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Abstract. Wireless sensor networks are an important tool for the supervision of 
cool chains. Previous research with a high number of measurement points re-
vealed spatial temperature deviations of more than 5 °C in chilled transport, but 
the number of sensors has to be reduced to an economically useful value for use 
in regular transport. This paper presents a method to estimate the minimum 
number of sensors and to compare different sensor positioning strategies. Dif-
ferent methods of interpolating the temperature data of intermediate positions 
were applied to the experimental data from a delivery truck. The average pre-
diction error for intermediate points was estimated as a function of the number 
of sensors. The Kriging method, originally developed for the interpolation of 
geostatistical data, produced the best results.  

Keywords: Wireless sensor networks, Food logistics, Kriging, Information 
Processing, Temperature mapping. 

1   Wireless Sensors in Cool Chain Management 

Product losses in food transportation due to temperature mismanagement and quality 
decay can reach up to 35% [1]. These losses can be mitigated by better supervision of 
the cool chain. If stock rotation is based on dynamic shelf life or current product qual-
ity instead of a fixed production date, quality losses in meat could be reduced from 
16% to 8%, as the group of Taoukis has shown [2], and those in fish could be reduced 
from 15% to 5% [3]. 

The prediction of shelf life requires temperature monitoring for individual product 
batches. Temperature differences inside a truck of up to 12 Kelvin [4] can cause se-
vere deviations in product quality. Sea containers with air ducts in the floor allow for 
a better air flow distribution, but differences between pallet surfaces and core tem-
peratures can still reach 6 Kelvin [5]. 

Wireless sensor networks provide online access to temperature data during trans-
port. Instant notifications of food quality problems allow for corrective actions to be 
taken before the transport arrives at its destination. The prediction of shelf life losses 
can be calculated by an automated system inside the means of transport [6]. Sensors 
packed inside the cargo are often lost by the end of the transport. In order to avoid 
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high sensor replacement costs, it is not feasible to equip each box or pallet inside a 
truck or container with a sensor node.  Instead of oversampling the cargo hold by  
implementing a high number of measurement points, the temperature has to be inter-
polated between the positions of a reduced number of sensors. Furthermore, the oper-
ating conditions of food transport place high physical demands on the sensors. The 
sensors must be able to operate in temperatures below -20 °C, withstand high air hu-
midity and condensation, and endure cleaning by steam jet.  

2   Required Number of Sensors 

The goal of this study is to develop a method to the estimate the number of sensors 
required to accurately interpolate a spatial temperature profile. The difference be-
tween the real temperature and the temperature predicted by interpolation increases 
for low numbers of source or input sensors. Inappropriate positioning of the input 
sensors and inaccuracies of the interpolation methods also lead to higher errors.  

This paper begins by defining a measure for the interpolation error and introducing 
the experimental data. The following section compares different interpolation meth-
ods for a fixed number of input sensors. A further analysis of the data tests to what 
extent the interpolation error is reduced by increasing the number of sensors. The ef-
fects of different strategies to determine locations for the placement of additional sen-
sors are evaluated. The last section demonstrates how the interpolation error could 
also be utilized as an indicator of the probability of sensor faults.  

2.1   Source and Destination Points 

The measurement data set was split into two groups. The first group of sensor loca-
tions serves as the input for the interpolation model. This group contains the NS source 
points si. The second group of sensor locations serves as a reference. The measure-
ments at the NZ  destination points zi were compared to the output of the selected in-
terpolation model.1  

2.2   Definition of Interpolation Error 

The error εi for one destination point i was defined as the median square deviation be-
tween the predicted iz

)
and the measured zi over NK samples for the transport duration: 
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1 Vectors are marked by bold lowercase letters, matrices by bold capital letters, and transposed 

matrices by an additional superscript ‘T’. Temperature differences are given in Kelvin [K] and 
absolute temperatures are given in degrees Celsius [°C]. Averages are indicated by an over-
bar. Context clarifies whether the average is taken over the transport duration or over all 
measurement points for a certain sampling instance.  
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The quality of the interpolation methods was evaluated according to the average pre-
diction error ε over all destination points: 

ε =
εi

i=1
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3   Experimental Data 

With the purpose of conforming to the mechanical requirements of cool chain trans-
port, we equipped TelosB sensors with polyamide water-protected (IP65) housings 
and external SHT75 temperature and humidity sensors. In order to evaluate the error 
of the temperature interpolation, it is necessary to acquire data for more points than 
the final number of sensor positions. Because we have only manufactured a limited 
number of sensors, we performed the preliminary tests with low-cost data loggers. 
The tests were performed inside delivery trucks provided by the German company 
Rungis Express, which specializes in supplying high-quality food products to hotels 
and restaurants. The cargo hold of each truck is separated into three different tempera-
ture zones. During two test transports, 40 TurboTag data loggers were placed in each 
middle compartment in deep freezer mode with a set point of -29 °C.  

Further details of the test are described in [7], whereas this paper focuses on an 
analysis of the experimental data to determine the minimum number of sensors and 
their optimal positions.  
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Fig. 1. Temperature over time. Minimum, maximum, and average for transport 1. 
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Fig. 2. Spatial temperature distribution at the end of the cooling period in transport 1. The cool-
ing unit is mounted under the ceiling. The direction of air flow at the ventilation outlet is 
marked by the three arrows.  

Figure 1 shows the temperature over time diagram of both the coldest and the hot-
test measurement points, as well as the average temperature of all points over the 11-
hour cooling period during the first transport. The oscillations of the temperature were 
caused by the on/off cycles of the cooling unit with a period of approximately 1.2 
hours. The automated defrosting caused a short temperature peak after 10.5 hours.  

The spatial temperature distribution is given in Figure 2. The average over time 
was calculated for each measurement point over a two hour period starting 8 hours af-
ter truck was loaded. Temperature differences of about 7.5 K are still present at the 
end of the transport. 
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3.1   Time Correction 

Data loggers are cheap and easy-to-use wireless devices, but they do not provide ac-
cess to the sensor data during the transport. Furthermore, they do not feature net-
worked time synchronization, which meshed sensor nodes provide. Data loggers can 
exhibit considerable deviations of the sampling intervals, especially in deep freezer 
conditions. We found clock deviations of ±3 % in our experimental data. The data 
was converted to an equal sampling interval of 2.5 minutes by the resample() function 
in MATLAB. This function resamples the input with a fixed frequency ratio of p/q by 
upsampling the input by the factor p, filtering alias frequencies, and downsampling by 
the factor q. A graphical comparison showed that the error introduced by the resam-
pling was lower than 0.05 Kelvin except for occasional peaks of up to 0.1 Kelvin. 
Only samples at the beginning and end of the data set, which could have a higher er-
ror, were removed before further processing. 

4   Methods for Spatial Interpolation 

The following section compares different approaches for estimating the temperature 
at the destination points by a linear combination of the values at the source points. 
The prediction of the destination point iz

)
 at the sampling instance k is given by the 

sum of the data of the source points sj multiplied with the time-invariant weighting 
coefficients wij.  The forecast depends solely on the current source values for these 
linear methods; their prediction model does not contain any state variables. 
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4.1   Inverse Distance Weighting 

Inverse distance weighting is most common method for determining the weighting 
coefficients. This method uses only the geometrical distances between the source 
points. It assumes that the influence of a source point sj on a destination point zi de-
creases with the square of their distance hij. The weighting coefficients are given by 
equation (4). The additional parameters ωi are used to scale the weighting coefficients 
in such a way that their sum equals 1 for each destination point.  
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4.2   Kriging 

An improved interpolation method was developed by D.G. Krige [8] in the 1950s for 
the exploration of mineral resources with 1000 or more test drillings. To date,  
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the Kriging method has only been scarcely utilized in sensor networks; see [9] for ex-
ample. This might be due to the fact that, in general, there are a lower number of 
probe points in wireless sensor applications than in geological research. We tested 
whether Kriging could also calculate a precise prediction for small data sets with only 
40 points of experimental data. The Kriging method, as described in equation (5)-(8) 
[10], [11], was implemented as a set of MATLAB functions. As new applications of 
Kriging we used this method to estimate the number of required sensors and to test 
the plausibility of the sensor data. 

Kriging calculates the solution with the least possible expected value for the errors 
εi of each destination point by assuming the following:  

a) The mean of the measurement values is independent of space, and  
b) The expected value for the temperature difference between two points depends 

solely on their spatial distance vector.  

Depending on the data set, in many cases it is possible to reduce the second assump-
tion to an isotropic form in which the difference does not depend on the direction but 
only on the absolute value of the distance.  

Kriging can be seen as an improved form of inverse distance weighting. Whereas 
the inverse distance method calculates the weighting coefficients directly by the geo-
metrical distance between two points hij, Kriging uses the variogram v(hij) that ex-
presses the statistical dependency of two points as function of their distance hij. The 
variogram describes the statistical dependency by the expected value E for the square 
of the temperature difference of two points i,j: 
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The primary disadvantage of the Kriging method lies in its estimation of the 
variogram from the measurement values. Because our data set with 40 sensor loca-
tions did not allow for a determination of separate variograms for different direc-
tions of the distance vector, an isotropic distribution was assumed. In contrast to 
geological research in which only one static value per probe point is taken, we ob-
tained a time-variant series of measurements. The equation to estimate the experi-
mental variogram v∗(h) from the data was slightly modified, resulting in the  
following: 
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The value was calculated for the first transport with all 0.5 · 40 · (40-1) = 780 possible 
combinations of two points. The resulting values for v∗(h) were grouped by the abso-
lute value of the distance in intervals of 0.25 meter length. The average value for v∗ 
(h) inside each interval is given by a marker in Figure 3. 
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Fig. 3. Experimental and theoretical variogram 

This experimental curve was approximated by a theoretical variogram v(h). Only a 
limited set of functions can be applied as theoretical variograms. The function must 
conform to several limitations. For example, the variogram has to be a monotonically 
increasing function. In addition, apart from the origin, the function has to be continu-
ous.2 The Gaussian model was selected from the supposed standard models [10], [11] 
because it produced the best fit for the gentle rise of the curve for small distances: 

( ) ( )( )2/3
00 1)( rhevvvhv −

∞ −⋅−+=  (7) 

The radius r as the primary parameter of the variogram can be interpreted as the 
maximum distance for the mutual influence between two points. The initial value v0 is 
the minimum value of variance for distances greater than zero. v∞ gives the variance 
for large distances. The parameters of the variogram for the data from the first trans-
port were estimated to be r = 2.8 m,   v0 = 1.0 K²,   v∞ = 13.5 K².  

Analyses of the data from the second transport showed higher initial and final  
values (v0 = 2.5 K²,   v∞ = 32.5 K²), but no significant difference in the radius.  

The method of inverse distance weighting directly calculates the weighting coeffi-
cients as a function of distance, whereas the Kriging method also considers the mutual 
influence of all measurement points by a linear system of equations. The Ordinary 
Kriging method also estimates the spatial average μ as an auxiliary variable: 

                                                           
2 Only functions that are negative semi-definite can be utilized as variogram [11]. Otherwise, 

equation (12) on page 12 could result in a negative value for the Kriging variance. 
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The matrix on the left side contains the values of the variogram for the distances be-
tween all source points vi,j. The vector on the right side contains the values vi,q for the 
distances between each source point and one destination point zq. The weighting coef-
ficients wi,q used in calculating the destination point are retrieved by solving the linear 
set of equations in (8). 

4.3   Kriging with Spatial Trends 

The Ordinary Kriging method assumes that the mean value of the temperature is con-
stant over space, but our experimental data showed a difference of 4 K between the 
average temperature of the left and right walls. There are three methods in which this 
problem can be addressed.  

The first method is to simply ignore the trend and directly apply Ordinary Kriging, 
assuming that the effect of the trend is negligible for small distances.  

The second method implements the following steps: a) A linear or polynomial 
trend model is estimated from the source points. b) The prediction of the trend model 
is subtracted from the source points. c) Ordinary Kriging is applied to the difference. 
d) The trend model is added to the destination points obtained by Ordinary Kriging. 

The third approach using the Universal Kriging method extends the set of linear 
equations in (8). The parameter values of a trend model are calculated as additional 
variables. However, Universal Kriging is only necessary if the temperature distribu-
tion exhibits local drifts in addition to a global trend [10, page 38].  

Because our data set of 40 measurement points does not contain enough informa-
tion to estimate local drifts or cubic trend functions, only the second approach involv-
ing a linear model was applied. The temperature trend T∗ was predicted as a function 
of the coordinates px, py, pz, of a point i. The model parameters α were estimated sepa-
rately for each sampling instance k:  

( ) ( ) ( ) ( ) ( ) ( )ipkipkipkkkiT zyx ⋅+⋅+⋅+=∗
3210 )(),( αααα  (9) 

For the first transport, the average over time of the parameters was calculated as 
C, -21.980 °=α K/m 15.0   K/m, 98.1-   K/m, 17.0   321 === ααα . 

5   Comparison of Interpolation Errors 

The described interpolation methods were applied to the recorded data of both trans-
ports. We evaluated the data set twice, once using 8 source points and once using 30 
source points. From the 40 total points, either 32 or 10 remained as destination points. 
The average interpolation error was calculated for these remaining points. The set 
with 8 source points includes the positions in the corners of the cargo hold that are 
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marked by a black frame in Figure 2. The positions of the sensors for the set with 30 
source points were selected according to the approach described in the next section.  

Two further simple interpolation approaches were applied as references for the 
comparison: a) The time-dependent average of the source points was taken to predict 
all destination points, independent of their locations. b) The destination values were 
set according to the trend model in equation (9). The results of the comparison are 
summarized in Table 1: 

Table 1. Comparison of interpolation error ε  for different methods for 8 and 30 source points 

Experiment / Source points Ex1 / 8 Ex2 / 8 Ex1 / 30 Ex2 / 30 

Average of source points 2.796 K 3.912 K 2.567 K 3.239 K 

Linear trend 1.984 K 2.723 K 1.881 K 3.437 K 

Inverse distance weighting 1.443 K 2.287 K 1.105 K 1.720 K 

Ordinary Kriging 1.389 K 2.170 K 0.530 K 1.325 K 

Kriging with linear trend 1.418 K 2.231 K 0.533 K 1.474 K  

Ordinary Kriging gave the most accurate prediction with an interpolation error be-
tween 0.5 K and 2.2 K. The combination of Kriging with a linear trend model resulted 
in a slightly higher error. A linear trend, which affects the whole cargo hold, fails to 
properly explain the difference between the average temperatures of the left and right 
walls. Thus, for this data set, the best approach is to directly apply Ordinary Kriging, 
which gives the best fit for randomly distributed heat sources. 

The accuracy of Kriging increases with the number of source points. A comparison 
of the interpolation error of Ordinary Kriging with other methods gave the following 
results: For 30 source points, the error is reduced by 52% for the first and 23% for the 
second transport compared to inverse distance weighting. Compared to the simple av-
erage and the linear trend model, the improvement is between 59% and 79%.  

The variograms for the first and second transports exhibited differences only in 
their initial and final values, with a similar relation of v∞/v0. The variogram for the 
second experiment can be approximated by a proportional scaling of the first 
variogram: 

( ) ( )hvhv firstond ⋅≈ 4.2sec  (10) 

The factor 2.4 can be reduced in equation (8) because it appears on both sides. There-
fore, the weighting matrix for Kriging is almost independent of the number of the ex-
periment. The effect of the differences in the variogram was calculated to be lower 
than 0.1 %.  

5.1   Comparison with Linear Curve Fitting 

The coefficients of the weighting matrix depend mainly on the geometrical locations 
of the measurement points for the inverse distance and the Kriging method. The 
weighting coefficients are almost independent of the current sensor data for these two 
methods.  
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Other modeling approaches set the weighing coefficients in order to give the best 
fit for a set of training data.  A disadvantage of these approaches is that in addition to 
the values of the source points, the values of the destination points must also be 
known in advance for use as training data. Because the weighing coefficients depend 
on the sensor data of the training experiment, it is necessary to test by a cross-
validation whether it is possible to apply the model to future experiments. Linear 
curve fitting is introduced as an example for this approach.  

Equation (3) was transferred to a matrix form. The rows of the matrices Z
)

and S 
contain all measurement values at one sampling instance. The matrix W contains the 
time-invariant weighting coefficients: 

WSZ ⋅=
)

 (10) 

The weighting coefficients are calculated as the least square error solution of the 
overdetermined linear set of equations (10) by the Moore-Penrose pseudoinverse [12]: 

( ) ZSSSW TT ⋅⋅⋅= −1
 (11) 

If the weighting matrix is recalculated by equation (11) for each experiment, the curve 
fitting delivers a superb approximation that is between 75% and 87% better than those 
calculated with Kriging (Table 2). However, the curve fitting fails to give a prediction 
for experiments in which the destination values are not known in advance. The 
weighting matrix was calculated with the data of experiment one and applied to ex-
periment two and vice versa. The interpolation error of this cross-validation was al-
ways larger than the error predicted by Kriging. The prediction for the destination 
points in experiment one was hardly better than the simple average of source values.  

Table 2. Interpolation error ε  and cross validation for linear curve fitting 

Experiment / Source points Ex1 / 8 Ex2 / 8 Ex1 / 30 Ex2 / 30 

Linear curve fitting 0.283 K 0.415 K 0.134 K 0.177 K 

Cross validation curve fitting  2.638 K 2.234 K 2.417 K 1.470 K 

This problem might also appear in other learning methods in which the parameters 
of the prediction system are trained by the data of one or more experiments. Their 
ability to predict destination values in future experiments has to be tested by careful 
cross-validation.  

6   The Number of Required Sensors 

The prediction error of the Kriging method decreases with the number of source 
points as shown in Table 1. In order to answer the initial question of this paper con-
cerning the required number of sensors, the average prediction error of the Ordinary 
Kriging method was plotted in Figure 4 as a function of the number of source points. 
Starting with a configuration of one sensor in each of the eight corners, new sensors 
were added one by one. Furthermore, the effect of the location of the new sensors on  
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Fig. 4. Average prediction error ε as a function of the number of source points for different 
sensor-addition strategies 

the prediction error was tested by this simulation. New points were added according 
to four different strategies: 

a) New points were added randomly. The curve shows the average of 100 
random experiments.  

b) The Kriging method also provides the means to estimate the expected er-
ror in unknown destination points. The Kriging variance KV or its square 
root, the Kriging standard deviation σK, can be calculated as the product 
of the two vectors in equation (8): 
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 The goal of this strategy b) is to minimize the average Kriging variance 
of the remaining destination points. All options to convert one destina-
tion point into a source point were tested. The point that resulted in the 
lowest average was selected as new source point. 

c) The destination point with the highest deviation between the predicted 
and measured εi was converted into a source point.  

d) Whereas the weighting coefficients are independent of the number of the 
experiment, the cold and hot spots as locations of temperature extremes 
can change location for different transports. Thus, the points with the 



 The Minimum Number of Sensors 243 

maximum εi are also subject to change. Therefore, strategy c) has to be 
tested by cross-validation. The sequence for adding new sensors was de-
termined according to the measurements from experiment two by em-
ploying strategy c). Thereafter, the same sequence was applied to  
experiment one. 

A share of the measured prediction errors εi results from calibration tolerances of the 
sensors at the destination points. The average measurement error was estimated by a 
test in a climatic chamber for a set of 36 TurboTag data loggers. Their temperature 
measurement exhibited a standard deviation of 0.25 K at 0 °C, 0.38 K at -10 °C, and 
0.68 K at -25 °C. The average temperature in our experiments was approximately -
25 °C. Therefore, the related tolerance of 0.68 K should be considered as the low 
boundary for the prediction error.  

In general, not only the temperatures at the remaining destination points of the data 
set should be estimated, but also those at any point inside the cargo hold. Therefore, 
the simulation was stopped after 30 source points were added. Otherwise, there would 
not have been a sufficient number of destination points remaining to reliably calculate 
the average prediction error.  

Only strategy c) goes slightly below the low boundary, because it selects the points 
directly according to their prediction error, thus disregarding sensors with high toler-
ances. The other three strategies showed a slower decrease of the prediction error. If 
new points are added by one of these strategies, far more than 30 source points are 
necessary to reach the low boundary. 

The four strategies were compared on the basis of the average error ε20-30 over the 
interval between 20 and 30 source points. Strategy c), in which new sensors are added 
according to the maximum εi, showed the best result with  ε20-30 = 0.60 K. The cross-
validation increased its error to ε20-30 = 0.96 K, which is slightly higher than the error 
that results from adding new sensors based on the Kriging variance with ε20-30 = 0.91 
K. The improvement using the latter two strategies is less than 20% compared to the 
average of the random experiments with ε20-30 = 1.11 K. 

In typical applications, little or no sensor data is available before installation. In 
these cases, it is only possible to determine the sensor positions based on the Kriging 
variance. Strategy c) can only be applied if a larger data set is available. The number 
of measurement points in the data set must exceed the number of the reduced sensor 
positions. The error of strategy c) might increase for data from untrained transports, 
but this error is only slightly larger compared to errors using other strategies.  

Strategies a) to d) are all greedy in the sense that they seek only the instant advan-
tage and cannot change or undo earlier decisions. A fifth algorithm was tested as an 
example of a less greedy variant of strategy b). The algorithm searches for the best 
combination of the following three steps in order to minimize the average Kriging 
variance for the remaining destination points: i) remove one source point; ii) replace it 
with another point; iii) add a further point as source point. But the advantage of this 
strategy compared to b) was rather marginal. For 30 points, both strategies resulted in 
the same list but ordered differently. 

The number of sensors required to achieve a given limit for the average prediction 
error can be obtained from Figure 4. If, for example, the limit is 1.0 K and the posi-
tions are determined by the Kriging variance, at least 22 sensors are necessary.  
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7   Plausibility Testing Based on the Kriging Variance 

The Kriging variance also provides a means of testing the plausibility of single meas-
urements or of the interpolation process itself. This related type of cross-validation  
selects all measurements as source points except for one. The Kriging standard devia-
tion σK(i) and the prediction error εi are calculated for this destination point i. The 
process is repeated after selecting the next location as destination point. Figure 5 
shows the resulting values for all destination points.  

If the data set satisfies the statistical assumptions of the Kriging method, the aver-
age of σK should be equal to the average prediction error. A large difference between 
these two values indicates that either the expected value of the measurements exhibits 
a spatial dependency, that a spatial trend or an anisotropic relation of the variogram 
has not been considered, or that the variogram does not correctly represent the  
measurements.  

The values of the Kriging standard deviation are slightly too high for our data set 
compared to the measured prediction error. This could be caused by the temperature 
trend that was observed in direction of the y-axis. If a trend exists which is not  
compensated in the Kriging process, the variogram can produce excessively high val-
ues according to Schafmeister [10, page 37]. 

The described cross-validation could also test whether the measured values of one 
or more sensors are plausible. Figure 5 shows four points in which the measured val-
ues differ by more than 2 K from the calculated prediction. These deviations can arise 
due to the following: 
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Fig. 5. Kriging standard deviation and prediction error as a function of the position of one des-
tination point 
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a) The prediction itself has a high level of uncertainty, because the neighbor 
source points are too far away. This is expressed by the value of σK(i). 

b) The error is caused by random noise or statistical effects. 
c) The prediction error has a physical cause. The point could be warmed up by 

a heat source that produces only a localized effect.  
d) The sensor is faulty or exhibits an excessive tolerance. 

In order to eliminate option a), the relation between the prediction error and the 
Kriging standard deviation was used as an indicator of the likelihood of a sensor fault 
at this point.  
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=  (13) 

The five points with the highest indicator values 1.3 < F(i) < 1.61 are marked with the 
letters A-E in figures 2 and 5. Point D has a higher prediction error εi than point E, al-
though point E has a higher indicator value. The error at point E has to be considered 
as more significant. The distances to the two next neighbors are only half as great as 
the distances for point D. Therefore, the prediction at point E is expected to be more 
accurate. 

Random noise might be the best explanation for the high indicator values of these 
points. If a Gaussian distribution is assumed, 81% of the values should be inside the 
interval ±1.3 ·σ . A share of 5 out of 40 sensors with F(i) > 1.3 can be explained by 
the statistical distribution, but other possible explanations for the high prediction er-
rors should also be considered. Points A through D are all located close to the floor of 
the cargo hold.  Presumably, the sensors are blocked by boxes in front of them. These 
sensors measure the box temperature rather than the distribution of air temperature.  

The sensors that are most likely to be faulty can be identified by calculation the 
Kriging variance in order to check their plausibility. Sensors with a deviation much 
higher than the Kriging standard deviation should be carefully checked. In our data 
set, the deviations could be attributed to a physical cause or to noise effects.  Except 
for these cases, sensors with high deviations should be regarded as faulty.  

8   Summary and Conclusion 

Wireless sensor networks can be used to detect local temperature deviations in cool 
chain transports, but oversampling of the cargo hold by implementing too many sen-
sors should be avoided. The temperature value at any position can be estimated by  
interpolating the values of a limited number of sensors.  

The Kriging method proved to be a useful tool for the evaluation of spatial sensor 
measurements. It delivers a more accurate interpolation than the commonly used in-
verse distance weighting. The expected prediction error at positions where no sensor 
is present can be calculated by using the Kriging variance. The minimum number of 
sensors can be estimated by a plot of the prediction error as a function of the number 
of measurement points. The plausibility checking based on the Kriging variance also 
provides a way to detect faulty sensors. 
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The disadvantage of Kriging is that it requires at least one data set with a high 
number of sensor positions to estimate the required variogram. The 40 positions of 
our data set seem to suffice for this process only by a small margin.  

Although Kriging was originally developed for data sets made up of thousands of 
positions, the comparison of different interpolation methods showed that Kriging can 
also be usefully applied to typical sensor networks applications employing lower 
numbers of measurement points. 
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