Skip to main content

A New Bounding Technique for Handling Arbitrary Correlations in Path-Based SSTA

  • Conference paper
  • 1383 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5349))

Abstract

Statistical static timing analysis (SSTA) has emerged as a viable technique to capture increasing process variations in 90nm technologies and beyond. To obtain realistic results from a statistical timer, careful attention to the statistical gate delays and correlations between them is required. However when using SSTA early in the design phase, no correlation information is available. This paper addresses this problem and proposes a novel path-based algorithm, which covers arbitrary correlations by computing bounds for the true path delay distribution. Our bounding method is based on the theory of copulas as well as an efficient bounding improvement technique. The efficiency and accuracy of the proposed algorithm is demonstrated on ISCAS’85 benchmark circuits. Over all testcases and all spatial correlation structures the average error of the 95th quantile points is smaller than 7% and the run-time is drastically reduced compared to a transistor level SPICE Monte Carlo simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chandrakasan, A., Bowhill, W.J., Fox, F.: Design of High-Performance Microprocessor Circuits. Wiley/ IEEE Press (2000)

    Google Scholar 

  2. Nassif, S.R.: Design for Variability in DSM Technologies. In: First International Symposium on QED, pp. 451–454 (2000)

    Google Scholar 

  3. Chang, H., Sapatnekar, S.S.: Statistical timing analysis considering spatial correlations using a single pert-like traversal. In: IEEE ICCAD, pp. 621–625 (2003)

    Google Scholar 

  4. Visweswariah, C., Ravindran, K., Kalafala, K., Walker, S.G., Narayan, S.: First-order incremental block-based statistical timing analysis. In: IEEE DAC, pp. 331–336 (2004)

    Google Scholar 

  5. Zhan, Y., Strojwas, A.J., Li, X., Pileggi, L.T., Newmark, D., Sharma, M.: Correlation-Aware Statistical Timing Analysis with Non-Gaussian Delay Distributions. In: IEEE DAC, pp. 77–82 (2005)

    Google Scholar 

  6. Zhang, L., Chen, W., Hu, Y., Gubner, J.A., Chen, C.C.-P.: Correlation-Preserved Non-Gaussian Statistical Timing Analysis with Quadratic Timing Model. In: IEEE DAC, pp. 83–88 (2005)

    Google Scholar 

  7. Khandelwal, V., Srivastava, A.: A General Framework for Accurate Statistical Timing Analysis Considering Correlations. In: IEEE DAC, pp. 89–94 (2005)

    Google Scholar 

  8. Agarwal, A., Blaauw, D., Zolotov, V., Sundareswaran, S., Zhao, M., Gala, K., Panda, R.: Statistical Delay Computation Considering Spatial Correlation. In: IEEE ASPDAC, pp. 271–276 (2003)

    Google Scholar 

  9. Orshansky, M., Keutzer, K.: A general probabilistic framework for worst case timing analysis. In: IEEE DAC, pp. 556–561 (2002)

    Google Scholar 

  10. Agarwal, A., Blaauw, D., Zolotov, V., Vrudhula, S.: Computation and Refinement of Statistical Bounds on Circuit Delay. In: IEEE DAC, pp. 348–353 (2003)

    Google Scholar 

  11. Orshansky, M., Bandyopadhyay, A.: Fast Statistical Timing Analysis Handling Arbitrary Delay Correlations. In: IEEE DAC, pp. 337–342 (2004)

    Google Scholar 

  12. Heloue, K.R., Najm, F.N.: Statistical Timing Analysis with Two-sided Constraints. In: IEEE ICCAD, pp. 829–836 (2005)

    Google Scholar 

  13. Heloue, K.R., Najm, F.N.: Early Statistical Timing Analysis with Unknown Within-Die Correlations. In: IEEE TAU Workshop, Austin (2007)

    Google Scholar 

  14. Xi, X., Cao, K., Wan, H., Chan, M., Hu, C.: BSIM4.2.1 MOSFET-Model - User’s Manual. University of California, Berkely (2001)

    Google Scholar 

  15. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  16. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  17. Nelsen, R.B.: An Introduction to Copulas. Springer, New-York (1998)

    MATH  Google Scholar 

  18. Frank, M.J., Nelsen, R.B., Schweizer, B.: Best-possible bounds for the distribution of a sum - a problem of Kolmogorov. Probability Theory Related Fields 74, 199–211 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schneider, W.: On the Derivation of Improved Bounds for the Sum of Dependent RVs Using Shear Maps. Technical Report, TU München (2008)

    Google Scholar 

  20. Papoulis, A.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  21. Louhichi, S.: Rates of Convergence in the CLT for Some Weakly Dependent Random Variables. Theory of Probability and Its Applications 46(2) (2002)

    Google Scholar 

  22. Yen, S., Du, D., Ghanta, S.: Efficient Algorithms for Extracting the k Most Critical Paths in Timing Analysis. In: IEEE DAC, pp. 649–652 (1989)

    Google Scholar 

  23. Friedberg, P., Cao, Y., Cain, J., Wang, R., Rabaey, J., Spanos, C.: Modeling Within-Die Spatial Correlation Effects for Process-Design Co-Optimization. In: IEEE ISQED, pp. 516–521 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schneider, W., Schmidt, M., Li, B., Schlichtmann, U. (2009). A New Bounding Technique for Handling Arbitrary Correlations in Path-Based SSTA. In: Svensson, L., Monteiro, J. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2008. Lecture Notes in Computer Science, vol 5349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95948-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95948-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95947-2

  • Online ISBN: 978-3-540-95948-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics