Skip to main content

Mobile Wireless Sensor Network Connectivity Repair with K-Redundancy

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 57))

Abstract

Connectivity is an important requirement for wireless sensor networks especially in real-time monitoring and data transfer applications. However, node movements and failures change the topology of the initial deployed network, which can result in partitioning of the communication graph. In this paper, we present a method for maintaining and repairing the communication network of a dynamic mobile wireless sensor network. We assume that we cannot control the motion of wireless sensor nodes, but there are robots whose motion can be controlled by the wireless sensor nodes to maintain and repair the connectivity of the network. At the heart of our method lies a novel graph property, k-redundancy, which is a measure of the importance of a node to the connectivity of a network.We first show that this property can be used to estimate repair time of a dynamic network. Then, we present a dynamic repair algorithm that minimizes expected repair time. Finally, we show the effectiveness of our method with extensive simulations and its feasibility with experiments on real robots and motes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. NS-2 Network Simulator, http://www.isi.edu/nsnam/ns/

  2. Arya, V., Garg, N., Khandekar, R., Munagala, K., Pandit, V.: Local search heuristic for k-median and facility location problems. In: STOC 2001: Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp. 21–29. ACM, New York (2001)

    Chapter  Google Scholar 

  3. Atay, H.N.: Connectivity Maintanence and Task Allocation For Mobile Wireless Sensor Networs. Ph.D. dissertation, Washington University in St. Louis (August 2008)

    Google Scholar 

  4. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete and Computational Geometry 3, 177–191 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bekris, K.E., Tsianos, K.I., Kavraki, L.E.: A decentralized planner that guarantees the safety of communicating vehicles with complex dynamics that replan online. In: Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), San Diego, CA, pp. 3784–3790 (2007)

    Google Scholar 

  6. Brandeau, M., Chiu, S.: Sequential location and allocation: Worst case performance and statistical estimation. Location Science 1, 289–298 (1993)

    MATH  Google Scholar 

  7. Brimberg, J.: The fermat-weber location problem revisited. Math. Program. 71(1), 71–76 (1995)

    Article  MathSciNet  Google Scholar 

  8. Brimberg, J.: Further notes on convergence of the weiszfeld algorithm. Yugoslav Journal of Operations Research 13(2), 199–206 (2003)

    Article  MathSciNet  Google Scholar 

  9. Chandrasekaran, R., Tamir, A.: Open questions concerning weiszfeld’s algorithm for the fermat-weber location problem. Mathematical Programming 44(1), 293–295 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cooper, L.: Heuristic methods for location-allocation problems. SIAM Review 6(1), 37–53 (1964)

    Article  MathSciNet  Google Scholar 

  11. Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize float: An analytic study of exact and approximate algorithms. Management Science 23(8), 789–810 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Esposito, J., Dunbar, T.: Maintaining wireless connectivity constraints for swarms in the presence of obstacles. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, May 15-19, pp. 946–951 (2006)

    Google Scholar 

  13. Gerkey, B.P., Matarić, M.J.: Principled communication for dynamic multi-robot task allocation. In: Rus, D., Singh, S. (eds.) Experimental Robotics VII. LNCIS, vol. 271, pp. 353–362. Springer, Berlin (2001)

    Chapter  Google Scholar 

  14. Hsieh, M.A., Cowley, A., Keller, J.F., Chaimowicz, L., Grocholsky, B., Kumar, V., Taylor, C.J., Endo, Y., Arkin, R.C., Jung, B., Wolf, D.F., Sukhatme, G.S., MacKenzie, D.C.: Adaptive teams of autonomous aerial and ground robots for situational awareness: Field reports. J. Field Robot. 24(11-12), 991–1014 (2007)

    Article  Google Scholar 

  15. Katz, I.N.: Local convergence in fermat’s problem. Mathematical Programming 6(1), 89–104 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kuhn, H.W.: A note on fermat’s problem. Mathematical Programming 4(1), 98–107 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  17. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location problems. SIAM Journal on Computing 13(1), 182–196 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Perur, S., Iyer, S.: Characterization of a connectivity measure for sparse wireless multi-hop networks. In: 26th IEEE International Conference on Distributed Computing Systems Workshops, ICDCS Workshops 2006, July 4-7, pp. 80–85 (2006)

    Google Scholar 

  19. Rao, N., Qishi, W., Iyengar, S., Manickam, A.: Connectivity-through-time protocols for dynamic wireless networks to support mobile robot teams. In: IEEE International Conference on Robotics and Automation (ICRA), 2003, September 14-19, vol. 2, pp. 1653–1658 (2003)

    Google Scholar 

  20. Rosing, K.E., Harris, B.: Algorithmic and technical improvements: Optimal solutions to the (generalized) multi-weber problem. Papers in Regional Science 71(3), 331–352 (1992)

    Article  Google Scholar 

  21. Somasundara, A.A., Kansal, A., Jea, D.D., Estrin, D., Srivastava, M.B.: Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing 5(8), 958–973 (2006)

    Article  Google Scholar 

  22. Spanos, D., Murray, R.: Motion planning with wireless network constraints. In: Proceedings of the 2005 American Control Conference, pp. 87–92 (2005)

    Google Scholar 

  23. Weber, A.: Theory of the Location of Industries, translated by Carl J. Friedrich. University Of Chicago Press, Chicago (1965)

    Google Scholar 

  24. Weiszfeld, E.: Sur le point pour lequal la somme des distances de n points donnés est minimum. Tohoku Mathematics Journal 43, 355–386 (1937)

    Google Scholar 

  25. Yang, G., Chen, L.-J., Sun, T., Zhou, B., Gerla, M.: Ad-hoc storage overlay system (asos): A delay-tolerant approach in manets. In: Proceeding of the IEEE MASS, pp. 296–305 (2006)

    Google Scholar 

  26. Zhao, W., Ammar, M., Zegura, E.: A message ferrying approach for data delivery in sparse mobile ad hoc networks. In: MobiHoc 2004: Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing, pp. 187–198 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Atay, N., Bayazit, B. (2009). Mobile Wireless Sensor Network Connectivity Repair with K-Redundancy. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics