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Abstract. This paper presents an extended high-level model for logic
power estimation of multipliers and adders implemented in FPGAs in the
presence of glitching and correlation. The model is based on an analytical
computation of the switching activity produced in the component and the
FPGA implementation details of the component structure. It is extended
to consider operands of different word-lengths, both zero-mean and non-
zero mean signals, and the glitching produced inside the component,
taking into account the sign nature of the autocorrelation coefficients
of the components’ inputs. The number of simulations needed for the
model characterization is extremely small and can be reduced to only
two. As the final power model is analytical, it is capable of providing
power estimates in miliseconds. The results show that the mean relative
error is within 10% of low-level power estimates given by the XPower
tool.

1 Introduction

Due to their low cost and ability for reconfiguration, FPGAs have become an
ideal solution for various embedded designs. As they are aimed for implementa-
tion of many different designs, a large number of the routing and logic resources
of the FPGA architecture is inefficiently used. This in turn, causes a signifi-
cant increase in their power consumption and creates the need for FPGA power
optimization.

The algorithmic complexity of recent and upcoming DSP applications is
growing fast, leading to severe time penalties when power optimization is carried
out at low levels of abstraction. Thus, it is necesarry to use power optimization
techniques at the earliest possible time, which results in development of new
high-level models and methods.

Most high-level power estimation techniques use multivariable regression over
a large number of accurate power estimations at the transistor level, obtained
through simulations for different input statistics, in order to represent power
consumption in the form of an equation with variable parameters depending on
the input and output signal statistics. However, at high levels of abstraction the
design architecture has not been defined yet. Therefore, a new set of simulations
is required for the module characterization each time the module’s parameters



change. There are some high-level power models that try to avoid this problem by
constructing models that are parameterizable in terms of different combinations
of input’s word-lengths [4, 8]. In these cases, the dependency of the models on
different input signal statistics is expressed in terms of coefficient values stored
in a table, obtained again through extensive simulations aimed to cover a large
number of different signal statistics. Most of the existing approaches use inter-
polating techniques in order to estimate power for signal statistics different from
those used in the simulations.

We present the methodology which overcomes the above mentioned prob-
lems. It supports power consumption estimation of multipliers and adders im-
plemented in FPGAs considering both zero-mean and non-zero mean signals and
any autocorrelation coefficient value. The resulting power models are parameter-
izable in terms of input signal statistics and input word-lengths without a need
of constructing a large table of coefficients. Furthermore, the glitching produced
inside the component is also modelled, taking into account the sign nature of the
autocorrelation coefficients of the components’ inputs. The approach adopted in
this paper extends the basic concepts presented in [5] where only zero-mean
signals with positive autocorrelation coefficients were considered.

The paper is organized as follows. Section 2 highlights the previous work done
in the area of high-level power estimation. Section 3 presents some preliminaries
of the work used for estimating signal transition activity from the word-level
statistics obtained from non-zero mean signals. In Section 4, we present an im-
proved power model, with special attention on modelling the glitching effects
when the zero-mean contraint is relaxed. Experimental results are given in Sec-
tion 5. We conclude this paper in Section 6.

2 Related Work

High-level estimation models can be divided into three groups according to the
characterization of the input data set. The first one [2, 8], is based on n chosen
bit-level signal statistics such as transition probability of input bits, input spatial
correlation between the bits inside the same input word, input signal probability,
etc. All these statistics appear in the model as average values obtained from Data
Flow Graph simulations and are introduced into a power equation as variables.
Coefficients standing by the variables are obtained through extensive simulations
and are listed into an n-dimension array where each dimension corresponds to
one of the bit-level statistics. The main flaw of this model is that it can be applied
only to a specific component with a fixed word-length, so a new set of simulations
is needed for model characterization each time this parameter changes.

The second power estimation group is based on power macromodels con-
structed by using the spatio-temporal correlation defined as Hamming distance
(ie. the number of bit transitions between two consecutive input vectors). Beside
this parameter, many models also use Signal distance, which describes the num-
ber of input bits that are fixed to logic one in two consecutive input vectors. The
models are based on a very large number of low-level simulations, although cer-



0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bit position

T
ra

n
s
it
io

n
 a

c
ti
v
it
y

 

 

0.5
0.9
0.99
0.9995

LSB MSB
LINEAR

Half of the
bits goes to
LSB region

Half of the
bits goes to
MSB region

BP0 BP1

(a) Zero-mean signals

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bit position

T
ra

n
s
it
io

n
 a

c
ti
v
it
y

 

 

0.5
0.9
0.99
0.9995

SIGNMEANLSB LINEARHalf of the
bits goes to
LSB region

Half of the
bits goes to
MSB region

BP2BP1

BP0

(b) Non-zero mean signals

Fig. 1: Bit transition activity vs. bit position in a word for different autocorrelations

tain modifications permit a trade-off between the accuracy and the time needed
for model characterization [3, 4].

The third power estimation group considers word-level signal statistics such
as variance, mean and autocorrelation coefficient. The work in [1], presents char-
acterized equations for arithmetic components implemented in FPGAs, based on
a table of coefficients for different signal statistics. As the only variable intro-
duced in the equations is the component size, this methodology is not capable of
producing estimates for components with operands of different word-lengths. In
[6], the authors first noted that a signal word can be divided into three regions
according to its word-level signal statistics: LSB uncorrelated bits, correlated
bits belonging to the so-called linear region and MSB bits. Based on the activity
analysis of signal-word division, they build black-box model of the capacitance
switched in each activity region of the module obtained through extensive sim-
ulations. This signal word division has also been used in the work presented
here, but instead of measuring the activity of the bits in each region, it has been
estimated from word-level statistics and adapted to non-zero mean signals as it
is explained in the next section.

3 Signal Model

In this work, we consider gaussian signals with mean µ, variance σ2 and au-
tocorrelation coefficient ρ. As already mentioned, our approach is based on a
signal-word division into 3 regions (see Fig. 1a): LSB data bits with switching
activity of 0.5 as they behave as uncorrelated bits (in Fig. 1a it is marked for
ρ = 0.9995), MSB data bits with switching activity that strongly depends on
word-level signal statistics, and a linear region which can be aproximated by a
linear interpolation of the previous two regions [6]. As presented in [5], the ex-
pression for the breakpoint BP0 which separates the LSB region from the linear



region is:

BP0 =
[

log
2
(
√

1 − ρ2
· σx)

]

(1)

The expression for the breakpoint BP1, which separates the linear region
and the MSB region is taken from [6] and represents the number of bits in a
signal that are needed to cover the signal variation around its mean:

BP1 = [log
2
(3σ)] (2)

For a zero-mean signal these two breakpoints are sufficient in order to account
for the contribution of each of the regions to the total switching activity of
the component. However, in the case of non-zero mean signals with a gaussian
distribution, the previous signal model does not account for some important
effects. In the extended model for non-zero mean signals, the region beyond
breakpoint BP1 is transformed into two subregions with mean and sign bits (see
Fig. 1b). The activity of these regions is zero, regardless of the autocorrelation
coefficient, but the values of these bits depend on the value and the sign of
the mean respectively, and as such, have a great impact on power consumption.
Fig. 2 represents a regional decomposition of the array multiplier according to
its input activity regions. It can be seen that, the mean bits of one operand
equal to ’1’ will cause the switching activity propagation of the other operand
on the corresponding outputs of the AND gates and thus, also on the outputs
of the component’s full-adder cells. On the other hand, if these bits are ’0’s,
the switching activity at the outputs of all basic elements in this region will be
zero , regardless of the switching activity of the other operand. Hence, it is clear
that the values of the mean bits contribute significantly to the component’s total
power, although they do not exhibit any switching activity.

The new breakpoint is obtained as follows. The maximum value of non-zero
mean gaussian signals is µ + 3σ and m = log2(µ + 3σ) bits are needed for its
binary representation. As previously mentioned, log2(3σ) bits are needed for
the representation of the signal variation around the mean. Thus, there will be
x = log2(µ + 3σ) − log2(3σ) bits that are not changing in a data word and
whose values correspond to the x upper bits of the mean. If a signal word has
N bits, then this region is followed by N − m bits, all taking value ’0’ or ’1’
depending on the sign of the mean. These are the bits that form the sign region.
As a consequence, the MSB region of the signal-word when considering non-zero
mean signals, is composed only of half of the bits belonging to the linear region.
Hence, the third breakpoint BP2, which separates the mean region from the
sign region, is calculated as follows:

BP2 = [log
2
(µ + 3σ)] (3)

The switching activities of the bits in each region are computed as in [7]:

ti = 2 · pi · (1 − pi) · (1 − ρi) (4)

where pi is the bit probability and ρi is the bit-level autocorrelation coefficient,
which can be approximated by ρ for the MSB bits, has a value 0 for the LSB
bits and a value 1 for the mean and sign bits.



