
Toward Non-security Failures as a Predictor of
Security Faults and Failures

Michael Gegick1, Pete Rotella2, and Laurie Williams1

1Department of Computer Science, North Carolina State University

890 Oval Drive, Raleigh, NC, USA
 2Cisco Systems, Inc.

7025-6 Kit Creek Rd, Research Triangle Park, NC, USA
{mcgegick, lawilli3}@ncsu.edu, protella@cisco.com

Abstract. In the search for metrics that can predict the presence of
vulnerabilities early in the software life cycle, there may be some benefit to
choosing metrics from the non-security realm. We analyzed non-security and
security failure data reported for the year 2007 of a Cisco software system. We
used non-security failure reports as input variables into a classification and
regression tree (CART) model to determine the probability that a component
will have at least one vulnerability. Using CART, we ranked all of the system
components in descending order of their probabilities and found that 57% of the
vulnerable components were in the top nine percent of the total component
ranking, but with a 48% false positive rate. The results indicate that non-
security failures can be used as one of the input variables for security-related
prediction models.

Keywords: attack-prone, classification and regression tree.

1 Introduction

In the search for metrics that can predict the presence of vulnerabilities, there may
be some benefit to choosing metrics from the non-security realm. Metrics can be used
as input variables in statistical models to identify which software components1 are
most likely to be attacked. Such a statistical model can afford for security engineers
to prioritize their efforts to the highest risk components.

 According to Viega and McGraw [28] “Reliability problems aren’t always
security problems, though we should note that reliability problems are security
problems a lot more often than one might think [28].” Therefore, when security
efforts are performed on a software system, some focus toward failure-prone
components may reveal that those components are also likely to be vulnerable. The
objective of this research is to create and evaluate a model that predicts which
components are likely to contain security faults based on non-security failures.

1 A component is one of the parts that make up a system [15].

We analyzed pre- and post-release non-security failure data and pre- and post-
release security fault and failure data of a Cisco software system2 to determine if non-
security problems are associated with security problems. Since security faults are
typically far fewer in number than non-security faults [1], not all of the failure-prone
components will be associated with security faults. To be useful, the statistical model
will have to determine which of the failure-prone components are also likely to be
vulnerable. We constructed a model where the input variables to the model are non-
security failures and the output of the model is a probability that a component in the
system has at least one security fault.

The remainder of this paper is organized as follows. In Section 2 we provide
background and related work, in Section 3 we detail the industrial case study, in
Section 4 we present results, in Section 5 we present the limitations of the study, in
Section 6 we provide a discussion, and finally in Section 7 we summarize and provide
future work.

2 Background

In this section, we provide definitions of terms used throughout the paper. Seminal
sources are used for each definition where possible. We also include prior work that
compares security with reliability.

2.1 Definitions

External metrics - “Those metrics that represent the external perspective of software
quality when the software is in use…These measures apply in both the testing and
operation phases.” [14]

Internal metrics - “Those metrics that measure internal attributes of the software
related to design and code. These “early” measures are used as indicators to predict
what can be expected once the system is in test and operation” [14].

Fault - “An incorrect step, process, or data definition in a computer program. Note: A
fault, if encountered, may cause a failure” [15].

Fault-prone component - “A component that will likely contain faults” [4].

Failure – “The inability of a software system or component to perform its required
functions within a specified performance requirements [15].”

Failure-prone component – A component that will likely fail due to the execution of
faults [26].

Vulnerability - An instance of a [fault] in the specification, development, or
configuration of software such that its execution can violate an [implicit or explicit]
security policy [17].

2 Due to the sensitivity of the security-related data, details of the system and data are omitted.

Vulnerability-prone component - A component that is likely to contain one or more
vulnerabilities that may or may not be exploitable [8].

Attack - The inability of a system or component to perform functions without
violating an implicit or explicit security policy. We borrow from the ISO/IEC 24765
[15] definition of failure to define attack, but remove the word “required” because
attacks can result from functionality that was not stated in the specification.

Attack-prone component - A component that will likely be exploited [8].

