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Abstract. In the search for metrics that can predict the presence of 
vulnerabilities early in the software life cycle, there may be some benefit to 
choosing metrics from the non-security realm.  We analyzed non-security and 
security failure data reported for the year 2007 of a Cisco software system.  We 
used non-security failure reports as input variables into a classification and 
regression tree (CART) model to determine the probability that a component 
will have at least one vulnerability.  Using CART, we ranked all of the system 
components in descending order of their probabilities and found that 57% of the 
vulnerable components were in the top nine percent of the total component 
ranking, but with a 48% false positive rate.  The results indicate that non-
security failures can be used as one of the input variables for security-related 
prediction models. 

Keywords: attack-prone, classification and regression tree. 

1   Introduction 

In the search for metrics that can predict the presence of vulnerabilities, there may 
be some benefit to choosing metrics from the non-security realm.  Metrics can be used 
as input variables in statistical models to identify which software components1 are 
most likely to be attacked.  Such a statistical model can afford for security engineers 
to prioritize their efforts to the highest risk components.      

  According to Viega and McGraw [28] “Reliability problems aren’t always 
security problems, though we should note that reliability problems are security 
problems a lot more often than one might think [28].” Therefore, when security 
efforts are performed on a software system, some focus toward failure-prone 
components may reveal that those components are also likely to be vulnerable.  The 
objective of this research is to create and evaluate a model that predicts which 
components are likely to contain security faults based on non-security failures.   

                                                           
1 A component is one of the parts that make up a system [15].



We analyzed pre- and post-release non-security failure data and pre- and post-
release security fault and failure data of a Cisco software system2 to determine if non-
security problems are associated with security problems.  Since security faults are 
typically far fewer in number than non-security faults [1], not all of the failure-prone 
components will be associated with security faults.  To be useful, the statistical model 
will have to determine which of the failure-prone components are also likely to be 
vulnerable.  We constructed a model where the input variables to the model are non-
security failures and the output of the model is a probability that a component in the 
system has at least one security fault. 

The remainder of this paper is organized as follows.  In Section 2 we provide 
background and related work, in Section 3 we detail the industrial case study, in 
Section 4 we present results, in Section 5 we present the limitations of the study, in 
Section 6 we provide a discussion, and finally in Section 7 we summarize and provide 
future work. 

2   Background 

In this section, we provide definitions of terms used throughout the paper.  Seminal 
sources are used for each definition where possible.  We also include prior work that 
compares security with reliability. 

2.1   Definitions 

External metrics - “Those metrics that represent the external perspective of software 
quality when the software is in use…These measures apply in both the testing and 
operation phases.” [14] 

Internal metrics - “Those metrics that measure internal attributes of the software 
related to design and code. These “early” measures are used as indicators to predict 
what can be expected once the system is in test and operation” [14].  

Fault - “An incorrect step, process, or data definition in a computer program. Note: A 
fault, if encountered, may cause a failure” [15]. 

Fault-prone component - “A component that will likely contain faults” [4].   

Failure – “The inability of a software system or component to perform its required 
functions within a specified performance requirements [15].” 

Failure-prone component – A component that will likely fail due to the execution of 
faults [26].  

Vulnerability - An instance of a [fault] in the specification, development, or 
configuration of software such that its execution can violate an [implicit or explicit] 
security policy [17]. 

                                                           
2 Due to the sensitivity of the security-related data, details of the system and data are omitted.   



Vulnerability-prone component - A component that is likely to contain one or more 
vulnerabilities that may or may not be exploitable [8].   

Attack - The inability of a system or component to perform functions without 
violating an implicit or explicit security policy.  We borrow from the ISO/IEC 24765 
[15] definition of failure to define attack, but remove the word “required” because 
attacks can result from functionality that was not stated in the specification. 

Attack-prone component -  A component that will likely be exploited [8]. 

An attack-prone component is a component that is likely to be exploited due to the 
types of vulnerabilities in that component.  For example, the vulnerabilities may be 
easy to find, easy to exploit, or lead to desirable assets.  A vulnerability-prone 
component that is not also attack-prone may contain vulnerabilities that are not easily 
found, are difficult to exploit, or do not lead to desirable assets.  These characteristics 
represent our initial views of vulnerability- and attack-prone components [12]. 

In our setting, an attack is the execution of a security fault (vulnerability) that leads to 
a security failure.  We use the context of execution to be consistent with the 
definitions and distinction between a fault and failure in the general reliability (non-
security) context under the assumption that security is, by definition, a subset of 
reliability.  System execution occurs during testing, internal usage, and in the field.  In 
the context of testing, if a tester discovers a buffer overflow, then we say they have 
attacked the system. Although the tester may not have gone through the trouble of 
completely exploiting the buffer overflow to cause a denial-of-service or to inject 
code that escalates their privileges, the failure is a proof of concept that the system 
can be attacked. A risk value can be assigned to the security fault to describe how 
detrimental the vulnerability is to the system.  Of course, static fault detection 
techniques can identify vulnerabilities that can be exploited, too. 

2.2   Prior Work 

The first and third authors performed two case studies on two different large 
commercial3 telecommunications systems. The correlation between non-security and 
security failures was examined [9, 12].  We found a 0.8 (p<.0001) Spearman rank 
correlation between non-security system/feature failures and security failures for the 
first system and a 0.7 (p<.0001) correlation for the second system. For these two case 
studies the only available data were system/feature testing failures.  The high 
correlations suggest that non-security failures are a good indicator of security 
problems and that security fortification efforts should be placed in the same areas of 
the software as reliability efforts.  The case study presented in this paper attempts to 
replicate our previous studies on a different software system from a different vendor 
to determine if the statistical model yields consistent results. 

Research papers comparing security failure data to non-security data are showing 
that reliability and security models are not dissimilar. Alhazmi et al. [1] compared the 
cumulative number of vulnerabilities for five different operating systems and found 

                                                           
3 Due to the sensitivity of the data, the name of the vendor is omitted. 



that the plots are analogous to reliability growth plots using logistic and linear 
models. Mullen et al. [18]  have found the occurrence rate of security vulnerabilities 
follows the Discrete Lognormal distribution, which has also been shown in prior 
reliability growth, test coverage, defect failure rate, and code execution rates. Condon 
et al. [3] have found that security incident data can be modeled with Non-
Homogenous Poisson Process models as done with reliability failure data. Lastly, 
Ozment and Schechter [23] found that Musa’s Logarithmic model fit their OpenBSD 
security dataset to predict time-between-security-failures.  We continue the 
examination of potential parallels between non-security and security problems by 
investigating if the location of security faults and failures can be approximated using 
non-security failure data. 

 

2.3 Vulnerability- and Attack-prone Component Predictions 
 

Neuhaus et al. [21] have also investigated predictive models that identify 
vulnerability-prone components. They created a software tool, Vulture, that mines a 
bug database for data including libraries and APIs which components are likely 
vulnerable. They performed an analysis with Vulture on Bugzilla, the bug database 
for the Mozilla browser, using imports and function calls as predictors. They were 
able to identify 45% of all of the vulnerable components in Mozilla.  Shin and 
Williams [27] found a weak correlation (0.2) between complexity and security 
vulnerabilities in Mozilla, indicating that complexity contributes to security problems, 
but is not the only factor.  We also found a 0.2 correlation between file coupling and 
vulnerability counts in a large telecommunications system [10].  In that case study, we 
used a classification and regression trees (CART, as discussed in Section 2.4) model 
to assign a probability of attack to each file. Upon ranking these probabilities in 
descending order, we found that 72% of the attack-prone files are in the top 10% of 
the ranked files and 90% are in the top 20% of the files. The input variables for that 
study consisted of the count of Klocwork4 static analysis tools warnings, measure of 
file coupling, and count of added and changed source lines of code.  In our other 
earlier work [11] we used a CART to predict which components were attack-prone 
using warnings from the static analysis tool, FlexeLint, and code churn.  The model 
identified all of the attack-prone components, but with an 8% false positive rate.  The 
study in this paper is based on a different type of system than our earlier studies. 

 
2.4 Classification and Regression Trees (CART) 

 
Our predictive model is comprised of a statistical technique and the independent 

variable non-security failure count. CART is a statistical technique that recursively 
partitions data according to X and Y values. The result of the partitioning is a tree of 
groups where the X values of each group best predicts a Y value. The leaves of the 
tree are determined by the largest likelihood-ratio chi-square statistic. The threshold 
or split between leaves is chosen by maximizing the difference in the responses 
between the two leaves [25]. For the case study in this paper, the X values are values 

                                                           
4 http://www.klocwork.com/ 



from the non-security failures and the Y value is a binary value describing a 
component as attack-prone or not attack-prone.  The CART technique has been shown 
to be useful for distinguishing failure-prone from not failure-prone components in the 
reliability realm [29]. 

3   Cisco Case Study 

We analyzed pre- and post-release non-security failure data and pre- and post-
release security fault and failure data that were submitted to the Cisco fault-tracking 
database in 2007 for a typical Cisco software system.  The software system was 
divided into clearly defined components against which failures were reported.  Each 
component consists of multiple files.  The count of components was large enough to 
perform rigorous statistical analyses.   

3.1   Non-security External Metrics as Predictors of Security Faults and Failures 

The non-security failure reports were obtained from the Cisco fault-tracking 
database.  The reports we used in our study included all severity 1, 2, and 3 non-
security failure reports for the software system, where severity 1 is the highest impact 
to the customer.  Most severity 1, 2, and 3 records in the fault-tracking database 
indicated actual problems in the software.  Records with higher severity numbers had 
a stronger chance of being a feature request.  During our failure report analysis, we 
eliminated duplicate failure records that represented a failure already reported in the 
system. 

The non-security failure reports include failures observed during unit testing,  
function testing, performance testing, system testing, stress testing, alpha testing, beta 
testing, automated regression, internal use failures, early field trials, and customer-
reported failures.  Alpha testing is conducted on a production network within Cisco 
while beta testing is conducted on the customer site.  The number and types of non-
security failure reports are not disclosed for confidentiality reasons.   

3.2   Security Fault and Failure Data 

The security faults and failures are the dependent variables in this industrial case 
study.  We included security faults and failures of all severity levels. We chose to 
study security faults and failures reported for the duration of a year (2007) to 
strengthen the goodness-of-fit of the predictive model we will build.  Security faults 
and failures are rare events and difficult to model with small sample sizes. The 
number and types of security fault and failure reports are not disclosed for 
confidentiality reasons. 

The security faults and failures were provided by the Cisco Security Evaluation 
Office that handles security data.  The security faults in our study were reported 
during static inspections that were performed during the design and development 
stages of the software life cycle (SLC).  The security failures were identified during 



system execution and included problems from pre- and post-release testing and also 
include those security failures reported in the field.   

In our setting, an attack-prone component is a component that contains at least one 
security fault or a security failure. We use the term attack-prone component instead of 
vulnerability-prone because most security faults were identified during system 
execution. Additionally, the attack-prone components had at least one security failure 
identified during pre- or post-release execution.  We use the threshold of one security 
failure because there is little variability in the failure count per component and only 
one attack is needed to cause substantial business loss.  Although some security 
failures were reported by customers, there was no evidence of successful attacks 
against the software.  A component with no reported security faults or failures will be 
called a not attack-prone component in this paper.  

4   Results 

The analysis of the failure reports indicated that only a small percentage of the 
components consists of at least one security fault or failures.  According to Pareto’s 
law, 80% of the outcomes will be derived from 20% of the activities [6]. Although, 
this observation was originally described in the context of economics, it has also been 
observed in the context of faults in a software system [22].  The application of the law 
to the software setting is that software problems will not be evenly distributed across 
the software system. For example, in a survey of multiple software systems, it was 
shown that between 60% and 90% of software faults are due to 20% of the modules 
[2].  We observed Pareto’s Law in our setting (see Section 4.2) because the 
distribution of attacks among the components is not evenly distributed across all 
components.  All results in the sections below are reported on a per component basis. 

The first analysis in our case study was to perform correlations between all of our 
non-security failures types (listed in Section 3.1) and counts of security faults and 
failures.  The correlations with the highest coefficients will aid in independent 
variable selection during the construction of the model.  Our statistical model will be 
a discriminatory model that classifies a component as attack-prone or not attack-
prone.  Associated with the classification is a probability of the component being 
attack-prone.  In the event that the models cannot successfully discriminate between 
attack-prone and not attack-prone components, the correlations may indicate that a 
statistical technique does not perform well for the given dataset.  For example, if we 
observe a high correlation between non-security failures and security faults and 
failures, but the discriminatory statistical approach cannot discriminate between 
attack-prone and not attack-prone components, then we would try a different 
statistical technique. 



4.1   Correlations 

We calculated5 Spearman rank correlations to determine if an increase of non-
security failures in a component is followed by an increase in count of security faults 
and failures for that component.  The highest correlation, 0.4 (p<.0001), occurred 
between customer-reported non-security failures and the sum of security faults and 
failures as shown in Table 1.  The correlations to the security fault and failure counts 
are low, but they are significant and represent that they have value for indicating the 
existence of security problems in a statistical model.   
 

Table 1.  Correlations between the non-security failures and vulnerabilities. 
Count of  

non-security failures 
Spearman rank correlation 

coefficient (p-value) 
customer-reported  0.4 (p<.0001) 
alpha testing  0.3 (p<.0001) 
total non-security  0.3 (p<.0001) 
internal use 0.3 (p<.0001) 
system testing  0.2 (p<.0001) 
performance testing  0.1 (p<.0001) 
stress testing  0.1 (p<.0001) 
beta testing  0.1 (p<.0001) 
function testing  0.1 (p=.04) 
early field trial testing 0.1 (p<.0005) 

4.2   Classification of System Components 

We performed classification analyses to discriminate between attack-prone 
components and not attack-prone components based on non-security failures.  We 
built models using the discriminant analysis, logistic regression, and CART with the 
non-security failures enumerated in Section 3.1 as input variables.  CART showed 
better separation between attack-prone and not attack-prone components than 
discriminant analysis and logistic regression.  The non-security failure types that had 
the most predictive power in the CART model were alpha and beta testing non-
security failures and customer-reported non-security failures.      

The CART analysis splits the all of the system components into like groups based 
on the count of non-security alpha and beta testing failures and customer-reported 
non-security failures.  The splits made in CART are shown in Appendix A. The 
values of w, x, y, and z are integer values and are not provided for confidentiality 
reasons.   

In our analysis, the vulnerabilities were most likely to be in components where 
there are more than x customer-reported failures as denoted by the first (top most) 
split in the tree (see Appendix A).  Failures from alpha and beta testing contributed 
less to the isolation analysis.  The other failure types enumerated in Section 3.1 could 
not split the leaves to achieve separation between attack-prone and not attack-prone 
components as well as alpha and beta testing failures and customer-reported failures. 

                                                           
5 All statistical analyses performed on SAS JMP 7.0.1. 



The predictive power of the metrics is measured by the likelihood-ratio chi-square, 
G2, of each input variable.  A larger G2 value indicates a more optimal split of a leaf 
in the CART analysis between attack-prone and not attack-prone components.  In our 
model, the customer-reported problems contributed the most fit or separation in the 
overall model as shown in Table 2. 

 
Table 2. Contribution of metrics to the model. 

Non-security failure count Number of splits in tree G2

customer-reported 3 205.7 
alpha testing  1 7.4 
beta testing  1 4.7 
Total 5 217.8 

 
We tested the input variables of the CART model to test for collinearity.  

Collinearity is defined as a high degree of correlation between the independent 
variables of a statistical model [7].  Collinearity occurs when an excessive number of 
input variables are used to determine an outcome, and the input variables measure the 
same outcome [7].   The highest correlation between our input variables, 0.2, existed 
between alpha testing and customer-reported failures and is a low correlation.  The 
low correlations shown in Table 3 indicate that the failures identified by alpha and 
beta testing and customer-reported failures are measuring different types of failures or 
failures in different locations in the software.  We included these input variables in the 
model because the correlations between them are low and thus the collinearity among 
them is small. 

 
Table 3. Tests for collinearity in the independent variables. 

Failure type Failure type Spearman rank correlation 
coefficient 

alpha testing customer-reported  0.2 (p<.0001) 
beta testing alpha testing 0.1 (p<.0001) 
customer-reported  beta testing 0.1 (p<.0001) 

 
The probability of an attack-prone component for a given leaf is given in Table 4.  

All components in a leaf have the same probability of being attack-prone.  For 
example, in Leaf 1 100% of the components are attack-prone.  In this leaf, all 
components should undergo security analyses.  In Leaf 2 64% of the components are 
attack-prone and all components should go under security analyses, but 36% of the 
components will either not contain security faults or failures or contain security faults 
that are difficult to exploit or uninteresting to an attacker.  The 36% false positive rate 
represents that time and effort spent on some components will not contribute greatly 
to the overall security posture of the software system.  As shown in Table 4, there is a 
general likelihood ranking of attack-prone components.  The components in Leaf 1 
have the highest rank (probability of being attack-prone) and the components in Leaf 
6 have the lowest rank. 

In examining the efficacy of the model, the security efforts should be focused to all 
of the components in the first four leaves of the tree because the true positive rate 
(probability of finding an attack-prone component) is relatively high.  In Leaves 5 and 
6, the probability of identifying an attack-prone component is only ten percent and 



one percent, respectively, representing that most security efforts would be wasted on 
low risk components.  If we accept that the components in Leaves 1-4 are all attack-
prone, then the model will have isolated 57% of the attack-prone components in the 
top nine percent (components in the top nine percent of the leaf-based ranking) of the 
system component ranking.   Leaves 1-4 have a 48% Type I error (false positive) rate 
where not attack-prone components are interpreted by the model as attack-prone 
components.  The remaining 43% of the vulnerable components are in Leaves 5 and 6 
and represent the Type II error (false negative) rate.  These attack-prone components 
would escape security efforts because they are in large groups of components with no 
reported vulnerabilities.  Security engineers would not likely accept a scenario where 
most of their analyses are spent on components with low risk. 

   
Table 4.  Attack-prone probabilities in the leaves of the tree.  The non-shaded rows 
represent the total system components in the top nine percent of the probability 
ranking.  “Customer” represents the count of customer reported problems.  “Alpha” 
represents the count of alpha testing failures.  “Beta” represents the count of beta 
testing failures. 

Leaf  
Number 

Leaf Label Probability  
not 

attack-prone 

Probability 
attack-prone 

1 customer=x&alpha>=y&beta>=y 0.00 1.00 
2 customer>=x&alpha>=1&beta<y 0.36 0.64 
3 customer>=x&alpha<1&customer>=z 0.27 0.73 
4 customer>=x&alpha<1&customer<z 0.68 0.32 
5 customer<x&customer>=w 0.90 0.10 
6 customer<x&customer<w 0.99 0.01 

 
The goodness-of-fit of the model can be determined by the receiver operating 

characteristic (ROC) curve.  The ROC graph has the true positive rate on the y-axis 
and the Type I error rate on the x axis.  The larger the area under the ROC curve, the 
better the goodness-of-fit.  In Figure 1, the ROC curve for our model, represented by 
the thick line, has 88% of the area under the curve indicating that the non-security 
failures are a good metric for predicting which components are attack-prone.  The thin 
line is a reflection of the solid curve to show the model’s ability to classify not attack-
prone components.  The diagonal line represents the efficacy of the model if the 
predicted outcomes correctly identified 50% of the attack-prone components.  

The R2 value for the overall model is 36% indicating that not all of the variation in 
the data can be accounted for by CART.  To validate the model, we performed five-
fold cross-validation.  Five has been shown to be a good value for performing cross-
validation [13].  The 36% R2 value we observed was based on the entire dataset.  The 
cross-validation technique validates the R2 value by testing the model on data the 
model has not used before to determine if the model is still effective [30]. The five-
fold cross-validation divides (“folds”) the total system components into five groups 
consisting of an approximately equal number of randomly chosen components.  One 
group is used as the test set and the training set consists of the remaining four groups 
of components. The model is trained on the training set and the analysis is compared 
to the outcomes of the test set to validate how well the model performs on data that 
has not been “seen” before by the model.  Each of the five groups of components has 



one turn to be the test set which requires five analyses.  After the five analyses are 
performed, the average error is calculated over the five trials.  The cross-validated R2 
value was 34% indicating that the overall model is consistent with the model 
produced with the entire dataset.  Despite the low R2 values, all of the splits in the 
CART analysis were performed at or below the .05 significance level representing 
that each leaf split (separation between attack-prone and not attack-prone 
components) is statistically significant.  
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Figure 1. The ROC curve of the CART analysis. 

5   Limitations 

We cannot claim to have identified all faults in the software based on the failures 
that have surfaced during testing [5].  Additionally, the customer reported failures do 
not complete the identification of all non-security faults as predictors or all security 
faults and failures as dependent variables.  Moreover, the testing effort may not have 
been equal for all components and thus components with fewer failures may appear 
more reliable or secure.  Therefore, our analyses are based on incomplete data.  The 
Type I (48%) and Type II (43%) error rates are high indicating that the model is not 
precise which, if applied at Cisco, could lead to effort wasted on low security risk 
components while some attack-prone components are never found.   Additional 
metrics in a statistical model may help identify attack-prone components with lower 
Type I and Type II error rates.  Furthermore, there are few security data making 
statistical analyses difficult.  Lastly, the model presented in this paper is 
representative of one industrial software system and will not necessarily yield the 
same results on different software systems. 



6   Discussion 

In a Mozilla case study [27] and our earlier telecommunications system case study 
[11] the analyses showed that there is only a 0.2 correlation between complexity 
measures and security faults and failures.  We observed that the 0.4 correlation 
between non-security failures and security failures in the software system is higher 
than complexity-related correlations.  Further analysis is required to determine how 
complexity metrics correlate to security faults and failures in the system we studied.  
The higher the correlation, the more the predictor can contribute in a predictive 
model.  While 0.4 correlation is low, it is significant, as are the complexity 
correlations.  Combining these predictors into one model may build a useful model 
that has lower Type I and Type II error rates than a model with just one predictor. 

According to Table 4, 57% of all attack-prone components were associated with 
greater than x (a value determined by the CART model) customer-reported non-
security failures.  Furthermore, Table 2 indicates that customer-reported non-security 
failures have the most ability to split components into groups of attack-prone and not 
attack-prone components.  We provide three possible explanations for this 
observation.  First, these observations indicate that the customer’s operational profile6 
(usage) influences vulnerable execution paths not identified the testing techniques 
listed in Section 3.1.  The more execution in those required features could increase the 
chance of a deviant operation profile that opens a security hole for an attacker.   

The second possible reason why attack-prone components are associated with 
customer-reported failures is that they are the components that are most important 
(i.e. the reason the software was built) to the customer and thus those with the largest 
business risk.  Therefore, failures with these components would more likely be 
considered security problems because they can be exploited by attackers to interrupt 
the software functions required by the customer.  Failures in components that have 
less importance to a customer may be less likely to be a security problem because the 
impact of the failure does not preclude the customer from performing important tasks.  
However, the data indicate that 43% of the attack-prone components are associated 
with components with fewer than x customer-reported failures and show that the 
system can be exploited via components that are not as frequently as the others.  
Given the 57% and 43% percentages, security efforts should prioritize against the 
features that the customers use the most, but not exclude those components that are 
used less by the customers as they can also impact the customer. 

Thirdly, the 0.4 correlation (a weak, but significant correlation) between non-
security failures and security faults and failures may indicate that components with 
the most customer-reported failures are associated with deficiencies in the software 
process that lead to less reliable code.  Gaps in the software process can lead to either 
the injection of a fault or the failure to remove a fault.  The correlation between non-
security failures and security faults and failures may indicate that the gaps in the 
software process lead to both reliability and security failures.  The less failure-prone 
components (i.e. those with fewer or no security faults) indicate that the development 
groups with a stricter software process mitigate non-security problems at the same 

                                                           
6 The complete set of operations (major system logical tasks) with their probabilities of 

occurrence [19]. 



time as security problems, perhaps without realizing that some of the risks they 
encountered were security-related.  For example, if architectural risk analyses are not 
performed during design, then design flaws may not found until late in the software 
process when it is too late to change the design of the system.  The design flaws may 
lead to unreliable functionality or a vulnerability that an attacker can exploit. 