Fig. 2: Regional decomposition of an array multiplier

4 Power model

The total power consumption of a component is given as a sum of the power
consumptions of all gates in the component:

P =
∑

α · Cl · V
2

dd · f (5)

The switching activity, α, is the average number of 0 → 1 transitions in one
clock-cycle. The power supply, Vdd, is known and constant for a specific FPGA
architecture, the clock frequency f is fixed for a specific design, and the load ca-
pacitance Cl is assumed to be constant in the case of DSP modules implemented
in FPGAs. This assumption is based on the fact that arithmetic components
exhibit regular, repetitive structures composed of full-adder cells implemented
in Look-Up Tables which have the same structure regardless of the function
performed in them [5]. Thus, the power consumption of a component is

P = a · SW (6)

where SW is the total switching activity and a is a constant that represents
a product of the three, known, power terms mentioned above. This constant
is obtained from a one-time low-level power measurement of the component for
some chosen operand sizes and input signal statistics, and the computation of the
corresponding total switching activity of the component for these parameters.

The total switching activity for an array multiplier is modelled as in [5]:

SW =

M−1
∑

i=1

N
∑

j=1

(si,j + ci,j + pi,j) (7)

M is the number of columns, N is the number of rows, si,j , ci,j and pi,j are
the switching activities of the output and carry-bit of a full-adder cell and the



output of an AND gate respectively, all of them located in a corresponding row
i and column j. The method used for the switching activity computation at the
output of these elements is based on the switching activities of the input bits
and the probabilities of these bits being ’0’ or ’1’. This method is explained in
detail in [5]. For non-zero gaussian signals, the bit probabilities depend on the
signal statistics as explained in Section 3. Once the constant a is computed,
formula (6) can be used for power estimation of any other component size and
signal statistics. In order to obtain a power estimate, it is only neccesary to
re-compute the total switching activity for the new input parameters.

4.1 An Improved Glitching Model

The glitching occurs due to the different signal delays entering the same logic
component. Its amount is directly proportional to the transition activities of the
inputs. Thus, we consider that the most significant amount of glitching produced
inside the component is generated by the most active regions of its inputs.

When considering zero-mean gaussian signals and only positive autocorrela-
tion coefficients, LSB input regions exhibit the highest switching activity. This
can be deduced directly from the equation (4). In this context, glitching has been
modelled in [5] as the sum of average equivalent glitching produced by each cell
belonging to the LSBx-LSBy region of the component (see Fig. 2). However,
for negative autocorrelation coefficients, it is clear that MSB regions exhibit a
higher switching activity than all neighbouring regions. Therefore, a new glitch-
ing model has to be developed to account for the contribution of these regions as
well. This is achieved by introducing a new factor into an expression for glitching
that depends on the value of the autocorrelation coefficient, as follows.

Assuming that the MSB bits have an equal probability of being ’0’ or ’1’, the
expression for their switching activity according to (4) becomes:

ti = 0.5 · (1 − ρ) (8)

As the LSB bits have a switching activity of 0.5, the relationship between the
switching activity of these two regions can be expressed as a coefficient l = 1−ρ.
At the same time, this is the relationship we expect between the average glitching
produced in the MSB and LSB part, as the amount of glitching is proportional
to the transition activity of the input bits. Hence, the extended glitching model
which represents a sum of glitching in the four component’s regions (LSBx-LSBy,
LSBx-MSBy, MSBx-LSBy and MSBx-MSBy in Fig. 2) is expressed as:

G = k ·

4
∑

i=1

(1 − ρ1i) · (1 − ρ2i) · FAi = k · G
′

(9)

where G is the amount of glitching, k is an empirically derived constant which
represents the average glitching at the output of one LUT in the LSBx-LSBy
part of the component, ρ1i and ρ2i are the bit-level autocorrelation coefficients
of the LSB/MSB regions of inputs (depending on the particular region of the



component), and FAi is the number of full-adder cells in the corresponding
component’s region. The final model for estimating the power consumption in
the presence of glitching and autocorrelation is given as follows:

P = b · (SW + k · G
′

) (10)

Two low-level power measurements for different component sizes using the same
ρ are sufficient in order to determine coefficients b and k. As the factors SW

and G′ are known and P is measured, the coefficients can be easily obtained.
However, in order to increase the accuracy of the model, we use a multivariable
regression approach with more than two measurements for obtaining these two
coefficients. The number of measurements is still significantly smaller then any
other existing high-level approach for building power macro-modules. It is clear
that the model is parameterizable in terms of the operands word-lengths and
the input signal statistics.

