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1 Introduction

The MAV '08 competition in Agra, India focused on the problefusing air and
ground vehicles to locate and rescue hostages being heldeimate building. Ex-
ecuting this mission required addressing a number of teehnhallenges. The first
such technical challenge was the design and operation of@ mir vehicle (MAV)
capable of flying the necessary distance and carrying a spagtoad for localizing
the hostages. The second technical challenge was the degigmplementation of
vision and state estimation algorithms to detect and trackrgd adversaries guard-
ing the hostages. The third technical challenge was thgdesid implementation
of robust planning algorithms that could co-ordinate whik MAV state estimates
and generate tactical motion plans for ground vehiclesaoh¢he hostage location
without detection by the ground adversaries.

In this paper we describe our solutions to these challerfgesly, we summarize
the design of our micro air vehicle, focusing on the navigatind sensing payload.
Secondly, we describe the vision and state estimationighgas used to track ground
features through a sequence of images from the MAV, inclydtationary obstacles
and moving adversaries. Thirdly, we describe the planniggrdahm used to gen-
erate motion plans to allow the ground vehicles to approhehhbstage building
undetected by adversaries tracked from the air. Finallypvawide results of our
system’s performance during the mission execution.

2 TheMicro Air Vehicle

Our vehicle design consists of a custom-designed carben-&bframe, with 6
brushless motors as the propulsion system. The vehicleéga?®tor-tip to rotor-tip
and weighs 142 grams without the navigation electroniamera or communication
hardware. The vehicle is shown in figure 1. The total flightetiof the vehicle is
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10-12 minutes, with maximum speed of 10 m/sec, dependingiod wonditions,
temperature, etc..

Fig. 1. Our six-rotor helicopter with bird’s-eye video camera. The helicopte8&si?in diam-
eter and weighs 142g without the navigation electronics, camera or coitation hardware.

The navigation system consists of a 60MHz Philips ARM micoagssor .-
blox GPS receiver, compass, IMU and pressure sensor. The ARivbprocessor
integrates the IMU and GPS measurements to provide a censiate estimate at
1000 Hz. The on-board software accepts waypoints in the @PB8d) co-ordinate
frame and uses PID control to achieve the desired positibe.Height estimate is
relative to the position of the vehicle on take-off. The waiyph controller attempts
to achieve the desired waypoint first to within 15m accuraayg then to within 2.5
m accuracy. If the waypoint error is not reduced from 15 m &r.in 30 seconds,
the control software assumes that external factors (i.m¢dware interfering and
holds the current position. In this way, we are guaranteedesbaseline level of
performance (15m), and the vehicle will attempt to achieligher level of accuracy
without excessive time delays.

The vehicle additionally carries a Digi 900MHz Xtend RF mizdaperating at
100 mW. We communicate with the MAV with a USB-serial coneettb the Xtend
base station; the bandwidth is such that we typically receilemetry at 40 Hz.

The camera sensor is a Black Widow KX141 480 line CCD cameth 9&°
field-of-view. Additionally, we use a Black Widow TD240508 2.4 GHz 500 mW
transmitter, and a YellowJacket YJS24 2.4 GHz diversitgnasr at the ground sta-
tion. This camera and transmitter provide excellent vidggability at long ranges,
and the 2.4 GHz frequency does not interfere with our 900 Méta tink. The cam-
era is mounted on a small servo that provide$ @@tion along one degree of free-
dom, allowing the camera to tilt from directly forward toatzht down.
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3 Object Detection and Tracking

The first phase of the MAV '08 mission involved visual suriagilce of the field to
identify obstacles and mines, followed by tracking the guaghicle. Once an object
was located in an image, the known position of the MAV from GiP8 a calibrated
camera model were then used to geolocate the object (aggtiminbject was on the
known ground plane). However, due to the noisy estimateseofehicle pose, it was
necessary to combine projections from multiple images toeme a more accurate
geolocation estimate. Given the minimal prior informatafrthe appearance of the
guards, obstacles and mines, we did not have enough infamragarding a specific
color, shape, or motion to allow general object detectiomakesult, we focused on
object tracking, where given an initial example of the objacan image, we could
track it in successive images. To accomplish this, we useddifiad version of the
classifier-based adaptive ensemble tracker, developddl While this approach did
not allow completely autonomous operation, it significamédduced the amount of
attention required from the operator.

3.1 Learning Object Appearance Models

To find the object in an image, the tracking problem is poseal@assification prob-
lem, where a classifier is trained in an online fashion to spdhe pixels belonging
to the object from the background pixels. To train the cfassiwe assume that the
object is localized within a known x n sub-block of the image; pixels within that
sub-block are given positive labels, and pixels outsidéghb-block are given neg-
ative labels. Each pixel is described bylocal features, e.g., local color features
and a histogram of local oriented gradient features [3]hBzixel i is therefore a
separate training instance consisting/edimensional feature vectot; and a label
y;. AdaBoost requires a weak classifier, which in this algaomitk implemented as a
separating hyperplarig, such that

§(x;) = sign(h”x;) (N

wherej(x) is the classifier output label for instankeThe separating hyperplane for
a set of examples is computed using weighted least squatas gitraining data set
consisting of pixel features and labe|s;, y; }. We then boost to learn an ensemble
of classifiershy, ..., h, with associated weightsy, . .., a,. In addition, we train

a separate ensemble of classifiers for eachy dfnage scales in order to capture
the distinctive appearance characteristics at differesiies. Finally, we classify the
pixels of a new image using the multi-scale boosted enseniassifier, such that
each pixel receives a (normalized) weighted vote for eaghl from each classifier.
The output of the classifier is a new image where each pixetsgmts the probability
that a given pixel belongs to tracked object.

Figure 2(a) illustrates an example training image, wheeepixels in the inner
block are positive training instances and the pixels in thewoblock are negative
training instances. Figure 2(b) shows the response of #ssiiers to the same image
after training. Notice that the classifiers have the mogparse along the sharply
distinct color boundaries.
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(b) Ensemble Filter
Response

Fig. 2. (a) An example training sub-block. The pixels in the smaller, inner bloekasumed to
be positive training instances, and the pixels in the outer block are negaiiviag instances.
(b) The response of the weighted classifiers across the sub-imageddtirted car.

During tracking, the object appearance will vary over tifiog;instance, the ori-
entation of edge features will change as objects rotateanrtage. We therefore
continually learn new classifiers on the incoming imagete#tfacking is completed
on each image, the image is used as a new training instaneé.3ést classifiers are
retained, andh — k additional classifiers are trained, again using boostingrtier
to ensure that this retraining of the classifier does note#us original concept to
become lost over time, we also investigated a model in whicbf the originaln
classifiers are kept, regardless of their weight. This asstirat at least some of the
classifiers where trained with labels that were known to lveect

3.2 Object Tracking

In [1], a mean-shift tracker is applied to the probabilityeige to update the estimate
of the object location, in which a region of the image is dféed and the maximum
likelihood pixel in the image is assumed to be the new certebject. While this
approach works quite well for relatively stationary canseree found that the mean-
shift approach was not able to handle the fast motion of ttiedpter platform.

For example, considering the EOD vehicle in figure 2(a) andrég3(a), the
tracker is able to follow both objects for the entire timetthi®ey are in the field
of view, usually 10-20 seconds. This is due to the fact thatabjects had distinc-
tive appearances, which allowed the computed features tehediscriminative.
In addition, the relatively large object sizes made the orotf the helicopter less
significant. In contrast, tracking the mine in figure 3(b) d@he walking person in
figure 3(c), is more challenging. Tracking the mine was patrly difficult due to
the extremely small size, and non-distinct circular sh&milarly, the person is
very small in the image, although relatively distinct; aseault, the motion of the
helicopter makes the tracker lose track almost immediatétlyout the ego-motion
estimation.

