
Asynchronous Deterministic Rendezvous on the Line�

Grzegorz Stachowiak

Institute of Computer Science, University of Wrocław
Joliot-Curie 15, 50-383 Wrocław, Poland

gst@cs.uni.wroc.pl

Abstract. We study the rendezvous problem in the asynchronous setting in the
graph of infinite line following the model introduced in [13]. We formulate
general lemmas about deterministic rendezvous algorithms in this setting which
characterize the algorithms in which the agents have the shortest routes. We also
improve rendezvous algorithms in the infinite line which formulated in [13]. Two
agents have distinct labels Lmin, Lmax and |Lmin| ≤ |Lmax|. When the initial dis-
tance D between the agents is known, our algorithm has cost D|Lmin|2 which
is an improvement in the constant. If the initial distance is unknown we give
an algorithm of cost O(D log2 D + D log D|Lmax|+ D|Lmin|2 + |Lmax||Lmin
| log |Lmin|) which is an asymptotic improvement.

1 Introduction

Two mobile agents (robots) are initially located in a network being an undirected
connected graph. Their task is to meet somewhere in the graph. This is known in the
literature as the rendezvous problem. Papers studying rendezvous problem in the syn-
chronous setting require agents to meet in a node. In the asynchronous setting the ad-
versary can make the agents visit nodes at different times, so it is assumed that the
meeting can occur either in a node or inside an edge. In this paper we follow the model
introduced in [13].

In this model vertices are not labeled, but agents can distinguish edges adjacent to
a node. We assume, that the ports of a node are locally labeled 1, 2, 3, . . . , d, where d
is the degree of the node. An agent currently located in a node knows only the local
labeling corresponding to this node. No coherence between these local labelings is as-
sumed. When an agent traverses an edge, it knows both the label of the port by which it
leaves and the port it enters a node and the degrees of the nodes. In general version of
the problem we do not assume any knowledge of the topology of the graph, its size and
the initial positions of the agents.

If agents are identical and execute the same program, then deterministic rendezvous
is in in general impossible. Particularly in the graph of infinite line the adversary can
make the agents move in the same direction at the same speed. Hence we assume, that
the agents have unique identifiers, called labels, which are distinct binary strings, and
every agent knows its own label. We also assume, that the agent knows nothing about the
label of the other agent. The only initial input of a (deterministic) rendezvous algorithm

� Supported by MNiSW grants N206 001 31/0436, 2006–2008 and N N206 1723 33, 2007–
2010.

M. Nielsen et al. (Eds.): SOFSEM 2009, LNCS 5404, pp. 497–508, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

498 G. Stachowiak

executed by an agent is the agent’s label. During the execution of the algorithm the
agent learns the local port number by which it enters a node. If L is a label, |L| denotes
its length. When there are two agents, by Lmin we denote the shorter label and by Lmax

the longer label. The distance between the initial positions of the agents is D.
To analyze our algorithms we can consider an adversary. In general version of the

problem, the adversary can choose the topology of yet unexplored part of the graph. We
consider asynchronous algorithms, so when the agent situated in a node v0 at a time
t0 has to traverse a segment [v0, v1], the adversary chooses t1 > t0 and the continuous
function f : [t0, t1] → [v0, v1] with f(t0) = v0, f(t1) = v1. This function defines
the actual movement of an agent inside the segment [v0, v1]. Some authors assume that
the agent can go back and forth inside a segment, but since this assumption does not
give agents additional capability to avoid each other, we assume that f is monotone.
The agent can move with an arbitrary speed. We say that in time t ∈ [t0, t1] the agent is
in point f(t) ∈ [v0, v1].

As we already mentioned, the rendezvous occurs when both agents are at the same
point at the same time. The cost of the rendezvous is defined as the worst-case number
of edge traversals by both agents (the last partial edge traversal is counted as a com-
plete one for both agents), where the worst-case is taken over all choices of labels and
decisions of the adversary.

In [13] the choice of the starting times for the agents is also left to the adversary.
We assume, that both agents start at the moment t = 0. Starting at different times can
be described by the constant function f for the agent starting later in the time before it
starts moving. Starting points of the agents are chosen by the adversary.

The rendezvous problem was introduced in [22]. The problem of the rendezvous
on the line attracted very much attention [4,6,10,11,12,13,16,17,24]. Other considered
scenarios were rendezvous on the plane [7,8]) and in graphs [1,3,13]. Most papers con-
sider probabilistic scenario e.g. [1,2,9,10,11,17,18,24], where inputs or rendezvous al-
gorithms are random. A natural extension of the rendezvous problem is that of gathering
[15,18,21,23] where many agents should meet in one location.

Deterministic rendezvous of anonymous agents able to mark nodes in unlabeled
graphs was considered in [20]. In [13,14,19,25] deterministic rendezvous in graphs
with labeled agents was considered. In almost all these papers synchronous setting was
assumed. The only exception was paper [13] in which rendezvous in graphs in the asyn-
chronous setting was introduced. Asynchronous rendezvous under geometric scenario
was studied in [15].

We can perform the rendezvous in an n-node tree in time O(n) (see [13]). Every tree
has either a central node or a central edge. Agents can first explore the tree by DFS and
then meet in the central node or edge. The above method can be applied on a finite line,
but is not feasible in the infinite line.

In paper [13] two algorithms for the infinite line are described. One assumes knowl-
edge of D by both agents and has cost O(D|Lmin|2). The other does not assume the
knowledge of D and has cost O(D3 + |Lmax|3). In that paper also the rendezvous prob-
lem on a n-node ring was concerned. An optimal O(n|Lmin|) rendezvous algorithm for
known n and O(n|Lmax|) algorithm for unknown n were found. Since these algorithms
for the ring are almost optimal we concentrate on the graph of infinite line.

Asynchronous Deterministic Rendezvous on the Line 499

In section 2 we give general theorems stating that we can reduce the lengths of the
routes of the agents when they contain subroutes called lightnings. The routes without
lightnings are either ascending or unimodal. In section 3 we introduce a general class
of skeleton algorithms used in the further sections. In section 4 we describe an algo-
rithm for known D. It has the same asymptotic cost O(D|Lmin|2) as in [13], but the
constant hidden behind the big O is eight times better than in [13]. In sections 5,6 and
7 we describe the algorithms for unknown D. The algorithm for known |L| has cost
O(D|L|2) which is the same as for known D. The algorithm for unknown |L| (and D)
has cost O(D log2 D + D log D|Lmax| + D|Lmin|2 + |Lmax||Lmin| log |Lmin|) which is
asymptotically better than in [13].

2 General Algorithms

We consider an agent starting from vertex v of the infinite line. The agent assigns an
orientation to the line choosing direction right according to the first edge it follows and
left to the opposite direction. Then the agent tags the vertices of the line. Vertex v has
tag 0, the vertex k steps to the right gets tag k and the vertex k steps to the left gets
tag −k. This tagging can be then arbitrarily extended to all possible positions of the
agent (i.e. to all ”points” inside edges). Thus we view the tagging to be a continuous
mapping from the infinite line to R.

The agent moves along some route depending on agent’s label and possibly on the
initial distance D between the agents (if they know D). This route can be expressed
by a sequence of integers (x1, x2, x3, . . .) such that x2i−1 > x2i < x2i+1. The agent
moving along such a route, first goes right to the vertex tagged x1 (so x1 > 0), then
left to the vertex of tag x2, then right to the vertex x3 and so on. A segment [a, b] of the
line is the subgraph of the line consisting of all vertices between vertices tagged a and
b including these vertices, and edges between them. The route (x1, x2, x3, . . .) can be
viewed as the sum of subsequent segments: [0, x1], [x1, x2], [x2, x3],

Now let us consider two agents starting from vertices u and v. Each agent has a label
that determines its route. For arbitrary routes, not necessarily defined by a rendezvous
algorithm, we have two possibilities. The first possibility is that both agents meet no
matter of what pace they follow their routes. This possibility should be the case when we
indeed use a rendezvous algorithm. In such a case we say that two routes meet. The other
possibility is that there is a way to follow both routes, in which the agents do not meet.
If this is possible, we say that two routes miss. We say that a route contains lightning
xi, xi+1, xi+2, xi+3, if xi+1, xi+2 ∈ [xi, xi+3]. We can transform a route containing a
lightning into reduced route described by the sequence (x1, x2, . . . , xi, xi+3, . . .) (just
skipping xi+1, xi+2). This operation is called the reduction of a lightning.

Lemma 1. Assume, two agents in the infinite line start from vertices u and v. Assume,
the route V of the agent starting from v contains a lightning and V ′ is the reduced
route. The route V and the route U starting from u miss if and only if V ′ and U miss.

Proof. Figure 1 illustrates the Proof. ��
This lemma can also be formulated in an equivalent way: the routes starting from u and
v meet if and only if the reduced route starting from v and the route starting from u

500 G. Stachowiak

y

x

y

x (a)

right

(b)

left

time

Fig. 1. Proof of Lemma 1. A lightning connecting x and y can be replaced with segment [x, y]
(a) or vice versa (b) and the two routes (thicker and thinner) all the time miss.

meet. This has some consequences for rendezvous algorithms on the infinite line. In a
rendezvous algorithm we require, that any two routes assigned to different labels meet,
no matter what orientations of the line are chosen by the agents.

