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Abstra
t. Extra
ting fa
ts from software sour
e 
ode forms the founda-tion for any software analysis. Experien
e shows, however, that extra
t-ing fa
ts from programs written in a wide range of programming andappli
ation languages is labour-intensive and error-prone. We presentDeFa
to, a new te
hnique for fa
t extra
tion. It amounts to annotatingthe 
ontext-free grammar of a language of interest with fa
t annotationsthat des
ribe how to extra
t elementary fa
ts for language elements su
has, for instan
e, a de
laration or use of a variable, a pro
edure or method
all, or 
ontrol 
ow statements. On
e the elementary fa
ts have beenextra
ted, we use relational te
hniques to further enri
h them and toperform the a
tual software analysis.We motivate and des
ribe our approa
h, sket
h a prototype implemen-tation and assess it using various examples. A 
omparison with otherfa
t extra
tion methods indi
ates that our fa
t extra
tion des
riptionsare 
onsiderably smaller than those of 
ompeting methods.
1 Introdu
tionA 
all graph extra
tor for programs written in the C language extra
ts (
aller,
allee) pairs from the C sour
e 
ode. It 
ontains knowledge about the syntax ofC (in parti
ular about pro
edure de
larations and pro
edure 
alls), and aboutthe desired format of the output pairs. Sin
e 
all graph extra
tion is relevant formany programming languages and there are many similar extra
tion tasks, it iswasteful to implement them over and over again for ea
h language; it is betterto take a generi
 approa
h in whi
h the language in question and the propertiesto be extra
ted are parameters of a generi
 extra
tion tool. There are manyand diverse appli
ations of su
h a generi
 fa
t extra
tion tool: ranging from
olle
ting relevant metri
s for quality 
ontrol during development or managingsoftware portfolios to deeper forms of analysis for the purpose of spotting defe
ts,�nding se
urity brea
hes, validating resour
e allo
ation, or performing 
ompletesoftware renovations.A general work
ow for language-parametri
 software analysis is shown inFigure 1. Starting point are Syntax Rules, Fa
t Extra
tion Rules, and Analy-sis Rules. Syntax Rules des
ribe the syntax of the system or sour
e 
ode tobe analyzed. In a typi
al 
ase this will be the grammar of C, C++, Java or



Fig. 1. Global work
ow of fa
t extra
tion and sour
e 
ode analysis
Cobol possibly 
ombined with the syntax rules for some embedded or appli
a-tion languages. Fa
t Extra
tion Rules des
ribe what elementary fa
ts have tobe extra
ted from the sour
e 
ode. This may, for example, 
over the extra
tionof variable de�nitions and uses, and the extra
tion of the 
ontrol 
ow graph.Observe that these extra
tion rules are 
losely tied to the 
ontext-free grammarand di�er per language. Analysis Rules des
ribe the a
tual software analysis tobe performed and express the desired operations on the fa
ts, e.g., 
he
king the
ompatibility of 
ertain sour
e 
ode elements or determining the rea
hability ofa 
ertain part of the 
ode. The Analyzer reads the sour
e 
ode and extra
tsFa
ts, and then produ
es Analysis Results guided by the Analysis Rules. Anal-ysis Rules have a weaker link with a programming language and may in some
ases even be 
ompletely language-agnosti
. The analysis of multi-language sys-tems usually requires di�erent sets of fa
t extra
tion rules for ea
h language, butonly one set of analysis rules.In this paper we explore the approa
h just sket
hed in more detail. Theemphasis will be on fa
t extra
tion, sin
e experien
e shows that extra
tingfa
ts from programs written in a wide range of programming and appli
ationlanguages is labour-intensive and error-prone. Although we will use relationalmethods for pro
essing fa
ts, the approa
h as presented here works for otherparadigms as well.The main 
ontributions of this work are an expli
it design and prototypeimplementation of a language-parametri
 fa
t extra
tion method.1.1 Related Resear
hLexi
al analysis The mother and father of fa
t extra
tion te
hniques are prob-ably Lex [25℄, a s
anner generator, and AWK [1℄, a language intended for fa
textra
tion from textual re
ords and report generation. Lex is intended to read a�le 
hara
ter-by-
hara
ter and produ
e output when 
ertain regular expressions(for identi�ers, 
oating point 
onstants, keywords) are re
ognized. AWK readsits input line-by-line and regular expression mat
hes are applied to ea
h line toextra
t fa
ts. User-de�ned a
tions (in parti
ular print statements) 
an be asso
i-ated with ea
h su