As aresult, we use a motion model coupled with Bayesianifiljeto update the
object position estimate. This allows us to more robusttyreste the object position
in the image by making use of an ego-motion estimate to basitbtion update. This
ego-motion estimate proved to be very important as it was @mbtompensate for the
unpredictable motion of the camera, which would have otierwaused the tracker
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(a) EOD Vehicle (b) Mine (c) Person

Fig. 3. Examples of the variety of objects tracked. (a) The EOD vehicle for misgodal.
(b) A mine embedded in a route between covered positions. (c) A wallérgpp. (a) was
relatively easy to track, but (b) and (c) required a better motion prediatiadel.

to get lost. The motion estimate is computed using the Pytakhiucas-Kanade

optical flow implementation available in OpenCV [2]. Optiflaw computes a set

of displacements for features in the image, which we thestehusing expectation-
maximization to identify the single largest flow directiamd then compute the affine
transform that best explains the apparent motion.

We can then use the affine transformation as a motion modethenensemble
tracker as the sensor model, in order to more accuratelyatgithe object trajectory
We use a particle filter to implement the probabilistic estiep(xz|zo.+), wherez,
is the location of the object in the image at time(x:|zo.¢) is the probability of the
object at the location after having received measuremgntssuch that

p(@el200) = aplz|ze) / p(e|2e-1)p(1—1 2041 )dt, @

t—1

p(z—1|20:+—1) IS the object distribution on the previous time-step, afig|z;) is our
sensor model (the likelihood of detecting the object at tpmsiz; given the object

is atx;. p(z¢|x¢—1) is @ model of how the object moves, which we assume to be
Gaussian motion with some fixed variance. In contrast to rmongentional filtering
techniques such as the Kalman filter [5], the particle fisauseful for modeling the
non-linear sensor and motion models and the non-Gaussiaa distributions. The
motion of the MAV is particularly non-linear, and large sg#of the MAV generally
cause very large displacements of the object in the image.

Returning to figure 3(b) and 3(c), when tracking the persoa were able to
maintain the track for over 2 minutes requiring human irgation only once when
the person went out of the frame for a couple seconds. Thisnaae possible by the
motion model provided by optical flow, helped by relativetgitde hovering of the
helicopter. Similarly, when tracking the mine in figure 3(@iven the motion model
from optical flow, the tracker was able to track for over 30ase&ts, only needing
human intervention once due to an abrupt movement of thedybr.

4 Ground Vehicle Planning

Given the ability of the MAV to estimate the guard positiorddrajectory, the sec-
ond challenge was to be able to plan a trajectory for the camdesto the hostage
building without their being detected by the guard vehiddditionally, when the
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MAV found mines, we wanted to be able to plan a trajectory figr EOD vehicle to
the mines, also without being detected. We treated thedsgms symmetrically as
a motion planning problem for a generic ground vehicle (GV).

Standard motion planning algorithms are generally basedeanch strategies
through a discretized state space. Although the specifimpig problem in the MAV
'08 problem was centered around routes between cover poietdeveloped a gen-
eral purpose motion planner that would be more flexible toxpeeted guard motion
and allow us to express a wide range of trajectories that nedyexactly follow
straight-line routes between cover points.

Our motion planner therefore begins with a discretizatibthe planning area.
We use a regular grid, and assume the GV can move from a gtid: ¢elany of
the 4-connected neighbors. We assume that such a motiors iacwost, and the goal
is to find the lowest cost sequence of states from the stahetgdoal without being
detected by the guard vehicle. The guard 36i¥ field of view with finite range, and
we have a prior map of the environment giving the locationlsftacles that would
obstruct the guard field of view, occluding the GV from the guadditionally, the
planner assumes that the current position of the guard leeBiknown, and there is
a model of the guard dynamics that allows the guard positgorédicted into the
future. The planner must therefore incorporate this motiteotemporal behavior of
the guard in generating paths that avoid detection. The deshponstraint typically
requires planning in both space and time, which can leaddstantial computational
complexity. Given the large size of the map, planning in spad time may not be
feasible, and so we examine three different strategieddmning with respect to the
guard vehicle dynamics, to identify a strategy that scalel with minimal loss in
planner performance.