An attack-prone component is a component that is likely to be exploited due to the
types of vulnerabilities in that component. For example, the vulnerabilities may be
easy to find, easy to exploit, or lead to desirable assets. A vulnerability-prone
component that is not also attack-prone may contain vulnerabilities that are not easily
found, are difficult to exploit, or do not lead to desirable assets. These characteristics
represent our initial views of vulnerability- and attack-prone components [12].

In our setting, an attack is the execution of a security fault (vulnerability) that leads to
a security failure. We use the context of execution to be consistent with the
definitions and distinction between a fault and failure in the general reliability (non-
security) context under the assumption that security is, by definition, a subset of
reliability. System execution occurs during testing, internal usage, and in the field. In
the context of testing, if a tester discovers a buffer overflow, then we say they have
attacked the system. Although the tester may not have gone through the trouble of
completely exploiting the buffer overflow to cause a denial-of-service or to inject
code that escalates their privileges, the failure is a proof of concept that the system
can be attacked. A risk value can be assigned to the security fault to describe how
detrimental the vulnerability is to the system. Of course, static fault detection
techniques can identify vulnerabilities that can be exploited, too.

2.2 Prior Work

The first and third authors performed two case studies on two different large
commercial3 telecommunications systems. The correlation between non-security and
security failures was examined [9, 12]. We found a 0.8 (p<.0001) Spearman rank
correlation between non-security system/feature failures and security failures for the
first system and a 0.7 (p<.0001) correlation for the second system. For these two case
studies the only available data were system/feature testing failures. The high
correlations suggest that non-security failures are a good indicator of security
problems and that security fortification efforts should be placed in the same areas of
the software as reliability efforts. The case study presented in this paper attempts to
replicate our previous studies on a different software system from a different vendor
to determine if the statistical model yields consistent results.

Research papers comparing security failure data to non-security data are showing
that reliability and security models are not dissimilar. Alhazmi et al. [1] compared the
cumulative number of vulnerabilities for five different operating systems and found

3 Due to the sensitivity of the data, the name of the vendor is omitted.

that the plots are analogous to reliability growth plots using logistic and linear
models. Mullen et al. [18] have found the occurrence rate of security vulnerabilities
follows the Discrete Lognormal distribution, which has also been shown in prior
reliability growth, test coverage, defect failure rate, and code execution rates. Condon
et al. [3] have found that security incident data can be modeled with Non-
Homogenous Poisson Process models as done with reliability failure data. Lastly,
Ozment and Schechter [23] found that Musa’s Logarithmic model fit their OpenBSD
security dataset to predict time-between-security-failures. We continue the
examination of potential parallels between non-security and security problems by
investigating if the location of security faults and failures can be approximated using
non-security failure data.

2.3 Vulnerability- and Attack-prone Component Predictions

Neuhaus et al. [21] have also investigated predictive models that identify
vulnerability-prone components. They created a software tool, Vulture, that mines a
bug database for data including libraries and APIs which components are likely
vulnerable. They performed an analysis with Vulture on Bugzilla, the bug database
for the Mozilla browser, using imports and function calls as predictors. They were
able to identify 45% of all of the vulnerable components in Mozilla. Shin and
Williams [27] found a weak correlation (0.2) between complexity and security
vulnerabilities in Mozilla, indicating that complexity contributes to security problems,
but is not the only factor. We also found a 0.2 correlation between file coupling and
vulnerability counts in a large telecommunications system [10]. In that case study, we
used a classification and regression trees (CART, as discussed in Section 2.4) model
to assign a probability of attack to each file. Upon ranking these probabilities in
descending order, we found that 72% of the attack-prone files are in the top 10% of
the ranked files and 90% are in the top 20% of the files. The input variables for that
study consisted of the count of Klocwork4 static analysis tools warnings, measure of
file coupling, and count of added and changed source lines of code. In our other
earlier work [11] we used a CART to predict which components were attack-prone
using warnings from the static analysis tool, FlexeLint, and code churn. The model
identified all of the attack-prone components, but with an 8% false positive rate. The
study in this paper is based on a different type of system than our earlier studies.

