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Abstract. Computational mechanism design (CMD) seeks to under-
stand how to design game forms that induce desirable outcomes in multi-
agent systems despite private information, self-interest and limited com-
putational resources. CMD finds application in many settings, in the
public sector for wireless spectrum and airport landing rights, to Inter-
net advertising, to expressive sourcing in the supply chain, to allocating
computational resources. In meeting the demands for CMD in these rich
domains, we often need to bridge from the theory of economic mecha-
nism design to the practice of deployable, computational mechanisms. A
compelling example of this need arises in dynamic combinatorial envi-
ronments, where classic analytic approaches fail and heuristic, compu-
tational approaches are required. In this talk I outline the direction of
self-correcting mechanisms, which dynamically modify decisions via “out-
put ironing” to ensure truthfulness and provide a fully computational
approach to mechanism design. For an application, I suggest heuristic
mechanisms for dynamic auctions in which bids arrive over time and
supply may also be uncertain.

1 Introduction

Mechanism design theory from microeconomics holds appeal within computer
science as providing a principled method to develop optimized mechanisms for
resource and task allocation problems of all kinds, ranging from problems in
electronic commerce such as sponsored search to problems in networked systems
such as allocation of wireless bandwidth and compute time on shared computa-
tional grids.1

The essential problem addressed in mechanism design theory is that of im-
plementation: given a set of N = {1, . . . , n} agents each with private information
vi : X → R on their value for outcomes X, with vi ∈ V , design a game form

? This abstract is for an invited talk given at the 35th International Conference on
Current trends in theory and practice of computer science (SOFSEM’09), January
24-30, 2009, Czech Republic.

1 See Jackson [1], Nisan [2] and Parkes [3, chapter2] for introductory surveys.



in which agents send messages that represent reports about their valuations, so
that the outcome selected in the equilibrium of the game satisfies some desired
social choice function f : V n → X. For example, perhaps the goal is to allocate a
resource to the agent with the highest value, in which case a second-price sealed-
bid [4] auction will implement the outcome in a dominant-strategy equilibrium.
See Varian [5] for a simple exposition of this result and its generalization to the
celebrated Vickrey-Clarke-Groves [4, 6, 7] mechanism.

It is often useful in mechanism design to focus on direct-revelation mecha-
nisms, simultaneous-move games in which each agent sends a message that corre-
sponds to a report about its valuation. A direct-revelation mechanism is defined
by a pair (g, t) of an outcome rule g : V n → X and payment rule t : V n → Rn,
where ti(v) for v ∈ V n is the payment by agent i to the mechanism. The standard
analytical approach is to impose constraints on (g, t) and find the mechanism
that best-satisfies a set of desiderata (e.g., efficiency, revenue optimality, fair-
ness, budget balance, and so forth) across the space of incentive-compatible (=
non-manipulable) mechanisms. This is best illustrated by Myerson’s derivation
of the revenue-optimal mechanism for selling a resource when the seller has
a distribution function Fi to characterize the valuation of each buyer i ∈ N .
Myerson was able to show an equivalence between the problem of finding the
optimal incentive-compatible mechanism and the comparatively simple problem
of maximizing expected “virtual surplus” subject to monotonicity constraints,2

and further reduce this to the problem of maximizing “ironed” virtual surplus.
Ironing, for Myerson, is a process by which the virtual valuation functions are
transformed into (weakly) non-decreasing functions of reported value by to “iron
out” any such failure of monotonicity of virtual valuation as a function of valu-
ation.

But in many problems of practical interest, the rules of a mechanism must be
specified by a computational procedure rather than an analytic formula because
no tractable procedure exists to implement the “ideal” mechanism, and these
problems present a need to address two kinds of bottlenecks:

– The scalability bottleneck: mechanism rules must be realized by computa-
tionally tractable procedures.

– The analytic bottleneck: analytic methods to derive useful mechanisms fail
in discrete, multidimensional and combinatorial problems.

Indeed, it is notable that very little progress has been made on extending My-
erson’s analysis of revenue optimizing auctions to selling more than two goods.

