Skip to main content

Polyhedral Assembly Partitioning with Infinite Translations or The Importance of Being Exact

  • Chapter
Algorithmic Foundation of Robotics VIII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 57))

Abstract

Assembly partitioning with an infinite translation is the application of an infinite translation to partition an assembled product into two complementing subsets of parts, referred to as a subassemblies, each treated as a rigid body. We present an exact implementation of an efficient algorithm to obtain such a motion and subassemblies given an assembly of polyhedra in ℝ3. We do not assume general position. Namely, we handle degenerate input, and produce exact results. As often occurs, motions that partition a given assembly or subassembly might be isolated in the infinite space of motions. Any perturbation of the input or of intermediate results, caused by, for example, imprecision, might result with dismissal of valid partitioning-motions. In the extreme case, where there is only a finite number of valid partitioning-motions, no motion may be found, even though such exists. The implementation is based on software components that have been developed and introduced only recently. They paved the way to a complete, efficient, and concise implementation. Additional information is available at http://acg.cs.tau.ac.il/projects/internal-projects/

assembly-partitioning/project-page.

This work has been supported in part by the Israel Science Foundation (grant no. 236/06), by the German-Israeli Foundation (grant no. 969/07), and by the Hermann Minkowski–Minerva Center for Geometry at Tel Aviv University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. Theory Appl. 21, 39–61 (2002)

    MATH  MathSciNet  Google Scholar 

  2. Berberich, E., Fogel, E., Halperin, D., Melhorn, K., Wein, R.: Sweeping and maintaining two-dimensional arrangements on surfaces: A first step. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 645–656. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Bool, F.H., et al.: M. C. Escher: His Life and Complete Graphic Work. Harry N. Abrams, Inc. (1982)

    Google Scholar 

  4. Coffin, S.T.: Geometric Puzzle Design, 2nd edn. A.K. Peters, Ltd. (2006)

    Google Scholar 

  5. Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of convex polyhedra with applications. CAD 39(11), 929–940 (2007)

    Google Scholar 

  6. Fogel, E., Halperin, D., Weibel, C.: On the exact maximum complexity of Minkowski sums of convex polyhedra. In: Proc. 23rd Annu. ACM Symp. Comput. Geom., pp. 319–326 (2007)

    Google Scholar 

  7. Fogel, E., Setter, O., Halperin, D.: Exact implementation of arrangements of geodesic arcs on the sphere with applications. In: Abstracts of 24th Eur. Workshop Comput. Geom., pp. 83–86 (2008)

    Google Scholar 

  8. Fogel, E., Setter, O., Halperin, D.: Movie: Arrangements of geodesic arcs on the sphere. In: Proc. 24th Annu. ACM Symp. Comput. Geom., pp. 218–219 (2008)

    Google Scholar 

  9. Guibas, L.J., Halperin, D., Hirukawa, H., Latombe, J.-C., Wilson, R.H.: Polyhedral assembly partitioning using maximally covered cells in arrangements of convex polytopes. Int. J. Comput. Geom. Appl. 8, 179–200 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hachenberger, P.: Exact minkowksi sums of polyhedra and exact and efficient decomposition of polyhedra in convex pieces. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 669–680. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Halperin, D., Latombe, J.-C., Wilson, R.H.: A general framework for assembly planning: The motion space approach. Algorithmica 26, 577–601 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kavraki, L., Kolountzakis, M.: Partitioning a planar assembly into two connected parts is NP-complete. Inf. Process. Lett. 55, 159–165 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kettner, L.: Using generic programming for designing a data structure for polyhedral surfaces. Comput. Geom. Theory Appl. 13(1), 65–90 (1999)

    MATH  Google Scholar 

  14. Kettner, L.: 3D polyhedral surfaces. In: Cgal Editorial Board (ed.) Cgal User and Reference Manual, 3.3rd edn. (2007)

    Google Scholar 

  15. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.K.: Classroom examples of robustness problems in geometric computations. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 702–713. Springer, Heidelberg (2004)

    Google Scholar 

  16. Khanna, S., Motwani, R., Wilson, R.H.: On certificates and lookahead in dynamic graph problems. Algorithmica 21(4), 377–394 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Luke, D.: Stellations of the rhombic dodecahedron. The Math. Gazette 41(337), 189–194 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  18. Natarajan, B.K.: On planning assemblies. In: Proc. 4th ACM Symp. Comput. Geom., pp. 299–308 (1988)

    Google Scholar 

  19. Snoeyink, J., Stolfi, J.: Objects that cannot be taken apart with two hands. Disc. Comput. Geom. 12, 367–384 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. on Computing 1(2), 146–160 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wein, R., Fogel, E., Zukerman, B., Halperin, D.: 2D arrangements. In: Cgal Editorial Board (ed.) Cgal User and Reference Manual, 3.3 edn. (2007)

    Google Scholar 

  22. Wein, R., Fogel, E., Zukerman, B., Halperin, D.: Advanced programming techniques applied to Cgal’s arrangement package. Comput. Geom. Theory Appl. 38(1-2), 37–63 (2007); Special issue on Cgal

    MATH  MathSciNet  Google Scholar 

  23. Wilson, R.H., Latombe, J.-C.: Geometric reasoning about mechanical assembly. Artificial Intelligence 71(2), 371–396 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fogel, E., Halperin, D. (2009). Polyhedral Assembly Partitioning with Infinite Translations or The Importance of Being Exact . In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics