Skip to main content

Algorithms for Solving Infinite Games

  • Conference paper
SOFSEM 2009: Theory and Practice of Computer Science (SOFSEM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5404))

  • 640 Accesses

Abstract

Solving parity games is an algorithmic problem which is polynomial-time equivalent to the modal mu-calculus model checking problem [5], and hence of fundamental importance for the automated verification of computational systems [8]. Establishing its exact computational complexity is an intriguing long-standing open problem. The problem is known to be in UP (unambiguous NP) and co- UP [9], but no polynomial time algorithm or complexity-theoretic evidence of hardness have been found, since almost two decades ago when its membership to NP and co-NP was exhibited [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Björklund, H., Sandberg, S., Vorobyov, S.: A discrete subexponential algorithm for parity games. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 663–674. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: Foundations of Computer Science (FOCS), pp. 261–272. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  3. Condon, A.: The complexity of stochastic games. Information and Computation 96, 203–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, London (1992)

    MATH  Google Scholar 

  5. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of ÎŒ-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  6. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  7. GĂ€rtner, B., RĂŒst, L.: Simple stochastic games and P-matrix generalized linear complementarity problems. In: Liƛkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 209–220. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. GrÀdel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  9. JurdziƄski, M.: Deciding the winner in parity games is in UP ∩ co-UP. Information Processing Letters 68(3), 119–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. JurdziƄski, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. JurdziƄski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. SIAM Journal on Computing (to appear, 2008)

    Google Scholar 

  12. JurdziƄski, M., Savani, R.: A simple P-matrix linear complementarity problem for discounted games. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 283–293. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Savani, R., von Stengel, B.: Hard-to-solve bimatrix games. Econometrica 74, 397–429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Shapley, L.S.: Stochastic games. Proc. Nat. Acad. Sci. U.S.A. 39, 1095–1100 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  17. Svensson, O., Vorobyov, S.: Linear complementarity and P-matrices for stochastic games. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 409–423. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Vöge, J., JurdziƄski, M.: A discrete strategy improvement algorithm for solving parity games (Extended abstract). In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical Computer Science 158, 343–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

JurdziƄski, M. (2009). Algorithms for Solving Infinite Games. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., TƯma, P., Valencia, F. (eds) SOFSEM 2009: Theory and Practice of Computer Science. SOFSEM 2009. Lecture Notes in Computer Science, vol 5404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95891-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95891-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95890-1

  • Online ISBN: 978-3-540-95891-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics