
Static Timing Model Extraction for
Combinational Circuits

Bing Li, Christoph Knoth, Walter Schneider, Manuel Schmidt
Ulf Schlichtmann

Department of Electrical Engineering and Information Technology
Technische Universitaet Muenchen

Arcisstrasse 21, 80333 Munich, Germany
{b.li, christoph.knoth, manuel.schmidt, walter-karl.schneider,

ulf.schlichtmann}@tum.de

Abstract. For large circuits, static timing analysis (STA) needs to be
performed in a hierarchical manner to achieve higher performance in ar-
rival time propagation. In hierarchical STA, efficient and accurate timing
models of sub-modules need to be created. We propose a timing model
extraction method that significantly reduces the size of timing models
without losing any accuracy by removing redundant timing information.
Circuit components which do not contribute to the delay of any input to
output pair are removed. The proposed method is deterministic. Com-
pared to the original models, the numbers of edges and vertices of the
resulting timing models are reduced by 84% and 85% on average, respec-
tively, which are significantly more than the results achieved by other
methods.

1 Introduction

Static timing analysis (STA) is widely used in digital circuit designs. The timing
information of each circuit component is extracted from a design library. Com-
bined with the result of parasitic extraction and the slopes of input signals, ar-
rival times are propagated to compute the delays between the inputs and outputs
of combinational circuits. Together with the timing characteristics of sequential
components, e.g. the setup/hold time of flip-flops, the maximum/minimum of
the computed delays determines the performance of the circuits.

In a hierarchical design flow, a design is composed of a series of circuit mod-
ules on different levels. To run static timing analysis for such a design style, the
intuitive idea is to flatten all the sub-modules and run the propagation algo-
rithm on this flat netlist. The disadvantage of this method is that the timing
propagation through the full netlist is slow and very memory-consuming. Fur-
thermore this flattening method will thwart the application of IP (Intellectual
Property) macros from third-party vendors. The complete netlist of IP macros
must be given to designers for static timing analysis, which is not always feasi-
ble for IP protection. In view of the reasons above, static timing analysis must
also be hierarchical in such a design flow. As the first step, timing models of

DOI: 10.1007/978-3-540-95948-9_16
The final publication is available at link.springer.com
http://link.springer.com/chapter/10.1007/978-3-540-95948-9_16

ar
X

iv
:1

70
5.

02
61

0v
1 

 [
cs

.A
R

] 
 7

 M
ay

 2
01

7



the sub-modules are generated from the original netlists. Then the arrival time
propagation algorithm is run at circuit level, using the extracted timing models
as the replacement of the netlists of the sub-modules. Naturally the extracted
timing models must contain the exact delay information required by the high
level analysis. To speed up the high level arrival time propagation, a timing
model must be as compact as possible.

In [3] serial and parallel merges are introduced to reduce the size of combi-
national circuits and the compressed circuit netlists are used as timing models.
The serial merge replaces two consecutive timing edges by a new one from the
source of the first edge to the sink of the second edge. The parallel merge re-
places parallel edges sharing the same source and sink by a single edge. Both
operations are applied to the timing graph of the circuit iteratively until the
size of the graph can not be reduced further. The application of these two fun-
damental operations heavily depends on the circuit structure and usually does
not result in very small timing models for combinational circuits. In [5], a graph
manipulation method is used to reduce the number of optimization constraints
and timing variables in circuit optimization. In order to reduce the optimiza-
tion complexity, circuit nodes whose removal can lead to fewer constraints and
timing variables are deleted from the timing graph. This method transforms the
circuit netlist targeting to effectively lower the optimization effort, but can not
guarantee to generate a compact static timing model. In [2] a delay edge shrink
method is used to merge several parallel delay edges followed by a single delay
edge in series, and vice versa. Additionally, a parallel to serial graph transfor-
mation algorithm is also introduced to increase the possibility that the circuit
can be compressed using the shrink method. These algorithms are applied to
the original timing graph and the timing graph formed by directly connecting
all the outputs of the original circuit with their driving inputs. Then, the smaller
extracted timing model is selected as the final result. In [6] a timing model ex-
traction method based on biclique-star replacement allowing don’t care edges is
introduced. This method extends the parallel to serial algorithm in [2] to deal
with more than two inputs and outputs in the transformation. In order to find
the proper replacement candidates for the biclique-star algorithm, an algorithm
which maximizes edge coverage and the size of bicliques is also suggested in [6].
Both methods proposed in [2] and [6] are not deterministic and rely on heuristic
pattern matching algorithms.

In this paper, we propose a method to extract timing models for combina-
tional circuits by removing redundant timing information in the original timing
graph. Without relying on heuristic pattern matching algorithms, the proposed
method is deterministic and will always give compact results. Additionally, the
proposed method does not use the graph manipulation algorithm in [2] and [6]
and hence can be used as a pre-processing step before applying those algorithms.

In Section 2 we will formulate the problem and task of hierarchical timing
model extraction. Then the proposed algorithms will be introduced in Section 3.
In Section 4 we will show the extraction results of the proposed method using
ISCAS85 benchmark circuits. Finally we will conclude our work.



2 Problem Formulation

In this section we will introduce the definition of a timing graph briefly. This
timing graph will be used to illustrate our algorithms. Then, the requirement
of the hierarchical timing model extraction for combinational circuits will be
discussed. In the following sections, we will only discuss the worst-case timing
model. The method for extracting the best-case timing model can be deduced
similarly.

2.1 Timing Graph

A timing graph G is a weighted directed graph representing the timing infor-
mation of a circuit. A vertex vi corresponds to a net in the circuit. An edge eij
represents a delay between vertices vi and vj . Each eij has a weight dij , which
is the magnitude of the delay between vertices vi and vj . Compared with the
circuit netlist, eij corresponds to a pin to pin delay of a circuit component. When
interconnects are considered, the delay of an interconnect is also represented by
an edge. A timing path denoted as pij is a set of consecutive connected edges
between vertices vi and vj . The path delay is the sum of the weights of all the
edges on path pij and is also denoted as dij . The set of all paths and their delays
between vertices vi and vj are denoted as Pij and Dij respectively. A sub-graph
is a set of edges from the timing graph and their source/sink vertices, denoted as
G{ei1j1 , ei2j2 , . . .}. In Fig. 1 the circuit c17 from the ISCAS85 benchmarks and
its corresponding timing graph are illustrated without considering interconnects.

2.2 Formulation of the Hierarchical Timing Model

The target of static timing analysis is to compute the maximum delay between
the inputs and the outputs of a circuit. In order to do this, a variable ai is
assigned to each vertex vi in the timing graph, called arrival time. Then the
timing graph is traversed by propagating the arrival times through all vertices
until the output vertices are reached.

In hierarchical timing analysis, sub-modules are replaced by pre-characterized
timing models. A timing model is a timing graph including a new set of internal
edges and vertices but with the same inputs and outputs as the original timing
graph. A timing model must contain the exact timing information needed by
the higher level. Additionally, the timing model of a sub-module should be as

1

2

3

4

5

a

b

6

7

8

9

5

4

3

2

1

6

7

8

9

a

b

Fig. 1. c17 and its Timing Graph

vi vj

Fig. 2. Arrival Time
Computation of a Single
Module



small as possible to accelerate the arrival time propagation at high level. When
characterizing a sub-module, especially an IP block, the application environment
is unknown. For this reason, no assumption about the arrival times at the inputs
of the sub-module should be made.

Fig. 2 illustrates the computation of the arrival time for an output vj of a
sub-module during high level arrival time propagation. Firstly we consider the
arrival time computation from only one input vi to the output vj . Normally
there is more than one path between vi and vj , denoted as Pij with delay Dij .
The arrival time from vi through a path pij to vj can be computed as ai+dij .
If we enumerate all the paths between vi and vj , the maximum of these arrival
times can be computed using (1), where Mij denotes the maximum path delay
in Dij . Now considering all the inputs of the module, the arrival time aj is the
maximum arrival time from all the inputs to vj . We get formula (2) to compute
the arrival time aj , where V I is the set of all the inputs of the module.

Max{ai + dij} = ai +Max{dij} = ai +Mij , dij ∈ Dij (1)

aj = Max{ai +Mij}, vi ∈ V I (2)

From (2) we can conclude that the arrival time at an output of a sub-module
is determined by the arrival times at all the inputs and the maximum delays
between the input/output pairs. The arrival times at the inputs of the module are
computed during high level arrival time propagation and are still unknown when
characterizing timing models. On the contrary, the maximum of the input to
output delays Mij in (2) are provided by the timing model. In order to propagate
arrival times correctly, a timing model must have the same input to output delays
Mij as the original timing graph.

Definition: The delay matrix of a circuit with m inputs and n outputs is an
m× n matrix with item Mij , which is the maximum path delay between input
vi and output vj .

Theorem: The requirement for timing model extraction is that the character-
ized timing model must have the same delay matrix as the original timing graph.

3 The Timing Graph Reduction Algorithm

In this section we will explain a timing graph reduction method to extract com-
pact timing models for combinational circuits. The basic edge shrink operation
from [2] is introduced first. Thereafter two algorithms are explained which pre-
process the original timing graph so that the basic shrink operation can be
applied more effectively. Furthermore an output edge reduction algorithm will
also be explained to compress the timing model. The target of the proposed
timing model extraction method is to reduce the number of edges and vertices
in the timing graph while maintaining the same delay matrix.

3.1 Basic Edge Shrink Operation

The basic edge shrink operation is illustrated in Fig. 3. If n edges with sink
vertices vj1 . . . vjn leave the same vertex vk and vk has only one fanin edge



i

k

j1 j
n

i

j1 j
n

(a)

i

k

j1 j
n

i

j1 j
n

(b)

Fig. 3. Basic Shrink Operation

5

4

3

2

1

6

7

8

9

a

b

(a)
5

4

3

2

1

6

8

a

b

(b)

Fig. 4. Basic Shrink Example

with source vertex vi, vk can be removed and the edges can be merged so that
there are only direct edges between vi and vj1 . . . vjn . The weights of the new
edges between vi and vj1 . . . vjn are the sums of the weights dik and dkj1 . . . dkjn ,
respectively. This shrink transformation is illustrated in Fig. 3(a). Similarly, this
transformation can be applied in reverse direction, as shown in Fig. 3(b).

Fig. 4 shows an example of applying the basic shrink operation to the timing
graph in Fig. 1. Two sub-graphs G{e17, e67, e7a} and G{e49, e59, e9b} can be
compressed using the basic shrink operation. After this reduction, the number
of the edges of the timing graph is reduced from 12 to 10 and the number of the
vertices is reduced from 11 to 9.

In Fig. 4(b), the timing graph can not be reduced further because no ver-
tex except the inputs has only one fanin/fanout edge. In the following, we will
propose several algorithms to pre-process the original timing graph so that the
basic shrink operation can be applied more effectively to reduce the number of
the edges and vertices.

3.2 Primary Input/Output Transformation (PIT/POT)

The principle of the timing graph reduction is that the delay matrix remains
unchanged. A row in the delay matrix contains the maximal delays from one
input to all the outputs, and a column contains the maximal delays from all the
inputs to one output.

In many circuits with abundant datapaths there is delay symmetry, which
means the rows or columns in the delay matrix share some patterns. If the
subtraction of two rows or columns in the delay matrix is a vector whose elements
are the same, the timing model needs to contain only the timing information for
one of the rows or columns. This means both inputs or outputs can share the
same delay paths in the timing graph and the edges and vertices constructing
the delay paths for one of them can be deleted to simplify the timing graph.

If two rows Ri and Rj in the delay matrix have constant difference, that is,
Ri−Rj = Cr, where Cr is a row vector with constant element cr, the two inputs
vi and vj corresponding to Ri and Rj can be transformed by the algorithm
illustrated in Fig. 5.

Assume the vertices v1 and v2 in Fig. 5 meet the condition R1 − R2 =
Cr, we create a new vertex v1′ between v1 and all its fanout vertices. v1′ is
connected to all the fanout vertices of v1 with the original edges from v1. The
new edge e11′ has weight 0 so that the delays between v1 and all the outputs
do not change. In order to make v1 and v2 share the same timing paths, v2

is disconnected from all its original fanout edges and a new edge between v2



1

2

3

4

5

6

7

(a)

1 1′

2

3

4

5

6

7

(b)

1 1′

2

3

4

5

6

7

(c)

1 1′

2

3

4 6

7

(d)

Fig. 5. Primary Input Transfor-
mation

1

2

3

4

5

6

7

8

(a)

1

2

3

4

5

6 7

8

(b)

1

2

3

4

5

6 7

8

(c)

1

2

3

4 6 7

8

(d)

Fig. 6. Primary Output Transfor-
mation

and v1′ is created, as in Fig. 5(b). The weight d21′ is set to −cr so that the
delays from v2 to all the outputs are also maintained because of R1 − R2 =
Cr. After this transformation, the unconnected vertices and edges are deleted
recursively, illustrated in Fig. 5(c). Thereafter there may be sub-graphs which
can be reduced using the basic shrink operation, e.g. G{e35, e56, e57}. These sub-
graphs are compressed further, as shown in Fig. 5(d). By creating a new vertex
v1′ for the input transformation the necessity to create edges between v2 and all
the original fanout vertices of v1 is avoided.

Similar to PIT, POT transforms the primary outputs of the original timing
graph. If two columns Ci and Cj in the delay matrix meet Ci −Cj = Cc, where
Cc is a constant column vector with the element cc, the output vj is disconnected
from its driving edges and connected with the vertex of output vi, through a new
edge with weight −cc. Similarly, the edges and vertices which originally drive
only vj are deleted to reduce the graph size. The POT algorithm is illustrated in
Fig. 6, where v7 changes its connection to v6. Because v6 is an output in Fig. 6,
it should not be deleted by applying the basic shrink operation to the sub-graph
G{e26, e36, e46, e67}.

3.3 Non-Critical Edge/Vertex Removal (NCR)

Normally there is more than one path for an input/output pair in the original
timing graph. In the view of the static timing analysis, only the path with
the maximum delay, called critical path of the input/output pair, is needed in
the high level arrival time propagation, as shown in (2). The other paths are
dominated by the critical one and have no effect on the result of the timing
analysis. From this observation, the edges which do not contribute to the delay
matrix can be deleted to reduce the timing graph. Be aware that the definition
of critical path here is different from the classical one, where the critical path
dominates the paths starting from all the inputs of the timing graph. In our

5

4

3

2

1

6

8

a

b

(a)
5

4

3

2

1

6

8

a

b

(b)
5

4

3

2

1

8

a

b

(c)
5

4

3

2

1

8

a

b

(d)

Fig. 7. Non-critical Path Removal



definition, the critical path dominates all the paths starting from a specified
input to a specified output.

Fig. 7 illustrates the concept of the non-critical edge/vertex removal using
the timing graph in Fig. 4(b). All the edge delays in Fig. 7 are assumed as
unit for simplicity. Firstly, the redundant edge e6a directly between v6 and va
is removed because there is another path through v6, v8 and va with dominant
delay, as shown in Fig. 7(b). After this removal a basic shrink operation can be
applied to sub-graph G{e26, e46, e68} and the resulted timing graph is shown in
Fig. 7(c). Similarly the redundant edge e4b can also be deleted. The final timing
model is shown in Fig. 7(d).

To reduce the size of the timing graph, only the edges and vertices which are
not on the critical path of any input/output pair can be removed safely. Because
timing edges and vertices may be shared by the critical paths between different
input/output pairs, we firstly traverse the timing graph and mark the vertices
which are on at least one critical path. After identifying the critical paths for all
the input/output pairs, the vertices and the edges which are never critical are
deleted from the timing graph.

Instead of visiting all the input-output pairs one by one, whose number is
the product of the number of the inputs m and the number of the outputs n
in the worst case, the original timing graph is traversed only m times [4]. At
each traversal, the arrival times from a specified input to all the vertices are

Compute the arrival time from input vi to all the outputs

levelize the circuit, maxlevel ={the maximum circuit level}, currlevel =0

set the arrival time ai of the input vertex vi to 0

for each vertex in the timing graph except vi
set arrival time to −∞

add vi in the vertex list of level 0

while (currlevel≤maxlevel ) {
for each vertex vj in the vertex list of level currlevel {

for all the fanin vertex vk of vj
set aj = Max{ak + dkj} (3)

for all the fanout vertex vs of vj
add vs to the vertex list of the level of vs

}
currlevel ++

}
Mark the critical vertices from all outputs to the input vi

for each output vo {
vc = vo, mark vo as critical

while (vc is not an input and ac > −∞) {
vc = {the fanin vertex vk having the maximum ak + dkc}
mark vc as critical

}
}

Fig. 8. Mark Critical Vertices for Input vi – singleMark(vi)



computed. We use the computed arrival times to trace the critical paths and
mark the vertices on the critical paths backward. Fig. 8 shows the single input
traversal and backward vertex mark algorithm-singleMark().

Because the arrival times at the inputs except vi are set to −∞ in Fig. 8, the
arrival time of a vertex vj computed by (3) is the maximum delay from vi to vj .
To mark the critical vertices from the input vi to an output vo, the algorithm
traverses backward from vo to vi recursively. At each intermediate vertex vc, the
fanin vertex vk is marked as critical, when the sum of the arrival time ak and
the delay dkc is the largest one in all the fanin vertices of vc. vc is updated to vk
for further backward traversal. At each run the tracing from an output to the
input marks the path whose delay dominates the delays between the input and
the output. All the edges and vertices on such a path will be kept in order to
guarantee the conformability of the delay matrix.

The algorithm in Fig. 8 is applied to each input of the timing graph so that
the vertices on the critical paths of all input/output pairs are marked. All the
edges without marked fanin and fanout vertices do not contribute to the delay
matrix. From the view of a timing model, these edges and unmarked vertices can
be deleted to simplify the timing graph. Fig. 9 shows the complete non-critical
edge/vertex removal algorithm.

for each input vertex vi
run singleMark(vi)

for each vertex vi in the timing graph

if vi is not marked

delete vi
for each edge ei in the timing graph

if ei has no fanin or fanout vertex

delete ei

Fig. 9. Complete Algorithm of the Non-
Critical Edge/Vertex Removal

1

2

3

4

5

6

(a)

1

2

3

5(4)

6

(b)

Fig. 10. Output Backward Merge

3.4 Output Backward Merge (OBM)

If a primary output of a timing graph has only one fanin edge and its fanin vertex
is not an output, we can simply merge this edge backwards. Fig. 10 illustrates
this operation, where all the vertices except v4 are primary inputs/outputs. In
the OBM algorithm, vertex v5 is merged with its fanin vertex v4 so that the
new vertex v5(4) represents also a primary output. All the weights of the fanin
edges of v4 are increased by d45. This weight increase guarantees that the delays
from v1 and v2 to the output v5 remain unchanged. The weights of the other
fanout edges of v4 are all decreased with d45 so that the delays from the inputs
to the outputs besides v5 are also unchanged. Note that the graph in Fig. 10(b)
can not be reduced further using the basic shrink operation because v5(4) is
already a primary output now and should be kept in the timing model. An
application example of the OBM algorithm is the reduction of the sub-graph
G{e14, e24, e46, e48} in Fig. 6(d).



3.5 Complete Algorithm

apply PIT/POT to the timing graph

apply NCR algorithm to delete redundant vertices and edges

visit each vertex vi starting from the inputs sequentially

for sub-graph with vi and its fanin/out edges and vertices

run the basic shrink operation to the sub-graph

apply the output backward merge algorithm

Fig. 11. Complete Timing Model Extraction Method

4 Experimental Results

In this section the results of the application of the proposed method using the
ISCAS85 benchmarks are shown. The algorithms are implemented in C++ and
tested using a Pentium M 1.6GHz computer. The gates in the benchmarks are
mapped to a library from an industrial partner. To model the impact of layout
capacitance, the pin-to-pin delays of a gate are increased by 20% for each fanout.
Interconnect delays are ignored for simplification.

Table 1 shows the extraction results. m and n are the numbers of the inputs
and outputs of the circuit. neo and nvo are the numbers of the edges and vertices
in the original timing graph Go. ner and nvr denote the numbers of the edges
and vertices of the final timing graph Gr after applying the complete reduction
method proposed in this paper. per and pvr are defined as ner/neo and nvr/nvo
to show the ratios of the edges and vertices before and after the application of
the proposed method. T is the runtime of the proposed method. From Table 1
we can see that the proposed method compresses the timing graphs effectively.