2.4 Classification and Regression Trees (CART)

Our predictive model is comprised of a statistical technique and the independent

variable non-security failure count. CART is a statistical technique that recursively
partitions data according to X and Y values. The result of the partitioning is a tree of
groups where the X values of each group best predicts a Y value. The leaves of the
tree are determined by the largest likelihood-ratio chi-square statistic. The threshold
or split between leaves is chosen by maximizing the difference in the responses
between the two leaves [25]. For the case study in this paper, the X values are values

4 http://www.klocwork.com/

from the non-security failures and the Y value is a binary value describing a
component as attack-prone or not attack-prone. The CART technique has been shown
to be useful for distinguishing failure-prone from not failure-prone components in the
reliability realm [29].

3 Cisco Case Study

We analyzed pre- and post-release non-security failure data and pre- and post-
release security fault and failure data that were submitted to the Cisco fault-tracking
database in 2007 for a typical Cisco software system. The software system was
divided into clearly defined components against which failures were reported. Each
component consists of multiple files. The count of components was large enough to
perform rigorous statistical analyses.

3.1 Non-security External Metrics as Predictors of Security Faults and Failures

The non-security failure reports were obtained from the Cisco fault-tracking
database. The reports we used in our study included all severity 1, 2, and 3 non-
security failure reports for the software system, where severity 1 is the highest impact
to the customer. Most severity 1, 2, and 3 records in the fault-tracking database
indicated actual problems in the software. Records with higher severity numbers had
a stronger chance of being a feature request. During our failure report analysis, we
eliminated duplicate failure records that represented a failure already reported in the
system.

The non-security failure reports include failures observed during unit testing,
function testing, performance testing, system testing, stress testing, alpha testing, beta
testing, automated regression, internal use failures, early field trials, and customer-
reported failures. Alpha testing is conducted on a production network within Cisco
while beta testing is conducted on the customer site. The number and types of non-
security failure reports are not disclosed for confidentiality reasons.

3.2 Security Fault and Failure Data

The security faults and failures are the dependent variables in this industrial case
study. We included security faults and failures of all severity levels. We chose to
study security faults and failures reported for the duration of a year (2007) to
strengthen the goodness-of-fit of the predictive model we will build. Security faults
and failures are rare events and difficult to model with small sample sizes. The
number and types of security fault and failure reports are not disclosed for
confidentiality reasons.

The security faults and failures were provided by the Cisco Security Evaluation
Office that handles security data. The security faults in our study were reported
during static inspections that were performed during the design and development
stages of the software life cycle (SLC). The security failures were identified during

system execution and included problems from pre- and post-release testing and also
include those security failures reported in the field.

In our setting, an attack-prone component is a component that contains at least one
security fault or a security failure. We use the term attack-prone component instead of
vulnerability-prone because most security faults were identified during system
execution. Additionally, the attack-prone components had at least one security failure
identified during pre- or post-release execution. We use the threshold of one security
failure because there is little variability in the failure count per component and only
one attack is needed to cause substantial business loss. Although some security
failures were reported by customers, there was no evidence of successful attacks
against the software. A component with no reported security faults or failures will be
called a not attack-prone component in this paper.

4 Results

The analysis of the failure reports indicated that only a small percentage of the
components consists of at least one security fault or failures. According to Pareto’s
law, 80% of the outcomes will be derived from 20% of the activities [6]. Although,
this observation was originally described in the context of economics, it has also been
observed in the context of faults in a software system [22]. The application of the law
to the software setting is that software problems will not be evenly distributed across
the software system. For example, in a survey of multiple software systems, it was
shown that between 60% and 90% of software faults are due to 20% of the modules
[2]. We observed Pareto’s Law in our setting (see Section 4.2) because the
distribution of attacks among the components is not evenly distributed across all
components. All results in the sections below are reported on a per component basis.

The first analysis in our case study was to perform correlations between all of our
non-security failures types (listed in Section 3.1) and counts of security faults and
failures. The correlations with the highest coefficients will aid in independent
variable selection during the construction of the model. Our statistical model will be
a discriminatory model that classifies a component as attack-prone or not attack-
prone. Associated with the classification is a probability of the component being
attack-prone. In the event that the models cannot successfully discriminate between
attack-prone and not attack-prone components, the correlations may indicate that a
statistical technique does not perform well for the given dataset. For example, if we
observe a high correlation between non-security failures and security faults and
failures, but the discriminatory statistical approach cannot discriminate between
attack-prone and not attack-prone components, then we would try a different
statistical technique.

4.1 Correlations

We calculated5 Spearman rank correlations to determine if an increase of non-
security failures in a component is followed by an increase in count of security faults
and failures for that component. The highest correlation, 0.4 (p<.0001), occurred
between customer-reported non-security failures and the sum of security faults and
failures as shown in Table 1. The correlations to the security fault and failure counts
are low, but they are significant and represent that they have value for indicating the
existence of security problems in a statistical model.

Table 1. Correlations between the non-security failures and vulnerabilities.
Count of

non-security failures
Spearman rank correlation

coefficient (p-value)
customer-reported 0.4 (p<.0001)
alpha testing 0.3 (p<.0001)
total non-security 0.3 (p<.0001)
internal use 0.3 (p<.0001)
system testing 0.2 (p<.0001)
performance testing 0.1 (p<.0001)
stress testing 0.1 (p<.0001)
beta testing 0.1 (p<.0001)
function testing 0.1 (p=.04)
early field trial testing 0.1 (p<.0005)

4.2 Classification of System Components

We performed classification analyses to discriminate between attack-prone
components and not attack-prone components based on non-security failures. We
built models using the discriminant analysis, logistic regression, and CART with the
non-security failures enumerated in Section 3.1 as input variables. CART showed
better separation between attack-prone and not attack-prone components than
discriminant analysis and logistic regression. The non-security failure types that had
the most predictive power in the CART model were alpha and beta testing non-
security failures and customer-reported non-security failures.

The CART analysis splits the all of the system components into like groups based
on the count of non-security alpha and beta testing failures and customer-reported
non-security failures. The splits made in CART are shown in Appendix A. The
values of w, x, y, and z are integer values and are not provided for confidentiality
reasons.

In our analysis, the vulnerabilities were most likely to be in components where
there are more than x customer-reported failures as denoted by the first (top most)
split in the tree (see Appendix A). Failures from alpha and beta testing contributed
less to the isolation analysis. The other failure types enumerated in Section 3.1 could
not split the leaves to achieve separation between attack-prone and not attack-prone
components as well as alpha and beta testing failures and customer-reported failures.

5 All statistical analyses performed on SAS JMP 7.0.1.

The predictive power of the metrics is measured by the likelihood-ratio chi-square,
G2, of each input variable. A larger G2 value indicates a more optimal split of a leaf
in the CART analysis between attack-prone and not attack-prone components. In our
model, the customer-reported problems contributed the most fit or separation in the
overall model as shown in Table 2.

Table 2. Contribution of metrics to the model.

Non-security failure count Number of splits in tree G2

customer-reported 3 205.7
alpha testing 1 7.4
beta testing 1 4.7
Total 5 217.8

We tested the input variables of the CART model to test for collinearity.

Collinearity is defined as a high degree of correlation between the independent
variables of a statistical model [7]. Collinearity occurs when an excessive number of
input variables are used to determine an outcome, and the input variables measure the
same outcome [7]. The highest correlation between our input variables, 0.2, existed
between alpha testing and customer-reported failures and is a low correlation. The
low correlations shown in Table 3 indicate that the failures identified by alpha and
beta testing and customer-reported failures are measuring different types of failures or
failures in different locations in the software. We included these input variables in the
model because the correlations between them are low and thus the collinearity among
them is small.

Table 3. Tests for collinearity in the independent variables.

Failure type Failure type Spearman rank correlation
coefficient

alpha testing customer-reported 0.2 (p<.0001)
beta testing alpha testing 0.1 (p<.0001)
customer-reported beta testing 0.1 (p<.0001)

The probability of an attack-prone component for a given leaf is given in Table 4.

All components in a leaf have the same probability of being attack-prone. For
example, in Leaf 1 100% of the components are attack-prone. In this leaf, all
components should undergo security analyses. In Leaf 2 64% of the components are
attack-prone and all components should go under security analyses, but 36% of the
components will either not contain security faults or failures or contain security faults
that are difficult to exploit or uninteresting to an attacker. The 36% false positive rate
represents that time and effort spent on some components will not contribute greatly
to the overall security posture of the software system. As shown in Table 4, there is a
general likelihood ranking of attack-prone components. The components in Leaf 1
have the highest rank (probability of being attack-prone) and the components in Leaf
6 have the lowest rank.

In examining the efficacy of the model, the security efforts should be focused to all
of the components in the first four leaves of the tree because the true positive rate
(probability of finding an attack-prone component) is relatively high. In Leaves 5 and
6, the probability of identifying an attack-prone component is only ten percent and

one percent, respectively, representing that most security efforts would be wasted on
low risk components. If we accept that the components in Leaves 1-4 are all attack-
prone, then the model will have isolated 57% of the attack-prone components in the
top nine percent (components in the top nine percent of the leaf-based ranking) of the
system component ranking. Leaves 1-4 have a 48% Type I error (false positive) rate
where not attack-prone components are interpreted by the model as attack-prone
components. The remaining 43% of the vulnerable components are in Leaves 5 and 6
and represent the Type II error (false negative) rate. These attack-prone components
would escape security efforts because they are in large groups of components with no
reported vulnerabilities. Security engineers would not likely accept a scenario where
most of their analyses are spent on components with low risk.

Table 4. Attack-prone probabilities in the leaves of the tree. The non-shaded rows
represent the total system components in the top nine percent of the probability
ranking. “Customer” represents the count of customer reported problems. “Alpha”
represents the count of alpha testing failures. “Beta” represents the count of beta
testing failures.

Leaf
Number

Leaf Label Probability
not

attack-prone

Probability
attack-prone

1 customer=x&alpha>=y&beta>=y 0.00 1.00
2 customer>=x&alpha>=1&beta<y 0.36 0.64
3 customer>=x&alpha<1&customer>=z 0.27 0.73
4 customer>=x&alpha<1&customer<z 0.68 0.32
5 customer<x&customer>=w 0.90 0.10
6 customer<x&customer<w 0.99 0.01

The goodness-of-fit of the model can be determined by the receiver operating

characteristic (ROC) curve. The ROC graph has the true positive rate on the y-axis
and the Type I error rate on the x axis. The larger the area under the ROC curve, the
better the goodness-of-fit. In Figure 1, the ROC curve for our model, represented by
the thick line, has 88% of the area under the curve indicating that the non-security
failures are a good metric for predicting which components are attack-prone. The thin
line is a reflection of the solid curve to show the model’s ability to classify not attack-
prone components. The diagonal line represents the efficacy of the model if the
predicted outcomes correctly identified 50% of the attack-prone components.

The R2 value for the overall model is 36% indicating that not all of the variation in
the data can be accounted for by CART. To validate the model, we performed five-
fold cross-validation. Five has been shown to be a good value for performing cross-
validation [13]. The 36% R2 value we observed was based on the entire dataset. The
cross-validation technique validates the R2 value by testing the model on data the
model has not used before to determine if the model is still effective [30]. The five-
fold cross-validation divides (“folds”) the total system components into five groups
consisting of an approximately equal number of randomly chosen components. One
group is used as the test set and the training set consists of the remaining four groups
of components. The model is trained on the training set and the analysis is compared
to the outcomes of the test set to validate how well the model performs on data that
has not been “seen” before by the model. Each of the five groups of components has

one turn to be the test set which requires five analyses. After the five analyses are
performed, the average error is calculated over the five trials. The cross-validated R2
value was 34% indicating that the overall model is consistent with the model
produced with the entire dataset. Despite the low R2 values, all of the splits in the
CART analysis were performed at or below the .05 significance level representing
that each leaf split (separation between attack-prone and not attack-prone
components) is statistically significant.

Se
ns

itiv
ity

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.20 0.40 0.60 0.80 1.00
1-Specificity

Figure 1. The ROC curve of the CART analysis.

