ki)i≥1 of natural numbers
ki where the infinite product over the values 1− νki converges to some positive value,
also the infinite product over the values 1−λki is positive, as we have 1−νki < 1−λki .
Thus, L(Pν) ⊆ L(Pλ). In fact, whenever λ < ν then there are sequences (ki)i≥1 such
that the product of the values 1−λki converges to some positive real number, while the
product of the values 1−νki has value 0 [BBG08]. Hence:

Lemma 2 (see [BBG08]). If λ < ν then L(Pν) is a proper sublanguage of L(Pλ).

Thus, the languages of PBA are sensitive to the distributions for the successor states.
That is, if we are given a PBA and modify the nonzero transition probabilities then also
the accepted language might change. This property is surprising since the definition of
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the accepted language just relies on a qualitative criterion: the acceptance probability
must be positive, but might be arbitrarily small. This should be opposed to the verifica-
tion of finite-state Markov decision processes where it is known that whether or not a
given linear time property holds with positive probability just depends on the underlying
graph, but not on the concrete transition probabilities.

3 Composition Operators for PBA

The most important composition operators for any class of languages over infinite
words are the standard set operations union, intersection and complementation. In fact,
the class of PBA-recognizable languages is closed under all three operations.

Theorem 3 (see [BBG08]). The class of languages L(P ) for some PBA P is closed
under union, intersection and complementation.

For union, this is obvious since given two PBA P1 and P2 over the same alphabet with
initial distributions µ1 and µ2, respectively, we consider the PBA that arises from the
disjoint union of P1 and P2 with the initial distribution µ(q) = 1

2 µi(q) if q is a state
in Pi. If F1 and F2 are the sets of accepting states in P1 and P2, respectively, then P
requires to visit F1 ∪F2 infinitely often.

For intersection, we can reuse the ideas of an intersection operator on NBA. Given
two PBA P1 and P2 over the same alphabet, we use a product construction P1 × P2
(which runs P1 and P2 in parallel) and equip P1 ×P2 with the Streett condition con-
sisting of two acceptance pairs. One of the acceptance pairs requires that an accepting
state of P1 is visited infinitely often, the other one stands for the acceptance condition
of P2. This PSA P1 ×P2 can then be transformed into an equivalent PBA (part (c) of
Theorem 1).

The most interesting operator is complementation. Given a PBA P with L = L(P )⊆
Σω, the idea for the construction of a PBA P for the language L = Σω \L is somehow
similar to the complementation of NBA via Safra’s determinisation operator [Saf88]
and relies on the transformations sketched in Figure 4. Here, by a 0/1-PRA we mean
a PRA PR where the acceptance probabilities for all words are 0 or 1, i.e., PrPR(σ) ∈
{0,1} for each word σ ∈ Σω. Similarly, a 0/1-PSA is a PSA PS with PrPS(σ) ∈ {0,1}
for each word σ ∈ Σω. Given a 0/1-PRA PR, the duality of Rabin and Streett acceptance
yields that LRabin(PR) and LStreett(PR) are complements of each other. Thus, in the
second step of Figure 4 we may deal with the PSA PS which is syntactically the same
as PR (but PS is viewed as a Streett and PR as a Rabin automaton). The last step of
Figure 4 relies on the transformation from PSA to PBA (part (c) of Theorem 1).

The interesting step is the first one in Figure 4 where we have to construct a 0/1-
PRA from a given PBA. The idea for this transformation is to design a 0/1-PRA PR that

PBA P
for L " 0/1-PRA PR

for L " 0/1-PSA PS
for L " PBA P

for L

Fig. 4. Complementation of a PBA
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generates up to n sample runs of P and checks whether at least one of them is accepting,
where n is the number of states in P . If so then PR accepts, otherwise it rejects. For the
details of this construction we refer to [BBG08, Grö08].

Lemma 3 (From PBA to 0/1-PRA, [BBG08]). For each PBA there exists an equiva-
lent 0/1-PRA.

4 Decision Problems for PBA

For many applications of automata-like models, it is important to have (efficient) deci-
sion algorithms for some fundamental problems, like checking emptiness or language
inclusion. For instance, the automata-based approach [VW86] for verifying ω-regular
properties of a nondeterministic finite-state system relies on a reduction to the emptiness
problem for NBA. Unfortunately, the emptiness problem and various other classical de-
cision problems for automata cannot be solved algorithmically for PBA:

Theorem 4 (Undecidability of PBA [BBG08]). The following problems are
undecidable:

– emptiness: given a PBA P , does L(P ) = /0 hold?
– universality: given a PBA P with the alphabet Σ, does L(P ) = Σω hold?
– equivalence: given two PBA P1 and P2, does L(P1) = L(P2) hold?

To prove undecidability of the emptiness problem, we provided in [BBG08] a reduction
from a variant of the emptiness problem for probabilistic finite automata (PFA) which
has been shown to be undecidable [MHC03]. Undecidability of the universality problem
then follows by the effectiveness of complementation for PBA. Undecidability of the
PBA-equivalence problem is an immediate consequence of the undecidability of the
emptiness problem (just consider P1 = P and P2 a PBA for the empty language).

A consequence of Theorem 4 is that PBA are not appropriate for verification algo-
rithms. Consider, e.g., a finite-state transition system T and suppose that a linear-time
property p to be verified for T is specified by a PBA P in the sense that L(P ) repre-
sents all infinite behaviors where property p holds. (Typically p is a language over some
alphabet Σ = 2AP where AP is a set of atomic propositions and the states in T are la-
beled with subsets of AP.) Then, the question whether all traces of T have property p is
reducible to the universality problem for PBA and therefore undecidable. Similarly, the
question whether T has at least one trace where p holds is reducible to the emptiness
problem for PBA and therefore undecidable too.

Another important consequence of Theorem 4 is that it yields the undecidability of
the verification problem for partially observable Markov decision processes (POMDPs)
against ω-regular properties. POMDPs provide an operational model for stochastic sys-
tems with non-observable behaviors. They play a central role in many application areas
such as mobile robot navigation, probabilistic planning task, elevator control, and so
on. See, e.g., [Son71, Mon82, PT87, Lov91]. The syntax of a POMDP can be defined
as for probabilistic ω-automata, except that the acceptance condition has to be replaced
with an equivalence relation ∼ on the states which formalizes which states cannot be
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distinguished from outside. The elements in the alphabet Σ are viewed as action names.
The goal is then to design a scheduler S that chooses the actions for the current state
and ensures that a certain condition X holds when the choices between different enabled
actions in the POMDP M are resolved by S. For his choice the scheduler may use the
sequence of equivalence classes that have been passed to reach the equivalence class of
the current state. That is, the scheduler is supposed to observe the equivalence classes,
but not the specific states. (Such schedulers are sometimes called “partial-information
schedulers” or “observation-based schedulers”.)

The emptiness problem for PBA is a special instance for the scheduler-synthesis
problem for POMDPs. Given a PBA P = (Q,Σ,δ,µ0,F), we regard the POMDP M =
(Q,Σ,δ,µ0,∼) where ∼ identifies all states and ask for the existence of a scheduler that
ensures that F will be visited infinitely often with positive probability. We first observe
that the infinite words over Σ can be viewed as schedulers for M , and vice versa. Hence,
L(P ) is nonempty if and only if there is a scheduler S such that PrM

S (!♦F) > 0, where
PrM

S (!♦F) denotes the probability that M visits F infinitely often when S is used to
schedule the actions in M . Similarly, the universality problem for PBA can be viewed
as a special instance of the problem where we are given a POMDP M and a set F
of states and ask for the existence of a scheduler S such that PrM

S (♦!F) = 1 where
PrM

S (♦!F) denotes the probability that M under scheduler S eventually enters F and
never leaves F from this moment on. Thus:

Theorem 5 (Undecidability results for POMDPs, [BBG08]). The following prob-
lems are undecidable:

– given a POMDP M and a set F of states, decide whether ∃S.PrM
S (!♦F) > 0

– given a POMDP M and a set F of states, decide whether ∃S.PrM
S (♦!F) = 1

The result of Theorem 5 is remarkable since the corresponding questions for fully ob-
servable Markov decision processes (i.e., POMDPs where the∼-equivalence classes are
singletons) are decidable in polynomial time. However, there some other instances of
the verification problem for POMDPs which are decidable. This includes the following
questions (for further details see [dA99, BBG08, Grö08]):

∃S.PrM
S (!F) > 0

∃S.PrM
S (♦F) > 0

∃S.PrM
S (!F) = 1

∃S.PrM
S (♦F) = 1

∃S.PrM
S (!♦F) = 1

∃S.PrM
S (♦!F) > 0

From the decidability of the question whether a given POMDP M and set F of states
in M has a scheduler S such that PrM

S (!♦F) = 1 we can derive the decidability of the
emptiness problem for PBA under an alternative semantics that requires that almost all
runs are accepting. Formally, this almost-sure semantics for PBA assigns the language

L=1(P ) =
{

σ ∈ Σω : PrP (σ) = 1
}
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to each PBA P . Thus, the switch from the standard semantics L(P ) to the almost-sure
semantics simplifies algorithmic problems, but the almost-sure semantics has several
other disadvantages. PBA with the almost-sure semantics are less expressive. They
even do not cover the full class of ω-regular languages. For instance, the ω-regular
language (a + b)∗aω cannot be recognized by a PBA with the almost-sure semantics.
Since the complement (a∗b)ω of this language is recognizable by a deterministic Büchi
automaton (and therefore also by a PBA with the almost-sure semantics), PBA with
the almost-sure semantics are not closed under complementation. Furthermore, there
are PBA where the almost-sure semantics yields a non-ω-regular language. An exam-
ple is the complement of the language L(Pλ) which is recognizable by a PBA with the
almost-sure semantics, while L(Pλ) is not.

We finally mention that the differences between the standard semantics L(P ) and
the almost-sure semantics L=1(P ) for PBA do not hold when switching to Rabin or
Streett acceptance. Recall that by the results established in Lemma 3 and Theorem 1,
PRA with the almost-sure semantics are as expressive as ordinary PRA (and PBA), and
checking emptiness, universality or equivalence of PRA with the almost-sure semantics
are undecidable.

5 Conclusion

We gave a summary of the fundamental properties of probabilistic acceptors for infinite
words formalized by probabilistic ω-automata with Büchi, Rabin or Streett aceptance
conditions. The results show some major differences to nondeterministic (or alternating)
ω-automata concerning the expressiveness, efficiency and decidability, which makes
PBA interesting at least from a theoretical point of view.

So far, just the basic principles of probabilistic ω-automata have been studied and
many interesting problems still have to be addressed, such as characterizations of the
class of PBA-recognizable languages (e.g., by some temporal or modal logic or some
extension of monadic second-order logic or by an extension of ω-regular expressions),
or alternative semantics for PBA where checking emptiness is decidable and the full
class of ω-regular languages is covered.

The undecidability of the emptiness problem and related problems shows that PBA
with the standard semantics are not adequate for algorithmic purposes, e.g., the verifica-
tion of systems with nondeterministic behaviors. The situation changes if the system to
be verified is purely probabilistic (i.e., modelled by a Markov chain). In this case some
decidability results for the verification problem against PBA-specifications can be es-
tablished [BG05]. Being a special instance of POMDPs all negative results for PBA
(undecidability) carry over from PBA to POMDP. Vice versa, for many algorithmic
problems for POMDPs, algorithmic solutions for PBA can be combined with standard
algorithms for (fully observable) Markov decision processes to obtain an algorithm that
solves the analogous problem for POMDPs.

Another application of probabilistic ω-automata is run-time verification where spe-
cial types of PBA can serve as probabilistic monitors [CSV08]. Given the wide range
of application areas of probabilistic finite automata, there might be various other
applications of probabilistic ω-automata. For instance, the concept of probabilistic
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ω-automata is also related to partial-information games with ω-regular winning ob-
jectives [CDHR06] or could serve as starting point for studying quantum automata over
infinite inputs, in the same way as PFA yield the basis for the definition of quantum
finite automata [KW97, AF98].

For these reasons, we argue that the concept of probabilistic ω-automata is an inter-
esting new research field with plenty of open questions that might lead to interesting
applications.
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