5 Experimental results

We split the model evaluation into two sets of experiments. In the first set we
evaluate the accuracy of the power estimation model for non-zero mean signals
presented in (10), considering both components with inputs of the same size and
components where the input bit-widths differ. In the second part, we focus on
evaluating the power model for zero-mean signals against the estimates obtained
by the power model described in [5]. Both sets of experiments have been per-
formed on multipliers and adders implemented as Xilinx IP Cores in Virtex II
devices. All the estimated values have been compared to low level power esti-
mates provided by the Xilinx tool XPower [9]. The signals used as input stimuli
had Gaussian distributions with means equal to 0, 10 and 125 respectively. We
have chosen these values for the mean in order to see the difference between
the power values obtained for signals with many and a few ’1’s in their mean.
We have used 16x16 and 32x32 multipliers and signals with zero-mean gaus-

sian distributions and autocorrelation coefficients of 0, 0.9, -0.9 and -0.99 for our
characterization set. Multiple regression over relative error was performed for
obtaining the constants b and k.

Fig. 3 presents the estimation errors for multipliers and adders when operands
have the same word-lengths. Input word-lengths varied between 8 and 40 bits,
and autocorrelation coefficients varied between -0.9995 and 0.9995. It can be
noted that a similar error performance is obtained for all adders when signals
with mean 10 and mean 125 are applied to its inputs. This is a direct consequence
of a feature of the operation add. As the mean bits do not change their value,
when added, they will give the same result at the outputs of the full-adder cells,
and hence, there will be no switching activity in this part of the adder. This
result has also been confirmed by the identical XPower values.

Next, Fig. 4 shows the errors obtained for multipliers and adders with dif-
ferent operand sizes. The experimental set includes three autocorrelation coef-
ficients of -0.99, 0 and 0.99. Again, the adder errors for mean values of 10 and
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Fig. 3: Error performance for multipliers and adders with operands of the same size

125 were almost the same, so we have plotted only one of them (Fig. 4e). An-
other important observation from this figure is that the power model for adders
clearly underestimates when non-zero mean signals are applied to its different-
size inputs. This is due to the fact that the glitching model does not consider the
amount of glitching produced in the part of the adder where the input bits of one
operand belong to the mean region, while the input bits of the other operand
belong to the LSB or MSB region. In reality, there will be glitching in this part
of the adder due to the different arrival times of the carry bit and the input bits
of the other operand. However, the glitching model presented here, does not take
this into account. Overall, the mean relative error for multipliers is 8.34% and
for adders 11.14%. It can be seen that the models are capable of giving quite
accurate results over a wide range of component sizes, signal autocorrelation
coefficients and mean values.
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Fig. 4: Error performance for multipliers - a), b), c) and adders - d), e) with different
size operands for various signal statistics

The second set of experiments evaluates adders and multipliers with input
word-lengths between 8 and 40 bits. The autocorrelation coefficient values are
only positive and vary between 0 and 0.9995, to allow comparison with the model
in [5] which does not support negative autocorrelation coefficients.

For an easier comparison, we give the absolute value of the errors in Fig. 5. It
can be seen that the accuracy of the new model does not worsen when positive
autocorrelation coefficients are considered, while providing power estimates for
a significantly larger set of input signal parameters.

6 Conclusion

We have presented a high-level power estimation model for DSP components
implemented as IP cores in FPGAs. The model is parameterized in terms of
the input signal statistics and the operands’ word-lengths. It accounts for the
different power behaviour observed when considering zero-mean and non-zero
mean input signals. The number of simulations needed for model characterization
is extremely reduced compared to other high level power models. The results
show that the model is accurate within 10% over a wide range of input signal
statistics and bit-widths.
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