5 Limitations

We cannot claim to have identified all faults in the software based on the failures
that have surfaced during testing [5]. Additionally, the customer reported failures do
not complete the identification of all non-security faults as predictors or all security
faults and failures as dependent variables. Moreover, the testing effort may not have
been equal for all components and thus components with fewer failures may appear
more reliable or secure. Therefore, our analyses are based on incomplete data. The
Type I (48%) and Type II (43%) error rates are high indicating that the model is not
precise which, if applied at Cisco, could lead to effort wasted on low security risk
components while some attack-prone components are never found. Additional
metrics in a statistical model may help identify attack-prone components with lower
Type I and Type II error rates. Furthermore, there are few security data making
statistical analyses difficult. Lastly, the model presented in this paper is
representative of one industrial software system and will not necessarily yield the
same results on different software systems.

6 Discussion

In a Mozilla case study [27] and our earlier telecommunications system case study
[11] the analyses showed that there is only a 0.2 correlation between complexity
measures and security faults and failures. We observed that the 0.4 correlation
between non-security failures and security failures in the software system is higher
than complexity-related correlations. Further analysis is required to determine how
complexity metrics correlate to security faults and failures in the system we studied.
The higher the correlation, the more the predictor can contribute in a predictive
model. While 0.4 correlation is low, it is significant, as are the complexity
correlations. Combining these predictors into one model may build a useful model
that has lower Type I and Type II error rates than a model with just one predictor.

According to Table 4, 57% of all attack-prone components were associated with
greater than x (a value determined by the CART model) customer-reported non-
security failures. Furthermore, Table 2 indicates that customer-reported non-security
failures have the most ability to split components into groups of attack-prone and not
attack-prone components. We provide three possible explanations for this
observation. First, these observations indicate that the customer’s operational profile6
(usage) influences vulnerable execution paths not identified the testing techniques
listed in Section 3.1. The more execution in those required features could increase the
chance of a deviant operation profile that opens a security hole for an attacker.

The second possible reason why attack-prone components are associated with
customer-reported failures is that they are the components that are most important
(i.e. the reason the software was built) to the customer and thus those with the largest
business risk. Therefore, failures with these components would more likely be
considered security problems because they can be exploited by attackers to interrupt
the software functions required by the customer. Failures in components that have
less importance to a customer may be less likely to be a security problem because the
impact of the failure does not preclude the customer from performing important tasks.
However, the data indicate that 43% of the attack-prone components are associated
with components with fewer than x customer-reported failures and show that the
system can be exploited via components that are not as frequently as the others.
Given the 57% and 43% percentages, security efforts should prioritize against the
features that the customers use the most, but not exclude those components that are
used less by the customers as they can also impact the customer.

Thirdly, the 0.4 correlation (a weak, but significant correlation) between non-
security failures and security faults and failures may indicate that components with
the most customer-reported failures are associated with deficiencies in the software
process that lead to less reliable code. Gaps in the software process can lead to either
the injection of a fault or the failure to remove a fault. The correlation between non-
security failures and security faults and failures may indicate that the gaps in the
software process lead to both reliability and security failures. The less failure-prone
components (i.e. those with fewer or no security faults) indicate that the development
groups with a stricter software process mitigate non-security problems at the same

6 The complete set of operations (major system logical tasks) with their probabilities of

occurrence [19].

time as security problems, perhaps without realizing that some of the risks they
encountered were security-related. For example, if architectural risk analyses are not
performed during design, then design flaws may not found until late in the software
process when it is too late to change the design of the system. The design flaws may
lead to unreliable functionality or a vulnerability that an attacker can exploit.

In our earlier work [11]7, we observed a 0.4 correlation between static analysis tool
warnings and vulnerabilities found during testing and in the field. We did not observe
a correlation between code churn and vulnerability counts. In our other work [10], we
observed a 0.2 correlation between static analysis tool warnings and vulnerability
counts. We also observed a 0.4 correlation between code churn and vulnerability
counts. The vulnerability counts in these two datasets were small and thus may have
hindered the identification of a stronger correlation between the predictors and
vulnerability counts. Correlations between the same predictors and non-security
faults/failures have been reported to be much stronger than the measurements
presented in this paper. For example, Zheng et al. [31] observed a 0.73 correlation
between static analysis tool warnings and testing and customer failures. Nagappan
and Ball [20] observed correlations as high as 0.883 between code churn measures
and general reliability defects/KLOC. If the static analysis tool warnings and code
churn are strongly correlated to non-security problems and non-security problems are
correlated to security problems, then static analysis tool warnings and code churn in
our earlier work ([10, 11]) may have a stronger impact on security problems than
what the correlations indicate. If true, the extensive research on reliability statistical
models (e.g. [16, 22]) that have been shown to predict fault- and failure-prone
components early in the SLC may also be helpful for security prediction models. The
models can be modified to isolate security problems, or if we assume that the security
faults cluster with the non-security faults, then security engineers can focus their
efforts to the components predicted to be the most failure-prone by the reliability-
based prediction model.

7 Summary and Future Work

We analyzed a Cisco software system to determine if non-security problems are
associated with security problems. We found a 0.4 correlation between security faults
and failures and non-security failures suggesting that general reliability of a software
component is an indicator of the security posture of that component. Our CART
model shows that alpha and beta testing failures and customer-reported failures can
discriminate between attack-prone and not attack-prone components. Additionally,
the model provides a threshold of non-security failure counts “required” to have a
security fault or failure. This threshold is useful for determining which of the failure-
prone components should receive security attention in application of the idea
suggested by Viega and McGraw [28] in the Introduction. The model correctly
identified 57% of the attack-prone components in the top nine percent of the

7 For the detailed version of this paper, see: M. Gegick, L. Williams, and J. Osborne,

"Predicting Attack-prone Components with Internal Metrics," NC State University, Raleigh,
TR-2008-08, 25 February 2008.

components when ranked by probability of being attack-prone. The CART analysis
showed that the best indicator of security faults and failures were those components
with the most customer-reported failures. This observation suggests that the
customers’ operational profiles may influence vulnerable execution flows in the
software that were not identified during pre- or post-release testing. We conclude that
non-security failures and the predictors of non-security failures are potential metrics
security-related predictive models. Given that reliability and security problems exist
in the same locations, it may be worthwhile to unify the concepts of “software
reliability engineering” and “software security engineering” into a single theme (e.g.
software assurance engineering) to indicate that security and reliability folks should
collaborate in the same sections of the software system and that security should be
kept in mind when the system becomes unreliable. Next, we will examine if the non-
security failures in our dataset can actually afford an attacker a means to exploit the
software system. The initially classified non-security failures may provide
opportunities for new types of security attacks. These security holes may result from
not abiding by the principle of fail-safe defaults because the failure to perform the
required functions within the specified performance requirements opened a security
hole. Fail-safe defaults is a security design principle [24].

Acknowledgment

This work is supported by the National Science Foundation under CAREER Grant

No. 0346903. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References

[1] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, "Measuring, analyzing and predicting
vulnerabilities in software systems," Computers & Security, vol. 26, no. 3, pp. 219-228,
May 2006.

[2] B. Boehm and V. Basili, "Software Defect Reduction Top 10 List," IEEE Computer, vol.
34, no. 1, pp. 135-137, January, 2001.

[3] E. Codon, M. Cukier, and T. He, "Applying Software Reliability Models on Security
Incidents," International Symposium on Software Reliability Engineering, Trollhattan,
Sweden, 2007.

[4] G. Denaro, "Estimating software fault-proneness for tuning testing activities,"
International Conference on Software Engineering, St. Malo, France, pp. 269-280, 2000.

[5] E. Dijkstra, Structured Programming, Brussels, Belgium, 1970.
[6] A. Endres and R. D. Rombach, A Handbook of Software and Systems Engineering,

Harlow, England, Pearson Education, Limited, 2003.
[7] R. Freund, R. Littell, and L. Creighton, Regression Using JMP, Cary, NC, SAS Institute,

Inc., 2003.
[8] M. Gegick and L. Williams, "Toward the Use of Static Analysis Alerts for Early

Identification of Vulnerability- and Attack-prone Components," First International
Workshop on Systems Vulnerabilities (SYVUL ’07) Santa Clara, CA, July 1-6 2007.