Theorem 1. Assume, that in a rendezvous algorithm a route containing a lightning
is assigned to some label L. If we replace this route by the reduced route, then the
algorithm remains a rendezvous algorithm.

For an arbitrary rendezvous algorithm, we can reduce its cost reducing all lightnings
in its routes. We should say how these maximally reduced routes look like. We call a
route (x1, x2, x3, . . .) ascending if sequences x1, x3, x5, . . . and 0,−x2,−x4, . . . are
ascending. A sequence of numbers a1, a2, . . . , as is unimodal if and only if there is m
such that am = maxai and ai−1 < ai for i ≤ m and ai > ai+1 for i > m (it is
possible that am = am+1). We call a route (x1, x2, x3, . . .) unimodal if the following
conditions hold

– sequences x1, x3, x5, . . . and 0,−x2,−x4,−x6, . . . are unimodal (and thus finite),
– if x2m′−1 = max{x2i−1} and −x2m′′ = max{−x2i}, then |(2m′−1)−2m′′| = 1.

Theorem 2. A route (x1, x2, x3, . . .) does not contain lightnings if and only if it is
either ascending or unimodal.

Proof. An ascending route obviously does not contain lightnings. Assume, there is a
lightning xi, xi+1, xi+2, xi+3 on a unimodal route for an odd i. We have x2m′−1 ≥
xi ≥ xi+2 and −x2m′′ ≥ −xi+3 ≥ −xi+1, which contradicts the condition |(2m′ −
1) − 2m′′| = 1. The case of even i is analogous.

Now we show, that if a route does not contain lightnings, then it is either ascending
or unimodal. Let xm be the first element of the sequence (x1, x2, x3, . . .) for which
xm ≥ xm+2 for an odd m or xm ≤ xm+2 for an even m. If such an index m does not
exist, then the route is ascending.

Without the loss of generality we assume, that m is odd and xm ≥ xm+2. For an
even m the proof is symmetric. Since xm ≥ xm+2, then xm+1 < xm+3, otherwise
xm, xm+1, xm+2, xm+3 form a lightning. Since xm+1 < xm+3, then also xm+2 >
xm+4, otherwise xm+1, xm+2, xm+3, xm+4 form a lightning. Since xm+2 > xm+4,

Asynchronous Deterministic Rendezvous on the Line 501

then also xm+3 < xm+5, otherwise xm+2, xm+3, xm+4, xm+5 form a lightning. And
so on until the end of the sequence. So the only local maxima of odd indexed sequence
can be xm and xm+2, and the only local minimum of the even indexed sequence is
xm+1. Thus the route is unimodal. ��

3 Skeleton Algorithms

We introduce a general family of skeleton algorithms on the infinite line. All ren-
dezvous algorithms constructed in this paper are based on algorithms from this fam-
ily. In the construction of such an algorithm we have a string of positive integers
S = (s1, s2, s3, . . .) called skeleton. The label L ∈ {0, 1}∗ of an agent is transformed
into another string1 L∗ = (l1, l2, l3, . . .) ∈ {−1, 1}∗ of length equal to the length the
skeleton (can be infinite).

The algorithm builds the route of an agent from the segments which it traverses. The
first segment is [0, l1 ·s1] (so we define s0 =0), and the i-th segment is [li−1 ·si−1, li ·si].
If the skeleton S = (s1, s2, . . . , sm) is finite, then the m + 1-st segment is [lm · sm, 0]
(thus sm+1 =0). Because l1 · s1 and x1 are both positive, we should have l1 =1.

We are particularly interested in skeletons being either ascending (si−1 < si for
all i) or unimodal sequences. The routes defined by such skeletons are either ascending
or unimodal.

To analyze skeleton algorithms with ascending skeletons we introduce the function
W : N → R. The value of W (x) is the maximum length of a route defined by a skeleton
algorithm till the moment, the distance of an agent from vertex 0 becomes equal x for
the first time. Obviously W (x) is a strictly ascending function. We can formulate the
following obvious fact.

Fact 1. W (x) ≤ x + 2
∑

si<x

si.

When the skeleton S is ascending we define Δsi = si − si−1. We can formulate the
following lemma about skeleton algorithms with ascending skeletons.

Lemma 2. Let the skeleton S = (s1, s2, s3, . . .) be an ascending sequence. Let us have
two agents starting from vertices u and v in distance D and having different labels L, K
transformed into strings L∗ = (l1, l2, l3, . . .) and K∗ = (k1, k2, k3, . . .). There are four
pairs (λ, κ) ∈ {−1, 1}2. If for any pair (λ, κ) there exists i such that (li, ki) = (λ, κ)
and Δsi ≥ D, then these agents always meet. Let j be the smallest index such that for
any pair (λ, κ) there is i ≤ j fulfilling (li, ki) = (λ, κ) and Δsi ≥ D. The total length
of the routes of both agents till the meeting is not bigger than 2W (sj).

Proof. We consider the tagging of the infinite line according to the agent starting from
v. We assume, u has tag D. The case of tag −D is symmetric. From the premise of the
lemma we conclude that there exists an index i for which the following conditions hold

– si − si−1 ≥ D,
– the i-th segment of the route starting in v ends in the vertex tagged si,
– the i-th segment of the route starting in u ends in the vertex tagged D − si.

1 {−1, 1}∗ denotes here the set of all finite or infinite strings of elements in {−1, 1}.

502 G. Stachowiak

Without loss of generality we can assume, that the agent starting from v is the first agent
completing i-th segment of its route and it occurs in moment t. The agent starting from
u is in moment t inside segment [D−si, D+si−1]. Thus in moment t the agent starting
from u is in point of tag smaller or equal, than the point the agent starting from v is in.
The starting point u has tag bigger, than the starting point v. Because of continuity of
the routes the agents meet somewhere between the moments 0 and t. They meet until
they complete j-th segments of their routes. This gives the estimation of the cost. ��

We can also formulate a very similar lemma for unimodal skeletons.

Lemma 3. Let the skeleton S = (s1, s2, s3, . . .) be a unimodal sequence. Let us have
two agents starting from vertices u and v in distance D and having different labels L, K
transformed into strings L∗ = (l1, l2, l3, . . .) and K∗ = (k1, k2, k3, . . .). If for any pair
(λ, κ) ∈ {−1, 1}2 there exists i such that (li, ki) = (λ, κ) and also si − si−1 ≥ D or
si − si+1 ≥ D, then the routes of these agents meet.

Proof. The case of si − si−1 ≥ D is a repetition of the proof of the previous lemma.
An unimodal skeleton has to be finite. The case si − si+1 ≥ D is a repetition of the

proof of the previous lemma, if we reverse the time. We remind that the last segment
returns the agent to its starting vertex. ��

4 Known D

In this section we consider two agents initially situated in the infinite line in distance D.
Unlike in the further sections this distance is known to both agents. In [13] an algorithm
of cost O(D|Lmin|2) was presented. We can express the cost of a rendezvous algorithm
more precisely, than in terms of the big O. We say, that the cost is at most ∼ f(D, L)
when it is bounded from above by a function g(D, L) such that2 g(D, L) ∼ f(D, L).

The algorithm for known D described in [13] has cost ∼ 8D|Lmin|2 because of
Fact 2.1 from [13]. In this section we concentrate on improving the leading constant
in front of D|Lmin|2. We present a rendezvous algorithm of cost ∼ D|Lmin|2. Our con-
struction is based on skeleton algorithms with unimodal skeletons.

First we define Bk to be the set of all strings (l1, l2, · · · , l2k) : li ∈ {−1, 1} whose
exactly k elements li are 1’s including l1 = 1. We have |Bk| = 1

2

(
2k
k

)
.

Lemma 4. If L∗ and K∗ are different sequences in Bk, then for any pair (λ, κ) ∈
{−1, 1}2 an index i exists such that (li, ki) = (λ, κ).

Let k = k(r′) be the smallest k, for which |Bk| = 1
2

(
2k
k

) ≥ 2 · 22r′
. There exists a

mapping ϕr′ assigning a unique element L1 ∈ Bk to each label L of length r = 2r′ or
r = 2r′ − 1. The rendezvous algorithm is presented in Figure 2.

Fact 2. The total length of any route for label of length r is at most ∼ 1
2Dr2.

2 We follow the notation f(D, L) ∼ g(D, L) equivalent to ∀ε > 0 : |f(D, L)/g(D, L)− 1| <
ε for D > Dε, L > Lε.

Asynchronous Deterministic Rendezvous on the Line 503

1. For label L of length r let r′ = �r/2� and k = k(r′). Let k′ = k′(r′) be the smallest
integer such that 2k′ − log1.1 k′ − 1 ≥ 2k.

2. The unimodal skeleton S = (D, 2D, 3D, . . . , (k′ − 1)D, k′D, k′D, (k′ − 1)D, . . . , D).
3. Let I = {i ∈ [1, 2k′] : ∃ι∈Z i = �1.1ι�} ∪ {k′ + 1}. Let J = {1, 2, . . . , 2k′} \ I .
4. We define the sequence L∗ = (l1, l2, . . . , l2k′) ∈ {−1, 1}∗ assigned to L. Let LJ =

ϕr′(L). We put the string LJ as elements of lj for j ∈ J in unchanged order (if |J | > 2k,
then lj = 1 for a couple of last indices j ∈ J). If i ∈ I then li = −li−1.

Fig. 2. Skeleton algorithm for known D

The analysis of this algorithm is split into two cases: the values r′ for both labels equal
or different. For equal values the rendezvous is assured by entries of L∗ corresponding
to the index set J . The entries in the set I are responsible for the rendezvous, if these
values are different.

Lemma 5. Any two routes corresponding to labels L1, L2 of lengths r1, r2 : r1 ≤ r2

such that 	r1/2
 = 	r2/2
 = r′ meet. The cost in this case is at most ∼ Dr2
1 .

Proof. We can apply Lemmas 3 and 4 considering only indices in J , so the routes meet.
The cost of the algorithm is at most the total length of both routes i.e. ∼ Dr2

1 . ��
Fact 3. If r′1 < r′2, then k(r′1) < k(r′2).

Lemma 6. Any two routes corresponding to labels L1, L2 of lengths r1, r2 such that
r′ = 	r1/2
 < 	r2/2
 = r′′ meet. The cost in this case is at most ∼ Dr2

1 .

Proof. If r′ < r′′, then k′ = k′(2r′) < k′(2r′′) = k′′. Let S = (D, 2D, 3D, . . . , (k′′−
1)D, k′′D, k′′D, (k′′−1)D, . . . , D) be the skeleton for L2. The indices {1, 2, . . . , 2k′′}
are divided into sets I and J . We consider the smallest i ∈ I such that k′ + 1 < i. Such
an index i exists, because k′ + 1 < k′′ + 1 ∈ I . Note, that i ≤ 	1.1(k′ + 1)
.

We consider the tagging of the infinite line by the agent of label L2. Without loss of
generality we can assume, that the agent labeled L1 starts from vertex D.

The agent labeled L2 has the vertex of tag (i − 1)D in the i-th segment of its route,
because li �= li−1. Assume, it gets to this vertex in moment t. The agent of label L1

is in moment t in the segment [D − k′D, D + k′D] and k′ ≤ (i − 2). So in moment
t the agent of label L1 is in point of smaller tag, than the agent labeled L2. The tag of
the starting point of the agent labeled L1 is bigger than for the agent labeled L2. Due to
continuity of the routes they have to meet in some moment earlier than t.

The length of the route of agent of label L2 until the end of segment i is at most
∼ 1.12 1

4Dr2
1 . The total length of the route of the agent labeled L1 is at most ∼ (1

2)Dr2
1 .

Thus the cost of the algorithm is at most ∼ (1
2 + 1.12 1

4)Dr2
1 < Dr2

1 . ��
Finally we summarize Lemmas 5 and 6 as the main theorem.

Theorem 3. The algorithm from this section is a rendezvous algorithm on the infinite
line for known distance D of cost at most ∼ D|Lmin|2.

504 G. Stachowiak

5 Unknown D, Fixed |L|
Now we construct a rendezvous algorithm in the case when r = |L| is fixed and the
agents do not know the distance D. This algorithm has cost O(D|L|2). In this section
we also try to minimize the leading constant in front of D|L|2.

Our algorithm is a skeleton algorithm with an ascending infinite skeleton and is pre-
sented in figure 3. In this algorithm we have a parameter a which determines the leading
constant in the cost and is chosen later on in this section.

Lemma 7. Let us consider the routes of two agents labeled L, K . An index j exists,
such that for any (λ, κ) ∈ {−1, 1}2 there is i : i ≤ j fulfilling (li, ki) = (λ, κ) and
Δsi ≥ D. If we choose the smallest such an index j, then sj ≤ Dab/(b−1). The routes
meet and the rendezvous cost is at most 2W (Dab/(b − 1)).

Proof. Let j be the smallest integer for which Δsj−2k+1 > D. For all 2k values i ∈
(j − 2k, j] we have Δsi ≥ Δsj−2k+1 ≥ D. Because of Lemma 4 for any (λ, κ) ∈
{−1, 1}2 there is i ∈ (j − 2k, j] such that (li, ki) = (λ, κ). Since Δsi is a geometric
progression, Δsj ≤ Da implies sj =

∑
i≤j Δsi ≤ Dab/(b− 1). Due to Lemma 2, the

routes meet till any agent gets to the distance Dab/(b − 1) from its starting vertex. ��
Now we should estimate W (y) for an arbitrary y. Then we estimate b − 1.

Lemma 8. Function W (y) is upper bounded by a function F (y, a, k) ∼ 4yk
ln a .

Proof. We have W (y) <

∞∑

i=0

2y

bi
= 4yk

∞∑

i=0

1
ai/2k

1
2k

∼ 4yk

∫ ∞

0

dx

ax
=

4yk

ln a
. ��

Fact 4. b − 1 = a1/2k − 1 = eln(a)/2k − 1 ∼ 1 +
ln a

2k
− 1 =

ln a

2k
.

Finally we choose the parameter a minimizing the upper bound on the rendezvous cost

2W (Dab/(b−1)). We have 2W
(

Dab
b−1

)
< 16k2Da

ln2 a
(1+o(1)). In order to minimize the

leading constant we minimize g(a) = a
ln2 a

. It is easy to compute, that function g(a)
attains its minimum for am = e2 and g(am) = e2/4.

Theorem 4. The algorithm described in this section for a = am is a rendezvous algo-
rithm for unknown D and fixed |L| of cost at most ∼ e2D|L|2.

1. The skeleton is the sequence si = �bi�, where b = a1/(2k).
2. We choose the minimal integer k such that |Bk| ≥ 2r . There exists a mapping ϕ assigning

a unique L′′ ∈ Bk to each L ∈ {0, 1}r .
3. The periodic sequence L∗ is constructed by repeating L′′ = ϕ(L) infinite number of

times.

Fig. 3. Skeleton algorithm for unknown D and fixed |L|

Asynchronous Deterministic Rendezvous on the Line 505

6 Superposition of Skeleton Algorithms

In the next section we define a rendezvous algorithm in the case when both D and |L|
can vary. Our solution requires combining two skeleton algorithms. In this section we
define the superposition of two algorithms. From now on we analyze the algorithms
only in terms of the big O no longer taking care about the leading constants.

Let us have two skeleton algorithms AU , AV with ascending skeletons U and V .
They do not need to be rendezvous algorithms i.e. do not need to assure the rendezvous.
We define a skeleton algorithm AU ◦AV being their superposition in figure 4. Assume,
that in AU (AV) the rendezvous happens till any agent gets to the distance x from its
starting vertex. The algorithm AU ◦AV assures the rendezvous, till this distance for any
agent is cx for some constant c. Thus in the sense of this distance AU ◦AV is at most c
times worse, than the algorithm AU (AV).

Lemma 9. If u′
i > 8, then ui ≤ u′

i < 19
3 ui. If v′i > 8, then vi ≤ v′i < 19

3 vi.

We denote by WU (y), WV (y) and W (y) the maximum cost of the route till the agent’s
distance from its starting vertex is equal y, when the route is generated by AU , AV and
AU ◦ AV respectively.

Lemma 10. Let AU , AV , AV ′ be skeleton algorithms. Let the labels L, K of two agents
be transformed in algorithm AU into strings P ∗ = (p1, p2, p3, . . .) and R∗ = (r1, r2,
r3, . . .) respectively. Let j be the smallest index, such that for any (λ, κ) ∈ {−1, 1}2

there is an integer i : i ≤ j fulfilling (pi, ri) = (λ, κ) and Δui ≥ D. The route
generated by algorithm AU ◦AV for L and the route generated algorithm AU ◦AV ′ for
K meet, till any agent goes to the distance u′

j from its starting vertex. The same holds,
when the routes are generated by AV ◦ AU and AV ′ ◦ AU respectively.

Proof. We have Δsi′ ≥ Δui for si′ = u′
i. Thus the premise of Lemma 2 is true and the

rendezvous occurs till any agent gets to the distance u′
j from its starting vertex. ��

1. Let U = (u1, u2, . . .) and V = (v1, v2, . . .) be the skeletons of AU and AV respectively.
We define X0 = (0, 2] and Xk = (22k−1, 22k+1] for k > 0.

2. We transform the skeleton U = (u1, u2, . . .) into the sequence U ′ = (u′
1, u

′
2, . . .):

i← 1, k ← 0 and (a, b]← Xk

while i does not exceed length(U)
if Δui ≤ b− a then u′

i ← a + Δui, a← u′
i, i← i + 1

else k← k + 2, (a, b]← Xk .
3. We transform skeleton V = (v1, v2, . . .) into sequence V ′ = (v′

1, v
′
2, . . .) using almost

the same subroutine as transforming U into U ′. The only difference is initializing k← 1.
4. The ascending skeleton S of AU ◦AV is the result of merging sequences U ′, V ′.
5. Let P ∗ = (p1, p2, . . .) and Q∗ = (q1, q2, . . .) be the strings belonging to {−1, 1}∗ that

are assigned to L in algorithms AU and AV respectively. In the j-th segment of the route
defined by AU ◦AV , the agent goes to the vertex tagged pi ·u′

i if sj = u′
i, or to the vertex

qi · v′
i when sj = v′

i.

Fig. 4. Superposition AU ◦ AV of skeleton algorithms with ascending skeletons

506 G. Stachowiak

1. Let l = l(L) be such that 2l−1 ≤ |L| < 2l. Let L1 be the concatenation: L02l−1−|L|1.
Let AU be the algorithm described in Figure 3 for label L1.

2. We divide the set N of all indices into disjoint sets of subsequent indices I1, I2, I3, . . .
such that the set Ik has 2k elements. So: I1 = {1, 2},I2 = {3, 4, 5, 6},I3 =
{7, 8, 9, 10, 11, 12},. . . .

3. For each i ∈ Ik let Δvi = 2k. This defines the skeleton V .
4. Let rk be the largest integer, such that 2rk ≤ 1

2

`
2k
k

´
. There is a mapping ϕk assigning

each nonnegative integer smaller than 2rk a unique string from Bk.
5. Let lk = min{l, 2rk − 1}, Qk = ϕk(lk). Let Q∗ be the concatenation Q1Q2Q3Q4
6. The algorithm AV has skeleton V for which the string Q∗ ∈ {−1, 1}∗ is applied.
7. The rendezvous algorithm is the superposition AU ◦AV

Fig. 5. Algorithm for unknown D and |L|

Lemma 11. W (y) ≤ 19
3 WU (y) + 19

3 WV (y) + O(y).

Proof. Let j = min{i : si ≥ y} and sj ∈ Xk. We can divide the sections of the route
generated by algorithm AU ◦ AV into four sets.

– Sections for si ≤ 8. Altogether they have length not bigger than 64.
– Sections for si−1 �∈ Xl, si ∈ Xl. Their length is at most 2

∑k
l=0 22l+1 = O(y).

– Sections whose length is Δsi. Their total length is at most
∑j

i=0 Δsi = O(y).
– Sections [−u′

i−1, u
′
i] or [u′

i−1,−u′
i] corresponding to sections [−ui−1, ui] or

[ui−1,−ui] in algorithm AU . Their total length is not bigger than 19
3 WU (y).

– Sections like in the previous set but for algorithm AV . They have total length not
bigger than 19

3 WV (y). ��

7 Unknown D and |L|
In this section we present an efficient rendezvous algorithm on the infinite line when
neither |L| nor D are known. Our algorithm is a superposition AU ◦AV of two skeleton
algorithms AU and AV and is described in figure 5. Algorithm AU is an efficient ren-
dezvous method when the |Lmin| and |Lmax| are the same or close, otherwise it does not
assure, that the agents meet. Algorithm AV assures the rendezvous only when |Lmin|
and |Lmax| differ substantially.

Lemma 12. If l(L) = l(K), then the routes generated by AU ◦AV meet till any agent
gets to the distance O(D|L|) from its vertex 0.

Proof. Because of the the analysis of the algorithm from section 5 (Lemma 7 and
Fact 4) the routes in AU meet till any agent gets to the distance O(Dab/(b − 1)) =
O(D|L|) from its vertex 0. Due to Lemma 10 the same holds for AU ◦ AV . ��
Lemma 13. If l(L) < l(K), then the routes generated by AU ◦AV meet till any of the
agents goes to the distance O (|L| log |L| + D log D) from its starting vertex.

Asynchronous Deterministic Rendezvous on the Line 507

Proof. Let the strings Q, R ∈ {−1, 1}∗ be assigned in AV to the agent labels L, K
respectively. Let k be the smallest positive integer for which l(L) < 2rk − 1. We have
2k ∼ rk ∼ log |L|. Let k′ be the smallest integer k′ ≥ k such that 2k′ ≥ D. Note,

that k′ = O (max{log |L|, log D}). Let j =
∑k′

i=1 2i be the last index in Ik′ . For each
(λ, κ) ∈ {−1, 1}2 there exists i ≤ j, that (qi, ri) = (λ, κ) and Δvi = 2k′ ≥ D.
Because of Lemma 10 the rendezvous occurs till the distance of any agent from its

vertex 0 is O(vj). Note that vj =
∑k′

i=1 2i2i = O(k′2k′
). We can estimate that

O(vj) = O(k′2k′
) = O (|L| log |L| + D log D) . ��

Lemma 14. WU (y) = O(y|L|), WV (y) = O(y log y)