In our earlier work [11]7, we observed a 0.4 correlation between static analysis tool 
warnings and vulnerabilities found during testing and in the field.  We did not observe 
a correlation between code churn and vulnerability counts.  In our other work [10], we 
observed a 0.2 correlation between static analysis tool warnings and vulnerability 
counts.  We also observed a 0.4 correlation between code churn and vulnerability 
counts.  The vulnerability counts in these two datasets were small and thus may have 
hindered the identification of a stronger correlation between the predictors and 
vulnerability counts.  Correlations between the same predictors and non-security 
faults/failures have been reported to be much stronger than the measurements 
presented in this paper.  For example, Zheng et al. [31] observed a 0.73 correlation 
between static analysis tool warnings and testing and customer failures.  Nagappan 
and Ball [20] observed correlations as high as 0.883 between code churn measures 
and general reliability defects/KLOC.  If the static analysis tool warnings and code 
churn are strongly correlated to non-security problems and non-security problems are 
correlated to security problems, then static analysis tool warnings and code churn in 
our earlier work ([10, 11]) may have a stronger impact on security problems than 
what the correlations indicate.  If true, the extensive research on reliability statistical 
models (e.g. [16, 22]) that have been shown to predict fault- and failure-prone 
components early in the SLC may also be helpful for security prediction models. The 
models can be modified to isolate security problems, or if we assume that the security 
faults cluster with the non-security faults, then security engineers can focus their 
efforts to the components predicted to be the most failure-prone by the reliability-
based prediction model. 

7 Summary and Future Work 

We analyzed a Cisco software system to determine if non-security problems are 
associated with security problems.  We found a 0.4 correlation between security faults 
and failures and non-security failures suggesting that general reliability of a software 
component is an indicator of the security posture of that component.  Our CART 
model shows that alpha and beta testing failures and customer-reported failures can 
discriminate between attack-prone and not attack-prone components.  Additionally, 
the model provides a threshold of non-security failure counts “required” to have a 
security fault or failure.  This threshold is useful for determining which of the failure-
prone components should receive security attention in application of the idea 
suggested by Viega and McGraw [28] in the Introduction. The model correctly 
identified 57% of the attack-prone components in the top nine percent of the 

                                                           
7 For the detailed version of this paper, see: M. Gegick, L. Williams, and J. Osborne, 

"Predicting Attack-prone Components with Internal Metrics," NC State University, Raleigh, 
TR-2008-08, 25 February 2008. 



components when ranked by probability of being attack-prone.  The CART analysis 
showed that the best indicator of security faults and failures were those components 
with the most customer-reported failures.  This observation suggests that the 
customers’ operational profiles may influence vulnerable execution flows in the 
software that were not identified during pre- or post-release testing.  We conclude that 
non-security failures and the predictors of non-security failures are potential metrics 
security-related predictive models.  Given that reliability and security problems exist 
in the same locations, it may be worthwhile to unify the concepts of “software 
reliability engineering” and “software security engineering” into a single theme (e.g. 
software assurance engineering) to indicate that security and reliability folks should 
collaborate in the same sections of the software system and that security should be 
kept in mind when the system becomes unreliable.  Next, we will examine if the non-
security failures in our dataset can actually afford an attacker a means to exploit the 
software system.  The initially classified non-security failures may provide 
opportunities for new types of security attacks.   These security holes may result from 
not abiding by the principle of fail-safe defaults because the failure to perform the 
required functions within the specified performance requirements opened a security 
hole.  Fail-safe defaults is a security design principle [24]. 
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Appendix A: Classification and Regression Tree 
Non-shaded boxes represent leaves of the tree. 

   

 
 