[9] M. Gegick, "Failure-prone Components are also Attack-prone Components," OOPSLA -
ACM student research competition, Nashville, Tennessee, pp. 917-918, October 2008.

[10] M. Gegick and L. Williams, "STUDENT PAPER: Ranking Attack-prone Components
with a Predictive Model," International Symposium on Software Reliability Engineering,
Redmond, WA, pp. 315-316, November 2008.

[11] M. Gegick, L. Williams, J. Osborne, and M. Vouk, "Prioritizing Software Security
Fortification through Code-Level Security Metrics," Workshop on Quality of Protection,
Alexandria, VA, pp. 31-37, 2008.

[12] M. Gegick, L. Williams, and M. Vouk, "Predictive Models for Identifying Software
Components Prone to Failure During Security Attacks," Build Security In
(https://buildsecurityin.us-cert.gov/daisy/bsi/home.html) 2008.

[13] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning, New
York, Springer, 2001.

[14] ISO, "ISO/IEC DIS 14598-1 Information Technology - Software Product Evaluation - Part
1: General Overview," October 28 1996.

[15] ISO/IEC 24765, "Software and Systems Engineering Vocabulary," 2006.
[16] T. M. Khoshgoftaar, E. B. Allen, A. Naik, W. Jones, and J. P. Hudepohl, "Using

Classification Trees for Software Quality Models: Lessons Learned," International
Journal on Software Engineering and Knowledge Engineering, vol. 9, no. 2, pp. 212-231,
1999.

[17] I. Krsul, "Software Vulnerability Analysis," PhD Thesis in Computer Science at Purdue
University, West Lafayette 1998.

[18] R. Mullen and S. Gokhale, "A Discrete Lognormal Model for Software Defects Affecting
QoP," Quality of Protection, Milan, Italy, 15 September 2005.

[19] J. D. Musa, Software reliability engineering: More reliable software faster and cheaper
Second Ed., Bloomington, Indiana, AuthorHouse, 2004.

[20] N. Nagappan and T. Ball, "Use of Relative Code Churn Measures to Predict Defect
Density," International Conference on Software Engineering, St. Louis, MO, pp. 284-292,
15-21 May 2005.

[21] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, "Predicting Vulnerable Software
Components," Computer and Communications Security, Alexandria, VA, pp. 529-540, 29
October-2 November 2007.

[22] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Where the bugs are," International
Symposium on Software Testing and Analysis, Boston, Massachusetts, pp. 86-96, 2004.

[23] A. Ozment and S. Schechter, "Milk or wine: does software security improve with age?,"
15th Conference on USENIX Security Symposium, pp. 93-104, July 2006.

[24] J. Saltzer and M. Schroeder, "The Protection of Information in Computer Systems,"
Proceedings of the IEEE, vol. 63, no. 9, pp. 1278-1308, September 1975.

[25] SAS Institute Inc., "The Partition Platform," SAS Institute, Inc., Cary, NC, 2003.
[26] A. Schroter, T. Zimmermann, and A. Zeller, "Predicting Component Failures at Design

Time," International Symposium on Empirical Software Engineering, Rio de Janeiro,
Brazil, pp. 18-27, September 21-22 2006.

[27] Y. Shin and L. Williams, "Is Complexity Really the Enemy of Software Security?,"
Workshop on Quality of Protection, Alexandria, VA, pp. 47-50, 2008.

[28] J. Viega and G. McGraw, Building Secure Software How to Avoid Security Problems the
Right Way, Boston, Addison-Wesley, 2002.

[29] M. Vouk and K. C. Tai, "Some Issues in Multi-Phase Software Reliability Modeling,"
Center for Advanced Studies Conference (CASCON), Toronto, pp. 512-523, October 1993.

[30] I. Witten and E. Frank, Data Mining, Second ed. San Francisco, Elsevier, 2005.
[31] J. Zheng, L. Williams, W. Snipes, N. Nagappan, J. Hudepohl, and M. Vouk, "On the

Value of Static Analysis Tools for Fault Detection," IEEE Transactions on Software
Engineering, vol. 32, no. 4, pp. 240-253, April 2006.

Appendix A: Classification and Regression Tree
Non-shaded boxes represent leaves of the tree.

