DeEFAcTO: Language-Parametric Fact Extraction
from Source Code

H.J.S. Basten and P. Klint

Centrum Wiskunde & Informatica, P.O. Box 94079,
NL-1090 GB Amsterdam, The Netherlands
H.J.S.Basten@cwi.nl, P.Klint@cwi.nl

Abstract. Extracting facts from software source code forms the founda-
tion for any software analysis. Experience shows, however, that extract-
ing facts from programs written in a wide range of programming and
application languages is labour-intensive and error-prone. We present
DEFACTO, a new technique for fact extraction. It amounts to annotating
the context-free grammar of a language of interest with fact annotations
that describe how to extract elementary facts for language elements such
as, for instance, a declaration or use of a variable, a procedure or method
call, or control flow statements. Once the elementary facts have been
extracted, we use relational techniques to further enrich them and to
perform the actual software analysis.

We motivate and describe our approach, sketch a prototype implemen-
tation and assess it using various examples. A comparison with other
fact extraction methods indicates that our fact extraction descriptions
are considerably smaller than those of competing methods.

1 Introduction

A call graph extractor for programs written in the C language extracts (caller,
callee) pairs from the C source code. It contains knowledge about the syntax of
C (in particular about procedure declarations and procedure calls), and about
the desired format of the output pairs. Since call graph extraction is relevant for
many programming languages and there are many similar extraction tasks, it is
wasteful to implement them over and over again for each language; it is better
to take a generic approach in which the language in question and the properties
to be extracted are parameters of a generic extraction tool. There are many
and diverse applications of such a generic fact extraction tool: ranging from
collecting relevant metrics for quality control during development or managing
software portfolios to deeper forms of analysis for the purpose of spotting defects,
finding security breaches, validating resource allocation, or performing complete
software renovations.

A general workflow for language-parametric software analysis is shown in
Figure 1. Starting point are Syntar Rules, Fact Extraction Rules, and Analy-
sis Rules. Syntar Rules describe the syntax of the system or source code to
be analyzed. In a typical case this will be the grammar of C, C++, Java or
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Fig. 1. Global workflow of fact extraction and source code analysis

Cobol possibly combined with the syntax rules for some embedded or applica-
tion languages. Fact Extraction Rules describe what elementary facts have to
be extracted from the source code. This may, for example, cover the extraction
of variable definitions and uses, and the extraction of the control flow graph.
Observe that these extraction rules are closely tied to the context-free grammar
and differ per language. Analysis Rules describe the actual software analysis to
be performed and express the desired operations on the facts, e.g., checking the
compatibility of certain source code elements or determining the reachability of
a certain part of the code. The Analyzer reads the source code and extracts
Facts, and then produces Analysis Results guided by the Analysis Rules. Anal-
ysis Rules have a weaker link with a programming language and may in some
cases even be completely language-agnostic. The analysis of multi-language sys-
tems usually requires different sets of fact extraction rules for each language, but
only one set of analysis rules.

In this paper we explore the approach just sketched in more detail. The
emphasis will be on fact extraction, since experience shows that extracting
facts from programs written in a wide range of programming and application
languages is labour-intensive and error-prone. Although we will use relational
methods for processing facts, the approach as presented here works for other
paradigms as well.

The main contributions of this work are an explicit design and prototype
implementation of a language-parametric fact extraction method.

1.1 Related Research

Lezxical analysis The mother and father of fact extraction techniques are prob-
ably Lex [25], a scanner generator, and AWK [1], a language intended for fact
extraction from textual records and report generation. Lex is intended to read a
file character-by-character and produce output when certain regular expressions
(for identifiers, floating point constants, keywords) are recognized. AWK reads
its input line-by-line and regular expression matches are applied to each line to
extract facts. User-defined actions (in particular print statements) can be associ-
ated with each successful match. This approach based on regular expressions is in
wide use for solving many problems such as data collection, data mining, fact ex-
traction, consistency checking, and system administration. This same approach
is used in languages like Perl, Python, and Ruby. The regular expressions used in



an actual analysis are language-dependent. Although the lexical approach works
very well for ad hoc tasks, it cannot deal with nested language constructs and
in the long turn, lexical extractor become a maintenance burden.

Murphy and Notkin have specialized the AWK-approach for the domain of
fact extraction from source code [30]. The key idea is to extend the expressiv-
ity of regular expressions by adding context information, in such a way that,
for instance, the begin and end of a procedure declaration can be recognized.
This approach has, for instance, been used for call graph extraction [31] but
becomes cumbersome when more complex context information has to be taken
into account such as scope information, variable qualification, or nested language
constructs. This suggests using grammar-based approaches.

Compiler instrumentation Another line of research is the explicit instrumenta-
tion of existing compilers with fact extraction capabilities. Examples are: the
GNU C compiler GCC [13], the CPPX C++ compiler [5], and the Columbus
C/C++ analysis framework [12]. The Rigi system [29] provides several fixed
fact extractors for a number of languages. The extracted facts are represented
as tuples (see below). The CodeSurfer [14] source code analysis tool extracts a
standard collection of facts that can be further analyzed with built-in tools or
user-defined programs written in Scheme. In all these cases the programming
language as well as the set of extracted facts are fixed thus limiting the range of
problems that can be solved.

Grammar-based approaches A more general approach is to instrument the gram-
mar of a language of interest with fact extraction directives and to automatically
generate a fact extractor. This generator-based approach is supported by tools
like Yacc, ANTLR, ASF+SDF Meta-Environment, and various attribute gram-
mar systems [20, 33, 10]. Our approach is an extension of the Syntax Definition
Formalism SDF [16] and has been implemented as part of the AsF+SDF Meta-
Environment [4]. Its fact extraction can be seen as a very light-weight attribute
grammar system that only uses synthesized attributes. In attribute grammar
systems the further processing of facts is done using attribute equations that de-
fine the values of synthesized and inherited attributes. Elementary facts can be
described by synthesized attributes and are propagated through the syntax tree
using inherited attributes. Analysis results are ultimately obtained as synthe-
sized attributes of the root of the syntax tree. In our case, the further processing
of elementary facts is done by using relational techniques.

Queries and Relations Although extracted facts can be processed with many
computational techniques, we focus here on relational techniques. Relational
processing of extracted facts has a long history. A unifying view is to consider
the syntax tree itself as “facts” and to represent it as a relation. This idea is
already quite old. For instance, Linton [27] proposes to represent all syntactic as
well as semantic aspects of a program as relations and to use SQL to query them.
He encountered two large problems: the lack of expressiveness of SQL (notably
the lack of transitive closures) and poor performance. Recent investigations [3,
15] into efficient evaluation of relational query languages show more promising
results.



In Rigi [29], a tuple format (RSF) is introduced to represent relations and
a language (RCL) to manipulate them. The more elaborate GXL format is de-
scribed in [18]. In [35] a source code algebra is described that can be used to ex-
press relational queries on source text. Relational algebra is used in GROK [17],
Relation Manipulation Language (RML) [3], .QL [7] and Relation Partition Al-
gebra (RPA) [11] to represent basic facts about software systems and to query
them. In GUPRO [9] graphs are used to represent programs and to query them.
Relations have also been proposed for software manufacture [24], software knowl-
edge management [28], and program slicing [19]. Vankov [38] has explored the
relational formulation of program slicing for different languages. His observation
is also that the fact extraction phase is the major stumbling block.

In [2] set constraints are used for program analysis and type inference. More
recently, we have carried out promising experiments in which the relational ap-
proach is applied to problems in software analysis [22,23] and feature analy-
sis [37]. These experiments confirm the relevance and urgency of the research
direction sketched in this paper. A formalization of fact extraction is proposed
in [26].

Another approach is proposed by de Moor [6] and uses path expressions
on the syntax tree to extract program facts and formulate queries on them.
This approach builds on the work of Paige [34] and attempts to solve a classic
problem: how to incrementally update extracted program facts (relations) after
the application of a program transformation.

To conclude this brief overview, we mention one example of work that con-
siders program analysis from the perspective of the meta-model that is used for
representing extracted data. In [36] the observation is made that the meta-model
needs adaptation for every analysis and proposes a method to achieve this.

1.2 Plan of the Paper

We will now first describe our approach (Section 2) and a prototype implemen-
tation (Section 3). Next we validate our approach by comparing it with other
methods (Section 4) and we conclude with a discussion of our results (Section 5).

2 Description of our Approach

In this section we will describe our fact extraction approach, called DEFACTO,
and show how it fits into a relational analysis process.

2.1 Requirements

Before we embark on a description of our method, we briefly summarize our
requirements. The method should be:

— language-parametric, i.e., parametrized with the programming language(s)
from which the facts are to be extracted;

— fact-parametric, i.e., it should be easy to extract different sets of facts for
the same language;
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— local regarding extracting facts for specific syntax rules;

— global when it comes to using the facts for performing analysis;

— independent from any specific analysis model;

— succinct and should have a high notional efficiency;

— completely declarative;

— modular, i.e., it should be possible to combine different sets of fact extraction
rules;

— disjoint from the grammar so that no grammar modifications are necessary
when adding fact extraction rules.

2.2 Approach

As indicated above, the main contribution of this paper is a design for a language-
parametric fact extraction method. To show how it can be used to accommodate
(relational) analysis, we describe the whole process from source code to analysis
results. Figure 2 shows a global overview of this process.

As syntax rules we take a context free grammar of the subject system’s
language. The grammar’s productions are instrumented with fact annotations,
which declare the facts that are to be extracted from the system’s source code.
We define a fact as a relation between source text elements. These elements are
substrings of the text, identified by the nodes in the text’s parse tree that yield
them. For instance a declared relation between two Statement nodes of the use
and the declaration of a variable. With a Relational Engine the extracted facts
are further processed and used to produce analysis results. We will discuss these
steps in the following sections.

2.3 Fact Extraction with DEFACTO

Fact Annotations The fact extraction process takes as input a parse tree and
a set of fact annotations to the grammar’s production rules. The annotations
declare relations between nodes of the parse tree, which identify source code
elements. More precisely, a fact annotation describes relation tuples that should
be created when its production rule appears in a parse tree node. This can be



arbitrary m-ary tuples, consisting of the node itself, its parent, or its children.
Multiple annotations can contribute tuples to the same relation.

As an example, consider the following production rule' for a variable decla-
ration like, for instance, int Counter; or char[100] buffer;:

Type Identifier ";" -> Statement
A fact extraction annotation can be added to this production rule as follows:

Type Identifier ";" -> Statement {
fact(type0f, Identifier, Type)
}

The fact annotation will result in a binary relation typeOf between the nodes
of all declared variables and their types.

In general, a fact annotation with n + 1 arguments declares an n-ary rela-
tion. The first argument always contains the name of the relation. The others
indicate the parse tree nodes to create the relation tuples with, by referring to
the production rule elements that will match these nodes. These elements are
referenced using their nonterminal name, possibly followed by a number to dis-
tinguish multiple elements of the same nonterminal. List elements are postfixed
by -list and optionals by —-opt. The keyword parent refers to the parent node
of the node that corresponds to the annotated production rule.

Annotation Functions Special functions can be used to deal with the parse
tree structures that lists and optionals can generate. For instance, if the above
production is modified to allow the declaration of multiple variables within one
statement we get:

Type {Identifier ","}+ ";" -> Statement {
fact(typeOf, each(Identifier-list), Type)
}

Here, the use of the each function will extend the typeOf relation with a tuple
for each identifier in the list. Every tuple consists of an identifier and its type.
In general, each function or reference to a production rule element will yield
a set (or relation). The final tuples are constructed by combining these sets
using Cartesian products. Empty lists or optionals thus result in an empty set
of extracted tuples.

Table 1 shows all functions that can be used in fact annotations. The func-
tions first, last and each give access to list elements. The function next is,
for instance, useful to extract the control flow of a list of statements and index
can be useful to extract, for instance, the order of a function’s parameters.

A function can take an arbitrary number of production rule elements as
arguments. The nodes corresponding to these elements are combined into a single
list before the function is evaluated. The order of the production rule elements
specifies the order in which their nodes should be concatenated.

! Production rules are in SDF notation, so the left and right hand sides are switched
when compared to BNF notation.



‘Function|Description

first() |First element of a list.

last() Last element of a list.

each() The set of all elements of a list.

next () Create a binary relation between each two succeeding elements of a list.
index() |Create a binary relation of type (int, node) that relates each element
in a list to its index.

Table 1. Functions that can be used in fact annotations.

As an example, consider the Java constructor body in which the (optional) in-
vocation of the super class constructor must be done first. This can be described
by the syntax rule:

"{" SuperConstructorInvocation? Statement* "}" -> ConstructorBody

To calculate the control flow of the constructor we need the order of its contained
statements. Because the SuperConstructorInvocation is optional and the list of
regular statements can also be empty, various combinations of statements are
possible. By combining all existing statements into a single list, the statement
order can be extracted with only one annotation using the next function:

"{" SuperConstructorInvocation? Statement* "}" -> ConstructorBody {
fact(succ, next(SuperConstructorInvocation-opt, Statement-list))

}

This results in tuples of succeeding statements to be added to the succ relation,
only if two or more (constructor invocation) statements exist.

Selection Annotations Sometimes however, the annotation functions might not
be sufficient to extract all desired facts. This is the case when, depending on the
presence or absence of nodes for a list or optional nonterminal, different facts
should be extracted, but the nodes of this list or optional are not needed. In
these situations the selection annotations if-empty and if-not-empty can be
used. They take as first argument a reference to a list or optional nonterminal
and as second and optionally third argument a set of annotations. If one or more
parse tree nodes exist that match the first argument, the first set of annotations
is evaluated, and otherwise the second set (if specified). Multiple annotations
can be nested this way.

For instance, suppose the above example of a declaration statement is mod-
ified such that variables can also be declared static. If we want to extract a set
(unary relation) of all static variables, this can be done as follows:

Static? Type Identifier ";" -> Statement {
if-not-empty(Static-opt, [ fact(static, Identifier) ] )
}



Additional relations Apart from the relations indicated with fact annotations, we
also extract relations that contain additional information about each extracted
node. These are binary relations that link each node to its nonterminal type,
source code location (filename + coordinates) and yielded substring. Injection
chains are extracted as a single node that has multiple types. This way not every
injection production has to be annotated. The resulting relations also become
more compact, which requires less complex analysis rules.

2.4 Decoupling Extraction Rules from Grammar Rules

Different facts are needed for different analysis purposes. Some facts are common
to most analyses; use-def relations, call relations, and the control flow graph are
common examples. Other facts are highly specialized and are seldomly used. For
instance, calls to specific functions for memory management or locking in order
to search for memory leaks or locking problems.

It is obvious that adding all possible fact extraction rules to one grammar
will make it completely unreadable. We need some form of decoupling between
grammar rule and fact extraction rules. It is also clear that some form of modu-
larization is needed to enable the modular composition of fact extraction rules.

Our solution is to use an approach that is reminiscent of aspect-oriented pro-
gramming. The fact extraction rules are declared separately from the grammar,
in combinable modules. Grammar rules have a name? and fact extraction rules
refer to the name of the grammar rule to which they are attached. Analysis rules
define the facts they need and when the analysis is performed, all desired fact
extraction rules are woven into the grammar and used for fact extraction. This
weaving approach is well-known in the attribute grammar community and was
first proposed in [8].

2.5 Relational Analysis

Fact annotations only allow the declarations of local relations, i.e., relations be-
tween a parse tree node and its immediate children, siblings or parent. However
this is not sufficient for most fact extraction applications. For instance, the dec-
laration and uses of a local variable can be an arbitrary number of statements
apart and are typically in different branches of the parse tree.

In the analysis phase that follows fact extraction we allow the creation of
relations between arbitrary parts of the programs. The extracted parse tree
nodes and relations do not have to form a tree anymore. They can now be seen
as (possibly disconnected) graphs, in which each node represents a source text
element. Based on these extracted relations, new relations can be calculated and
analyzed. Both for this enrichment of facts and for the analysis itself, we use
RscripT, which is explained below.

The focus of fact annotations is thus local: extracting individual tuples from
one syntax rule. We now shift to a more global view on the facts.

2 Currently, we use the constructor attribute cons of SDF rules for this purpose.



2.6 RscripT at a glance

RSCRIPT is a typed language based on relational calculus. It has some stan-
dard elementary datatypes (booleans, integers, strings) and a non-standard one:
source code locations that contain a file name and text coordinates to uniquely
describe a source text fragment. As composite datatypes RSCRIPT provides sets,
tuples (with optionally named elements), and relations. Functions may have type
parameters to make them more generic and reusable. A comprehensive set of op-
erators and library functions is available on the built-in datatypes ranging from
the standard set operations and subset generation to the manipulation of rela-
tions by taking transitive closure, inversion, domain and range restrictions and
the like. The library also provide various functions (e.g., conditional reachability)
that enable the manipulation of relations as graphs.

Suppose the following facts have been extracted from given source code and
are represented by the relation Calls:

type proc = str

rel[proc , proc] Calls = {
<I|all, I|bl|>’ <||b||’ llcll>, <llbll, lldll>’
<I|dl|, "C">’ <||d||, llell>, <llfll, llell>,
<I|fl|’ I|gl|>’ <||g||’ ||e||>}‘

The user-defined type proc is an abbreviation for strings and improves both
readability and modifiability of the RSCRIPT code. Each tuple represents a call
between two procedures. The top of a relation contains those left-hand sides of
tuples in a relation that do not occur in any right-hand side. When a relation
is viewed as a graph, its top corresponds to the root nodes of that graph. Using
this knowledge, the entry points can be computed by determining the top of the
Calls relation:

set[proc] entryPoints = top(Calls)

In this case, entryPoints is equal to {"a", "f"}. In other words, procedures
"a" and "f" are the entry points of this application.

We can also determine the indirect calls between procedures, by taking the
transitive closure of the Calls relation:

rel[proc, proc] closureCalls = Calls+

We know now the entry points for this application ("a" and "f") and the
indirect call relations. Combining this information, we can determine which pro-
cedures are called from each entry point. This is done by taking the right image
of closureCalls. The right image operator determines all right-hand sides of
tuples that have a given value as left-hand side:

set[proc] calledFromA = closureCalls["a"]
yields {llb" llc" lld" lle"} and

set[proc] calledFromF = closureCalls["f"]



yields {"e", "g"}. Applying this simple computation to a realistic call graph
makes a good case for the expressive power and conciseness achieved in this
description. In a real situation, additional information will also be included in
the relation, e.g., the source code location where each procedure declaration and
each call occurs.

Another feature of RSCRIPT that is relevant for this paper are the equations,
i.e., sets of mutually recursive equations that are solved by fixed point iteration.
They are typically used to define sets of dataflow equations and depend on the
fact that the underlying data form a lattice.

3 A Prototype Implementation

We briefly describe a prototype implementation of our approach. With this pro-
totype we have created two specifications for the extraction of the control flow
graph (CFG) of Pico and Java programs.

3.1 Description

The prototype consists of two parts: a fact extractor and an RSCRIPT interpreter.
Both are written in ASF+SDF [21,4].

DEFACTO Fuct extractor The fact extractor extracts the relevant nodes and
fact relations from a given parse tree, according to a grammar and fact anno-
tations. We currently use two tree traversals to achieve this. The first identifies
all nodes that should be extracted. Each node is given a unique identifier and
its non-terminal type, source location and text representation are stored. In the
second traversal the actual fact relations are created. Each node with an anno-
tated production rule is visited and its annotations are evaluated. The resulting
relation tuples are stored in an intermediate relational format, called RSTORE,
that is supported by the RSCRIPT interpreter. It is used to define initial values
of variables in the RSCRIPT (e.g., extracted facts) and to output the values of
the variables after execution of the script (e.g., analysis results). An RSTORE
consists of (name, type, value) triples.

RSCRIPT interpreter The RSCRIPT interpreter takes an RSCRIPT specification
and an RSTORE as input. A typical RSCRIPT specification contains relational
expressions that declare new relations, based on the contents of the relations in
the given RSTORE. The interpreter calculates these declared relations, and out-
puts them again in RSTORE format. Since the program is written is ASF4SDF,
sets and relations are internally represented as lists.

3.2 Pico Control Flow Graph Extraction

As a first experiment we have written a specification to extract the control flow
graph from Pico programs. Pico is a toy language that features only three types
of statements: assignment, if-then-else and while loop. The specification consists



of 13 fact annotations and only 1 RSCRIPT expression. The CFG is constructed
as follows. For each statement we extract the local IN, OUT and SUCC relations.
The SUCC relation links each statement to its succeeding statement(s). The IN
and 0UT relations link each statement to its first, respectively, last substatement.
For instance, the syntax rule for the while statement is:

"while" Exp "do" {Statement ";"}* "od" -> Statement

It is annotated as follows:

"while" Exp "do" {Statement ";"}* "od" -> Statement {
fact(IN, Statement, Exp),
fact(SUCC, next(Exp, Statement-list, Exp)),
fact (OUT, Statement, Exp)

}

The three extracted relations are then combined into a single graph contain-
ing only the atomic (non compound) statements, with the following RSCRIPT
expression:

rel[node, node] basicCFG = { <N1, N4> | <node N2, node N3> : SUCC,
node N1 : reachBottom(N2, OUT), node N4 : reachBottom(N3, IN) }

Where reachBottom is a built-in function that returns all leaf nodes of a
binary relation (graph) that are reachable from a specific node. If the graph
does not contain this node, the node is returned instead.

3.3 Java Control Flow Graph Extraction

After the small Pico experiment we applied our approach to a more elaborate
case: the extraction of the intraprocedural control flow graph from Java pro-
grams. We wrote a DEFACTO and an RSCRIPT specification for this task, with
the main purpose of comparing them (see Section 4.2) with the JastAdd specifi-
cation described in [32]. We tried to resemble the output of the JastAdd extractor
as close as possible.

Our specifications construct a CFG between the statements of Java methods.
We first build a basic CFG containing the local order of statements, in the
same way as the Pico CFG extraction described above. After that, the control
flow graphs of statements with non-local behaviour (return, break, continue,
throw, catch, finally) are added.

Fact annotations are used to extract information relevant for the control flow
of these statements. For instance, the labels of break and continue statements,
thrown expressions, and links between try, catch and finally blocks. This infor-
mation is then used to modify the basic control flow graph. For each return,
break, continue and throw statement we add edges that visit the statements of
relevant enclosing catch and finally blocks. Then their initial successor edges are
removed.

The specifications contain 68 fact annotations and 21 RSCRIPT statements,
which together take up only 118 lines of code. More detailed statistics are de-
scribed in section 4.



4 Experimental Validation

It is now time to compare our earlier extraction examples. In Section 4.1 we
discuss an implementation in ASF+SDF of the Pico case (see Section 3.2). In
Section 4.2 we discuss an implementation in JastAdd of the Java case (see Sec-
tion 3.3).

4.1 Comparison with ASF4SDF

Conceptual Comparison

ASF+SDF is based on two concepts user-definable syntax and conditional equa-
tions. The user-definable syntax is provided by SDF and allows defining func-
tions with arbitrary syntactic notation. This enables, for instance, the use of
concrete syntax when defining analysis and transformation functions as opposed
to defining a separate abstract syntax and accessing syntax trees via a func-
tional interface. Conditional equations (based on ASF) provide the meaning of
each function and are implemented by way of rewriting of parse trees.

Fact extraction with ASF+4SDF is typically done by rewriting source code
into facts, and collecting them with traversal functions. Variables have to be de-
clared that can be used inside equations to match on source code terms. These
equations typically contain patterns that resemble the production rules of the
used grammar. In our approach we make use of implicit variable declaration and
matching, and implicit tree traversal. We also do not need to repeat produc-
tion rules, because we directly annotate them. However, ASF4+SDF can match
different levels of a parse tree in a single equation, which we cannot.

Pico control flow extraction using ASF+4SDF
CFG extraction for Pico as described earlier in Section 3.2 can be defined in
ASF+SDF by defining an extraction function cflow that maps language con-
structs to triples of type <IN, SUCC, OUT>. For each construct, a conditional
equation has to be written that extracts facts from it and transforms these facts
into a triple.

Extraction for statement sequences is done with the following conditional
equation:

[cfg-1] <Inl, Succl, Outl> :

cflow(Stat),

<In2, Succ2, Out2> := cflow(Stats)
cflow(Stat ; Stats) =
< Inl,
union(Succl, product(Outl, In2), Succ2),
Out2 >

The function cflow is applied to the first statement Stat, and then to the
remaining statements Stats. The two resulting triples are combined using rela-
tional operators to produce the triple for the complete sequence.

Extraction for while statements follows a similar pattern:



| DEFACTO + RSCRIPT | | ASF+SDF |

Fact extraction rules SDF

Fact annotations 11 Function definitions 2
Unique relations 3 Variable declarations 10
Lines of code 11 Lines of code 17
Analysis rules ASF

Relation expressions 1 Equations 6
Lines of code 2 Lines of code 31
Totals Totals

Statements 12 Statements 18
Lines of code 13 Lines of code 48

Table 2. Statistics of Pico Control Flow Graph extraction specifications.

[cfg-3] <In, Succ, Out> := cflow(Stats),
Control := <unparse-to-string(Exp), get-location(Exp)>

cflow(while Exp do Stats od) =

< {Control},
union(product ({Control}, In), Succ, product(Out, {Control})),
{Control} >

The text as well as the source code location of the expression are explicitly
saved in the extracted facts. Observe here (as well as in the previous equation)
the use of concrete syntax in the argument of cflow. The text while Exp do
StatsO od matches a while statement and binds the variables Exp and Stats0.

Comparing the two CFG specifications
Using these and similar equations, leads to a simple fact extractor that can
be characterized by the statistics shown in Table 2. Comparing the ASF+SDF
version with our approach one can observe that the latter is shorter and that
the fact extraction rules are simpler since our fact annotations have built-in
functionality for building subgraphs, while this has to be spelled out in detail
in the ASF+SDF version. The behaviour of our fact annotations can actually
be accurately described by relational expressions as occur inside the ASF+SDF
equations shown above.

The ASF+SDF version and the approach described in this paper both use
SDF and do not need a specification for a separate abstract syntax.

4.2 Comparison with JastAdd

Conceptual Comparison

We have already pointed out that there is some similarity between our fact
extraction rules and synthesized attributes in attribute grammars. Therefore
we compare our method also with JastAdd [10], a modern attribute grammar
system. The global workflow in such a system is shown in Figure 3. Given syntax
rules and a definition of the desired abstract syntax tree, a parser generator
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produces a parser that can transform source code into an abstract syntax tree.
Attribute Declarations define the further processing of the tree; we focus here
on fact extraction and analysis. Given the attribute definitions, an attribute
evaluator is generated that repeatedly visits tree nodes until all attribute values
have been computed. The primary mechanisms in any attribute grammar system
are:

— synthesized attributes: values that are propagated from the leaves of the tree
to its root.

— inherited attributes: values that are propagated from the root to the leaves.

— attribute equations define the correlation between synthesized and inherited
attributes.

Due to the interplay of these mechanisms, information can be propagated be-
tween arbitrary nodes in the tree. Synthesized attributes play a dual role: for
the upward propagation of facts that directly occur in the tree, and for the up-
ward propagation of analysis results. This makes it hard to identify a boundary
between pure fact extraction and the further processing of these facts. JastAdd
adds to this several other mechanisms: circular attributes, collection attributes,
and reference attributes, see [10] for further details.

The definitional methods used in both approaches are summarized in Table 3.
The following observations can be made:

— Since we use SDF, we work on the parse tree and do not need a definition of
the abstract syntax, which mostly duplicates the information in the grammar
and doubles the size of the definition.

— After the extraction phase we employ a global scope on the extracted facts,
so no code is needed for propagating information through an AST.

— In the concept of attribute grammars the calculation of facts is scattered
across different nonterminal equations, while in our approach the global
scope on extracted facts allows for an arbitrary separation of concerns.



|Deﬁnition ‘DEFACTO + RSCRIPT ‘JastAdd

Syntax SDF Any Java based parser grammar
Abstract Syntax Tree|Not needed, uses Parse Trees |AST definition + Java actions
in syntax definition

Fact extraction Modular fact extraction rules|Synthesized attributes,
(annotation of syntax rules) Inherited attributes,

Analysis RSCRIPT (relational expressions|Attribute equations,
and fixed point equations) Circular attributes, Java code

Table 3. Comparison with JastAdd

— The fixed point equations in RSCRIPT and the circular attributes in JastAdd
are used for the same purpose: propagating information through the (poten-
tially circular) control flow graph. We use the equations for reachability
calculations.

— JastAdd uses Java code for AST construction as well as for attribute defini-
tions. This gives the benefits of flexibility and tool support, but at the cost
of longer specifications.

— Our approach uses less (and we, perhaps subjectively, believe simpler) defi-
nitional mechanisms, which are completely declarative. We use a grammar,
fact extraction rules, and RSCRIPT while JastAdd uses a grammar, an AST
definition, attribute definitions, and Java code.

Java control flow extraction using JastAdd

In [32] an implementation of intraprocedural flow analysis of Java is described,
which mainly consists of CFG extraction. Here we compare its CFG extraction
part to our own specification described earlier in Section 3.3.

The JastAdd CFG specification declares a succ attribute on statement nodes,
which holds each statement’s succeeding statements. Its calculation can roughly
be divided into two parts: calculation of the “local” CFG and the “non-local”
CFG, just like in our specification. The local CFG is stored in two helper at-
tributes called following and first. The following attribute links each state-
ment to its directly following statements. The first attribute contains each
statement’s first substatement. The following example shows the equations that
define these attributes for block statements:

eq Block.first() = getNumStmt() > 0 7
SmallSet.empty() .union(getStmt (0) .first()) : following();

eq Block.getStmt(int i).following() = i == getNumStmt() - 1 ?
following() : SmallSet.empty().union(getStmt(i + 1).first());

These attributes are similar to the (shorter) IN and SUCC annotations in our
specification:

"{" BlockStatement* "}" -> Block {
fact (IN, Block, first(BlockStatement-list)),
fact (SUCC, next(BlockStatement-list)),
fact (0OUT, Block, last(BlockStatement-list))




| DEFACTO + RSCRIPT | | JastAdd |

Fact extraction rules Analysis rules

Fact annotations 68 Synthesized attr. decl. 8
Selection annotations 0 Inherited attr. decl. 15
Unique relations 14 Collection attr. decl. 1
Lines of code 72 Unique attributes 17
Analysis rules Equations (syn) 27
Relation expressions 19 Equations (inh) 47
Function definitions 2 Contributions 1
Lines of code 46 Lines of Java code 186
Totals Totals

Statements 89 Statements 99'
Lines of code 118 Lines of code 287

! Excluding Java statements

Table 4. Statistics of Java Control Flow Graph extraction specifications.

Based on these helper attributes the succ attribute values are defined, which
hold the entire CFG. This also includes the more elaborate control flow struc-
tures of the return, break, continue and throw statements. Due to the local
nature of attribute grammars, equations can only define the succ attribute one
edge at a time. This means that for control flow structures that pass multiple
AST nodes, each node has to contribute his own outgoing edges. If multiple con-
trol flow structures pass a node, the equations on that node have to handle all
these structures. For instance, the control flow of a return statement has to pass
all finally blocks of enclosing try blocks, before exiting the function. The equa-
tions on return statements have to look for enclosing try-finally blocks, and
the equations on finally blocks have to look for contained return statements.
Similar constructs are required for break, continue and throw statements.

In our specification we calculate these non local structures at a single point
in the code. For each return statement we construct a relation containing a
path through all relevant finally blocks, with the following steps:

1. From a binary relation holding the scope hierarchy (consisting of blocks
and for statements) we select the path from the root to the scope that
immediately encloses the return statement.

2. This path is reversed, such that it leads from the return statement upwards.

3. From the path we extract a new path consisting only of try blocks that have
a finally block.

4. We replace the try blocks with the internal control flow of their finally
blocks.

The resulting relation is then added to the basic control flow graph in one go.
Here we see the benefit of our global analysis approach, where we can operate
on entire relations instead of only individual edges.



| DEFACTO + RSCRIPT | JastAdd

Extraction | 68 / 61% |Loct annos L
Selection annos 0

Propagation - 58 / 45%

Syn. attrs + eqs 14
Inh. attrs + eqs 44

Relation exprs 10 Syn. attrs + eqs 4

Helper stats 11/ 25% Function defs 3 22 [ 32% Inh. attrs + eqs 18
. Relation exprs 9 Syn. attrs + eqs 17
Calculation 10 / 14% Function defs 0 19/ 23% Coll. attrs + contr. 2

Table 5. Statement statistics of Java Control Flow Graph extraction specifications

Comparing the two CFG specifications

Since both methods use different conceptual entities, it is non-trivial to make
a quantitative comparison between them. Our best effort is shown in Tables 4
and 5. In Table 4, we give general metrics about the occurrence of “statements”
(fact annotation, attribute equation, relational expression and the like) in both
methods. Not surprisingly, the fact annotation is the dominating statement type
in our approach. In JastAdd this are attribute equations. Our approach is less
than half the size when measured in lines of code. The large number of lines of
Java code in the JastAdd case is remarkable.

In Table 5 we classify statements per task: extraction, propagation, auxiliary
statements, and calculation. For each statement type, we give a count and the
percentage of the lines of code used up by that statement type. There is an
interesting resemblance between our fact extraction rules and the propagation
statements of the JastAdd specification. These propagation statements are used
to “deliver” to each AST node information needed to calculate the analysis
results. Interestingly, the propagated information contains no calculation results,
but only facts that are immediately derivable from the AST structure. Our fact
annotations also select facts from the parse tree structure, without doing any
calculations. In both specifications the fact extraction and propagation take up
the majority of the statements.

It is also striking that both methods need only a small fragment of their lines
of code for the actual analysis 14% (Our method) versus 23% (JastAdd).

Based on these observations we conclude that both methods are largely com-
parable, that our method is more succinct and does not need inline Java code.
We also stress that we only make a comparison of the concepts in both methods
and do not yet—given the prototype state of our implementation—compare their
execution efficiency.

5 Conclusions

We have presented a new technique for language-parametric fact extraction
called DEFACTO. We briefly review how well our approach satisfies the require-
ments given in Section 2.1.



The method is certainly language-parametric and fact-parametric since it
starts with a grammar and fact extraction annotations.

Fact extraction annotations are attached to a single syntax rule and result in
the extraction of local facts from parse tree fragments. Our method does global
relational processing of these facts to produce analysis results.

Since arbitrary fact annotations can be added to the grammar, it is inde-
pendent from any preconceived analysis model and is fully general. The method
is succinct and its notational efficiency has been demonstrated by comparison
with other methods.

The method is declarative and modular by design and the annotations can
be kept disjoint from the grammar in order to enable arbitrary combinations of
annotations with the grammar. Observe that this solves the problem of meta-
model modification in a completely different manner than proposed in [36].

The requirements we started with have indeed been met.

We have also presented a prototype implementation that is sufficient to assess
the expressive power of our approach. One observation is that the intermediate
RSTORE format makes it possible to completely decouple fact extraction from
analysis. We have already made clear that the focus of the prototype was not on
performance. Several obvious enhancements of the fact extractor can be made.
A larger challenge is the efficient implementation of the relational calculator
but many known techniques can be applied here. An efficient implementation is
clearly one of the next things on our agenda.

Our prototype is built upon SDF, but our technique does not rely on a specific
grammar formalism or parser. Also, for the processing of the extracted facts,
other methods could be used as well, ranging from Prolog to Java. We intend to
explore how our method can be embedded in other analysis and transformation
frameworks.

The overall insight of this paper is that a clear distinction between language-
parametric fact extraction and fact analysis is feasible and promising.
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