Computational mechanism design seeks to combine economic and computa-
tional thinking, and has made good progress on addressing the scalability bottle-
neck. Early progress came by working with existing mechanisms, while making

2 The virtual valuation of agent i given value vi is φi(vi) = vi− [1−Fi(vi)]/F
′
i (vi), the

virtual surplus of an allocation is the virtual valuation of the winner if the resource
is allocated or the value of the seller for the resource otherwise, and monotonicity
requires that the probability that an agent is allocated is (weakly) non-decreasing
in its reported value, for all values of other agents.



significant advances through concise and expressive bidding languages, methods
for efficient preference elicitation, and with fast algorithms for determining the
outcome of a mechanism given reports. Much of this progress was made in the
important domain of combinatorial auctions, i.e. auctions in which agents have
non-linear valuations on bundles of items [8].

A second wave of progress involved reconciling tensions between computa-
tional and economic constraints, and developing novel mechanisms, for instance
through “prior-free” mechanisms [9], approximate mechanisms [10, 11] and of-
ten working in problem domains that are particular to computer science such
as those of network routing and job scheduling. But progress here was limited
to addressing the scalability bottleneck and not the analytic bottleneck, in that
where new mechanisms were derived the incentive-compatibility analysis was still
performed by hand through mathematical analysis and this has limited progress.

A new, third wave of progress in computational mechanism design must seek
to address both the scalability and the analytic bottlenecks by leveraging com-
putational methods also for the design of mechanisms. This includes automated
mechanism design [12] and parameterized mechanism design [13]. But I do not
find these approaches entirely satisfactory, and argue in this talk the following
point, that

a problem of computational mechanism design can be considered solved when
we can take a state-of-the-art computational procedure for solving a centralized,
cooperative problem and apply “with small modification” to solve the mechanism
design problem.

Clearly a lot is buried in the meaning of “with small modification,” but I
will offer an illustrative example in the form of self-correcting mechanisms for
dynamic auctions [14, 15]. One of the underlying observations that drives work
on self-correcting mechanisms is that rather than have a complete description of
the rules of a mechanism, it is sufficient that mechanism properties be guaran-
teed only to the extent necessary to ensure equilibrium properties, so that self-
interested participants know how to best represent their own interests. Given
this observation, the basic idea in self-correcting mechanisms is to achieve these
sufficient properties through a computational procedure that acts as a “wrapper”
to augment an underlying (possibly heuristic) computational method.

A good example of a problem that exhibits both the scalability and analytic
bottlenecks is that of dynamic multi-item auctions where bids arrive over time
for multiple units of a resource, that may itself be in uncertain supply. Given a
probabilistic model of bid dynamics, the underlying decision problem is one for
which compelling computational methodologies exist but for which there are no
closed-form solutions. Moreover, a complete characterization of truthful mecha-
nisms is available that requires that the mechanism policy is monotonic, in the
sense that if an agent is allocated for some bid then it is allocated for all “higher”
bids (= larger value, smaller quantity, more relaxed time constraints) [16]. In the
absence of a computational methodology for mechanism design, mechanisms are



available for this problem only in the case of simple probabilistic environments
for which the underlying decision problem has an analytic solution [17–22].

In illustrating the idea of self-correcting mechanisms I will show how the com-
putational procedure of online stochastic combinatorial optimization [23] can be
combined with a procedure to automatically perform sensitivity analysis of the
decision policy “on the fly,” in order to modify allocation decisions as necessary
to ensure monotonicity properties and thus truthfulness. The result is a scal-
able, dynamic auction for buyers with multi-unit demand that is demonstrated
for both expiring goods (e.g. time on a compute server) non-expiring goods with
a deadline (e.g. theater tickets). The sensitivity analysis procedure is a form of
“ironing” in the sense of Myerson, except that it irons away failure of monotonic-
ity in the outcome of the mechanism rather than in the inputs to a mechanism,
but to the same end of providing a truthful equilibrium. Thus I think of this as
output ironing, whereas Myerson’s procedure is one of input ironing.

In summary, the main message of this talk is there exists a need to cou-
ple characterizations of truthful (or “incentive-compatible”) mechanisms with a
fully computational methodology in which state-of-the-art computational pro-
cedures for decision making and optimization are modified in order to achieve
these properties and without needing to resort to analytic methods to design
mechanisms. I refer to these mechanisms as “self-correcting” mechanisms and
offer applications to dynamic auctions to illustrate the approach.
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