TIME-STATE A*

The TIME-STATE-A* algorithm, developed by Fraichard [4], represents tagesof
the GV as both a position and time. In order to account for trerdjvehicle, we ex-
trapolate the 2-D space into the time domain, creating &ttimmensional cost map
(or “cube”), where each cell represents a separatg, ). All actions are assumed
to have the same, constant duration. In addition to the faatiam commands, we
add a RuUsE action that only changes the time variable by the same catrestaount
as motion commands. Longer pauses can be achieved by exgButiSE twice. We
then search through the cube using standard A* as befordinfiting the actions
from every cell to be the 5-connected grid cell in the nexgtistep. (The cube is 5-
connected because the legal transitions are the four nsodiod the RUSE action).
The Manhattan distance between the robot’s current posatial the final goal in the
2-D space is used as the heuristic. This algorithm agaimassthat A* has access
to a cost map that includes the obstacles.

Notice that the input to A* are now states with an explicit ¢irmariable, and
that this algorithm includes as the input a maximum time,., in order to prevent
infinite search depth resulting from multiple®sE actions.

There is a slight abuse of notation in that the goal state ®fAh process is
(Xgoal, > tmax ), Which we use to denote a goal state of the search where the: camm
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be in any position. By modeling time explicitly during theaseh process, thelWie-
STATE A* algorithm can express a wider variety of plans to incoggerplans that
deliberately wait for the guard vehicle to move. Additidgpathe search incorporates
knowledge of the guard vehicle more accurately by includimg changing guard
position as part of the search in the state-time domain. Mewy¢he computational
cost of increasing the number of actions (and therefore thedhing factor of the
search), and furthermore substantially increasing the sggace by including time,
may have a significant effect on the ability of the search @ssdo find good plans.

WINDOWED TIME-STATE A* (WST-A¥)

Since the search grows exponentially with the search dégtheducingt, ..., the
search space can itself be reduced, only including planerajth at most, ...
However, this may significantly reduce the ability to find dgdans when plans need

to be longer than,,,..., which is likely across a 1 km distances. We also examine an
intermediate approach by iteratingME - STATE-A* search in limited time window.

Algorithm 1: WINDOWED TIME-STATE A* (WTS-A*)

Requ”e: Xstarty Xgoaly Xguard tmazy 2twindow
1: 71-otyp'r'o;c — A* (Xsta'rt> Xgoal)
2: {frl} — DlVlDE(ﬂ'approxytwindow)
3:t«—0

4: for #* € {#'} do

5. x e« 7'[1]

6

7

8

9

%'« #'[end]
Ttail < A* ((X, Xgoals t)? (X,7 Yy tmuz))

if Ttqess == null then
: return null
10: endif
11: 7 «— 7+ Tail
12:  t «— t+ length(miau)
13: end for
14: return

The complete algorithm is shown in Algorithm 1. First, an apgmated plan
is computed using B\TE-A*, ignoring the guard position. This plan is then divided
into sub-plans according to a window size, and for each atatend state of the sub-
plan, the plan between these states is regenerated usurgr JPACEA*. Notice
that thet variable is used to maintain the time required to executl sabplani?,
to ensure a proper connection between each section of the pat

Finally, to determine if the additional complexity of plang in time and space
can be avoided, we also examined the performance of plaronihgin the state
space of the GV, using a conventional search process throwigtthe state space,
STATE-A*.

Figure 4 depicts the runtime and the quality of the resulptan for SrATE-
A*, TIME-STATE-A*, and WTS-A* with different window sizes. As expected, on
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average, TME-STATE-A* was the most time consuming algorithm (figure 4-a). It is
interesting that on average, WTS-A* outperformeth&-A* in terms of runtime.
On the other hand, the quality of the paths found by WTS-A*aven par with
those found by TME-STATE-A*, shown in figure 4(b). The plan performance found
by the WTS-A* was within 97% of the optimal plan (found byME-STATE-A*),
while STATE-A* suffered a drop around 12% from the optimal.

Runtime Optimality
11,000 100%
8,250 95%
g 5,500 90%
2,750 85%
[ 80%
CY (b)
Il State-A* [ Time-State A* WTS-A*(Small) [l WTS-A%*(Large)

Fig. 4. Averaged results of State-A*, Time-State A*, WST-A*(Small), and WAgLarge)
across planning problems of different sizes.

The most interesting result occurred as we varied the nuoftdynamic obsta-
cles. Figure 5 shows that as the number of dynamic obstamlessdises, the extra cost
of re-planning for SATE-A* dominates the cost of planning in the Time-State space
(figure 5-a), indicating that as the number of obstaclesm&es, re-planning needed
to occur more frequently. While Ie-STATE-A* has to search in a larger space,
most plans found by B\TE-A* are infeasible, leading to more re-planning. Even-
tually after 100 obstacles, this re-planning cost domih#te planning in the larger
space. The side-effect of such excessive re-planning cabserved in figure 5-b.
The quality of the solutions found byt&Te-A* drops rapidly. TME-STATE-A* is
guaranteed to find the optimal solution. (In contrast, batsions of the WTS-A*
achieve the best of both worlds: their running time is lesstbf both SATE-A*
and TIME-STATE A*, while the cost of the plans found is nearly optimal (ab88%6
of the optimal TME-STATE A¥*).

Runtime Optimality
8,000 100%
98%
6,000
96%
E 4,000 94%
92%
2,000 I I
90%
o M b WNEW B ENENl W AN W 88%
40 70 100 130 40 70 100 130
Dynamic Obstacles Dynamic Obstacles
() (b)
[l Space-A* [l Time-Space A¥ WTS-A%(20) [l WTS-A%*(40)

Fig. 5. Runtime and optimality results of 30 runs for State-A*, Time-State A*, WT$18),
and WTS-A*(30) averaged across different numbers of dynaimitazles.
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o el
(b) Phase 2
Maximum height: 35.7 m Maximum height: 13.0 m
Distance traveled: 1759.2 m Distance traveled: 1247.2 m
Total flight time: 710.0 secs Total flight time: 621.1 sec

(c) Phase 3

Maximum height: 28.8m
Distance traveled: 1290.5m
Total flight time: 644.7 sec

\

(d) Expected GV Path

Fig. 6. (a-c) The paths executed by the MAV. (d) The expected plan execytéeltomman-
dos and EOD vehicle.

5 Mission Performancein MAV ’08

As described in section 2, our vehicle has a top speed of 18cnésnd the battery
provides a total flight time of 10-12 minutes. We therefonddiid the mission into
multiple phases of mine detection, mine disposal and guaneeglance. Between
each phase of the mission, we planned to return the MAV to dahadh point to
replace the battery. Figure 6(a-c) shows the actual pative fixy the MAV on each
mission. Figure 6(d) shows the expected trajectory of thedBMputed using the



10 Bachrach et al.

WTS-A* algorithm. In the final mission scenario, the guardieége motion was
extremely deterministic and did not require much variatiothe timing constraints
so the timing information is not shown in the image. The patmf cover point to
cover point took 3 minutes and reliably avoided detectidme &ctual path taken by
the vehicles changed from this expected path to the futtat#line) path based on
detected mines, obstacles and the resultant replanning.

6 Conclusion

This paper described critical hardware and software compisof a combined mi-
cro air vehicle and ground vehicle system for performingmagte rescue task, as part
of the MAV '08 competition organized by the US and Indian gowveents. While our
system performed to our satisfaction and was awarded Besiidfi Execution, there
are a number of key technical questions that remain unsdle&xie co-ordinated air
and ground systems can become commodities.

Firstly, while the object detection and tracking systenpbdithe human opera-
tors considerably in geolocating objects, more work res&inbe done in learning
appearance-based methods and compensating for largeacarmogons to generate
robust autonomous object detection and tracking. Secptidye has been consid-
erably work in planning under uncertainty for multi-agepstems but we have not
yet taken advantage of these methods to keep the systemesdtyjglt a manageable
level. However, in the future, we plan to extend the plannentorporate deliber-
ate sensing actions at appropriate points in time, to allasenfiexible response to
environmental dynamics. Finally, the overall mission sfieation provided by the
organizers allowed very simple task planning and rigid &skcution. However, to
allow more flexibility in planning surveillance, trackingétrajectory execution be-
tween the air and ground vehicles, we expect that moreigeell task planning will
be required in the future.
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