Theorem 5. The algorithm AU ◦ AV is a rendezvous algorithm. The rendezvous cost
is O(D log2 D + D log D|Lmax| + D|Lmin|2 + |Lmax||Lmin| log |Lmin|).
Proof. Assume, we apply the algorithm for two labels L, K : |L| ≤ |K|. The fact that
AU ◦ AV is a rendezvous algorithm follows from Lemmas 12 and 13. The cost in case
l(L) = l(K) can be estimated using Lemmas 11,12 and 14. The agents meet till their
distances from their starting vertices are y = O(D|L|). So

2W (y) ≤ 38
3

WU (y) +
38
3

WV (y) + O(y) = O(D|L|2 + D|L| log D)

The cost in case l(L) < l(K) is estimated by Lemmas 11,13,14. The rendezvous oc-
curs till the distance between any agent and its staring vertex is y = O(|L| log |L| +
D log D). Denote by WL, WK the values of W for algorithms defined by labels L, K .

WL(y) + WK(y) ≤ 38
3

WU(K)(y) +
38
3

WV (y) + O(y)

= O(|K||L| log |L| + |K|D log D + D log2 D)

The maximum cost is the maximum of the bounds on the costs 2W (y) and WL(y) +
WK(y) i.e. O(D log2 D + |K|D log D + D|L|2 + |K||L| log |L|). ��

8 Conclusions and Open Problems

It is unclear what the lower bound on rendezvous cost is, even in the case when D
is known. The author supposes that it is Ω(D|Lmin|2). Another question is the lower
bound for unknown D. We can construct an algorithm very similar to that in [13] in
which the cost is O(D3 + |Lmin|3). The cost of our algorithm from this paper depends
on |Lmax|. Can we get an efficient algorithm of cost not depending on |Lmax|?

References

1. Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33, 673–683 (1995)
2. Alpern, S.: Rendezvous search on labelled networks. Naval Res. Logist. 49, 256–274 (2002)
3. Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. J. Appl. Probab. 36,

223–231 (1999)

508 G. Stachowiak

4. Alpern, S., Gal, S.: Rendezvous search on the line with distinguishable players. SIAM J.
Control Optim. 33, 1270–1276 (1995)

5. Alpern, S., Gal, S.: The theory of search games and rendezvous. In: International Series
in Operations Research and Management Science, vol. 55. Kluwer Academic Publishers,
Dordrecht (2002)

6. Anderson, E., Essegaier, S.: Rendezvous search on the line with indistinguishable players.
SIAM J. Control Optim. 33, 1637–1642 (1995)

7. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. Symp. on Compu-
tational Geometry 1998, pp. 365–373 (1998)

8. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Oper. Res. 49, 107–118
(2001)

9. Anderson, E., Weber, R.: The rendezvous problem on discrete locations. J. Appl. Probab. 28,
839–851 (1990)

10. Baston, V.J.: Two rendezvous search problems on the line. Naval Res. Logist. 46, 335–340
(1999)

11. Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an
unknown probability distribution. SIAM J. Control Optim. 36, 1880–1889 (1998)

12. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Res.
Logist. 48, 722–731 (2001)

13. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous
deterministic rendezvous in graphs. Theor. Comput. Sci. 355, 315–326 (2006)

14. Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di Battista,
G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer, Heidelberg (2003)

15. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivi-
ous robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS,
vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

16. Gal, S.: Rendezvous search on the line. Oper. Res. 47, 974–976 (1999)
17. Han, Q., Du, D., Vera, J., Zuluaga, L.F.: Improved bounds for the symmetric rendezvous

value on the line. In: SODA 2007, pp. 69–78 (2007)
18. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing

mutual exclusion. In: Proc. PODC 1990, pp. 119–131 (1990)
19. Kowalski, D.R., Pelc, A.: Polynomial deterministic rendezvous in arbitrary graphs. In: Fleis-

cher, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 644–656. Springer, Heidel-
berg (2004)

20. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In:
Proc. ICDCS 2003, Providence, RI, USA, pp. 592–599 (2003)

21. Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. Control Optim. 34, 1650–
1665 (1996)

22. Schelling, T.: The Strategy of Conflict. Oxford University Press, Oxford (1960)
23. Thomas, L.: Finding your kids when they are lost. J. Oper. Res. Soc. 43, 637–639 (1992)
24. Uthaisombut, P.: Symmetric rendezvous search on the line using moving patterns with dif-

ferent lengths. Department of Computer Science, University of Pittsburgh (2006)
25. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer

auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer,
Heidelberg (1996)

	Introduction
	General Algorithms
	Skeleton Algorithms
	Known D
	Unknown D, Fixed |L|
	Superposition of Skeleton Algorithms
	Unknown D and |L|
	Conclusions and Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