According to [1] the benchmark c6288 is a 16×16 multiplier so that many
critical paths are shared by different input to output pairs. This can explain
why c6288 has the very drastic compression ratio. c499 and c1355 have the same
circuit function, but all the XOR gates in c499 are expanded to NAND gates
in c1355. This expansion increases the symmetry in the delay paths because

Circuit
Original circuit Proposed method Results of [3] Results in [2]
m n neo nvo ner nvr per pvr T (s) nes nvs pes pvs net pet

c432 36 7 336 196 41 42 12% 21% 0.06 211 82 63% 42% 65 19%

c499 41 32 408 243 138 67 34% 28% 0.12 240 99 59% 41% 175 43%

c880 60 26 729 443 212 103 29% 23% 0.17 331 126 45% 28% 238 33%

c1355 41 32 1064 587 106 67 10% 11% 0.25 240 99 23% 17% 147 14%

c1908 33 25 1498 913 165 76 11% 8% 0.25 456 126 30% 14% 337 22%

c2670 233 140 2076 1426 336 299 16% 21% 0.93 423 338 20% 24% 562 27%

c3540 50 22 2939 1719 327 109 11% 6% 0.69 1093 287 37% 17% 372 13%

c5315 178 123 4386 2485 884 377 20% 15% 1.56 1149 458 26% 18% 1109 25%

c6288 32 32 4800 2448 196 63 4% 3% 0.95 3313 1457 69% 60% 195 4%

c7552 207 108 6144 3719 946 510 15% 14% 2.78 1592 645 26% 17% 1717 28%

average 16% 15% 40% 28% 23%

Table 1. Comparison of the Reduction Results



smaller gates have better pin-to-pin delay symmetry than larger gates. This can
explain why c1355 has a smaller timing model than c499.

For comparison we have implemented the serial/parallel method in [3]. Ta-
ble. 1 shows the reduction results, where nes and nvs are the numbers of the
edges and vertices in the resulted timing graph respectively. pes and pvs are de-
fined as nes/neo and nvs/nvo respectively. In [2] only the edge numbers of the
reduction results are given, which are listed as net in Table. 1. pt is defined as
net/neo . Compared to our method, the method in [6] achieves slightly better edge
compression ratios, but their resulting models involve error bounds and usually
deviate from the original timing models. From these comparisons the efficiencies
of the generated timing models by the proposed method are confirmed.

5 Conclusion

In this paper we proposed a method to effectively extract timing models for
combinational circuits. After applying the primary input/output transformation
and the non-critical edge/vertex removal algorithms, timing graphs are dras-
tically compressed using the basic shrink operation recursively. Thereafter the
primary output backward merge algorithm is applied to compress the timing
graphs further. Compared to the original timing graphs, the numbers of edges
and vertices of the resulting models are reduced by 84% and 85% on average,
respectively. The extracted timing models have exactly the same delay matrix
as their original timing graphs so that the accuracy of the high level arrival time
propagation is maintained. The proposed method mainly focuses on the struc-
tural transformation of the original timing graph. Therefore, it can also be used
as a pre-processing step before applying the method introduced in [2] and [6].
Future work will incorporate slope propagation and load effect into the timing
model extraction.

References
1. Mark C. Hansen, Hakan Yalcin, and John P. Hayes, Unveiling the iscas-85 bench-

marks: a case study in reverse engineering, IEEE Design & Test of Computers 16
(1999), 72–80.

2. Noriya Kobayashi and Sharad Malik, Delay abstraction in combinational logic cir-
cuits, IEEE Trans. Computer-Adied Design of Integrated Circuits and Systems 16
(1997), 1205–1212.

3. Cho W. Moon, Harish Kriplani, and Krishna P. Belkhale, Timing model extraction
of hierarchical blocks by graph reduction, Proc. of the Design Automation Conf.,
2002, pp. 152–157.

4. Sachin S. Sapatnekar, Efficient calculation of all-pairs input-to-output delays in syn-
chronous sequential circuits, Proc. of IEEE International Symposium on Circuits
and Systems, 1996, pp. 520–523.

5. Chandu Visweswariah and Andrew R. Conn, Formulation of static circuit optimiza-
tion with reduced size, degeneracy and redundancy by timing graph manipulation,
Proc. of Intl. Conf. on Computer-Aided Design, 1999, pp. 244–251.

6. Shuo Zhou, Yi Zhu, Yuanfang Hu, Ronald Graham, Mike Hutton, and Chung-Kuan
Cheng, Timing model reduction for hierarchical timing analysis, Proc. of Intl. Conf.
on Computer-Aided Design, 2006, pp. 415–422.