essful mat
h. This approa
h based on regular expressions is inwide use for solving many problems su
h as data 
olle
tion, data mining, fa
t ex-tra
tion, 
onsisten
y 
he
king, and system administration. This same approa
his used in languages like Perl, Python, and Ruby. The regular expressions used in



an a
tual analysis are language-dependent. Although the lexi
al approa
h worksvery well for ad ho
 tasks, it 
annot deal with nested language 
onstru
ts andin the long turn, lexi
al extra
tor be
ome a maintenan
e burden.Murphy and Notkin have spe
ialized the AWK-approa
h for the domain offa
t extra
tion from sour
e 
ode [30℄. The key idea is to extend the expressiv-ity of regular expressions by adding 
ontext information, in su
h a way that,for instan
e, the begin and end of a pro
edure de
laration 
an be re
ognized.This approa
h has, for instan
e, been used for 
all graph extra
tion [31℄ butbe
omes 
umbersome when more 
omplex 
ontext information has to be takeninto a

ount su
h as s
ope information, variable quali�
ation, or nested language
onstru
ts. This suggests using grammar-based approa
hes.Compiler instrumentation Another line of resear
h is the expli
it instrumenta-tion of existing 
ompilers with fa
t extra
tion 
apabilities. Examples are: theGNU C 
ompiler GCC [13℄, the CPPX C++ 
ompiler [5℄, and the ColumbusC/C++ analysis framework [12℄. The Rigi system [29℄ provides several �xedfa
t extra
tors for a number of languages. The extra
ted fa
ts are representedas tuples (see below). The CodeSurfer [14℄ sour
e 
ode analysis tool extra
ts astandard 
olle
tion of fa
ts that 
an be further analyzed with built-in tools oruser-de�ned programs written in S
heme. In all these 
ases the programminglanguage as well as the set of extra
ted fa
ts are �xed thus limiting the range ofproblems that 
an be solved.Grammar-based approa
hes A more general approa
h is to instrument the gram-mar of a language of interest with fa
t extra
tion dire
tives and to automati
allygenerate a fa
t extra
tor. This generator-based approa
h is supported by toolslike Ya

, ANTLR, Asf+Sdf Meta-Environment, and various attribute gram-mar systems [20, 33, 10℄. Our approa
h is an extension of the Syntax De�nitionFormalism SDF [16℄ and has been implemented as part of the Asf+Sdf Meta-Environment [4℄. Its fa
t extra
tion 
an be seen as a very light-weight attributegrammar system that only uses synthesized attributes. In attribute grammarsystems the further pro
essing of fa
ts is done using attribute equations that de-�ne the values of synthesized and inherited attributes. Elementary fa
ts 
an bedes
ribed by synthesized attributes and are propagated through the syntax treeusing inherited attributes. Analysis results are ultimately obtained as synthe-sized attributes of the root of the syntax tree. In our 
ase, the further pro
essingof elementary fa
ts is done by using relational te
hniques.Queries and Relations Although extra
ted fa
ts 
an be pro
essed with many
omputational te
hniques, we fo
us here on relational te
hniques. Relationalpro
essing of extra
ted fa
ts has a long history. A unifying view is to 
onsiderthe syntax tree itself as \fa
ts" and to represent it as a relation. This idea isalready quite old. For instan
e, Linton [27℄ proposes to represent all synta
ti
 aswell as semanti
 aspe
ts of a program as relations and to use SQL to query them.He en
ountered two large problems: the la
k of expressiveness of SQL (notablythe la
k of transitive 
losures) and poor performan
e. Re
ent investigations [3,15℄ into eÆ
ient evaluation of relational query languages show more promisingresults.



In Rigi [29℄, a tuple format (RSF) is introdu
ed to represent relations anda language (RCL) to manipulate them. The more elaborate GXL format is de-s
ribed in [18℄. In [35℄ a sour
e 
ode algebra is des
ribed that 
an be used to ex-press relational queries on sour
e text. Relational algebra is used in GROK [17℄,Relation Manipulation Language (RML) [3℄, .QL [7℄ and Relation Partition Al-gebra (RPA) [11℄ to represent basi
 fa
ts about software systems and to querythem. In GUPRO [9℄ graphs are used to represent programs and to query them.Relations have also been proposed for software manufa
ture [24℄, software knowl-edge management [28℄, and program sli
ing [19℄. Vankov [38℄ has explored therelational formulation of program sli
ing for di�erent languages. His observationis also that the fa
t extra
tion phase is the major stumbling blo
k.In [2℄ set 
onstraints are used for program analysis and type inferen
e. Morere
ently, we have 
arried out promising experiments in whi
h the relational ap-proa
h is applied to problems in software analysis [22, 23℄ and feature analy-sis [37℄. These experiments 
on�rm the relevan
e and urgen
y of the resear
hdire
tion sket
hed in this paper. A formalization of fa
t extra
tion is proposedin [26℄.Another approa
h is proposed by de Moor [6℄ and uses path expressionson the syntax tree to extra
t program fa
ts and formulate queries on them.This approa
h builds on the work of Paige [34℄ and attempts to solve a 
lassi
problem: how to in
rementally update extra
ted program fa
ts (relations) afterthe appli
ation of a program transformation.To 
on
lude this brief overview, we mention one example of work that 
on-siders program analysis from the perspe
tive of the meta-model that is used forrepresenting extra
ted data. In [36℄ the observation is made that the meta-modelneeds adaptation for every analysis and proposes a method to a
hieve this.1.2 Plan of the PaperWe will now �rst des
ribe our approa
h (Se
tion 2) and a prototype implemen-tation (Se
tion 3). Next we validate our approa
h by 
omparing it with othermethods (Se
tion 4) and we 
on
lude with a dis
ussion of our results (Se
tion 5).
2 Des
ription of our Approa
hIn this se
tion we will des
ribe our fa
t extra
tion approa
h, 
alled DeFa
to,and show how it �ts into a relational analysis pro
ess.2.1 RequirementsBefore we embark on a des
ription of our method, we brie
y summarize ourrequirements. The method should be:{ language-parametri
, i.e., parametrized with the programming language(s)from whi
h the fa
ts are to be extra
ted;{ fa
t-parametri
, i.e., it should be easy to extra
t di�erent sets of fa
ts forthe same language;



Fig. 2. Global work
ow of the envisaged approa
h
{ lo
al regarding extra
ting fa
ts for spe
i�
 syntax rules;{ global when it 
omes to using the fa
ts for performing analysis;{ independent from any spe
i�
 analysis model;{ su

in
t and should have a high notional eÆ
ien
y;{ 
ompletely de
larative;{ modular, i.e., it should be possible to 
ombine di�erent sets of fa
t extra
tionrules;{ disjoint from the grammar so that no grammar modi�
ations are ne
essarywhen adding fa
t extra
tion rules.2.2 Approa
hAs indi
ated above, the main 
ontribution of this paper is a design for a language-parametri
 fa
t extra
tion method. To show how it 
an be used to a

ommodate(relational) analysis, we des
ribe the whole pro
ess from sour
e 
ode to analysisresults. Figure 2 shows a global overview of this pro
ess.As syntax rules we take a 
ontext free grammar of the subje
t system'slanguage. The grammar's produ
tions are instrumented with fa
t annotations,whi
h de
lare the fa
ts that are to be extra
ted from the system's sour
e 
ode.We de�ne a fa
t as a relation between sour
e text elements. These elements aresubstrings of the text, identi�ed by the nodes in the text's parse tree that yieldthem. For instan
e a de
lared relation between two Statement nodes of the useand the de
laration of a variable. With a Relational Engine the extra
ted fa
tsare further pro
essed and used to produ
e analysis results. We will dis
uss thesesteps in the following se
tions.2.3 Fa
t Extra
tion with DeFa
toFa
t Annotations The fa
t extra
tion pro
ess takes as input a parse tree anda set of fa
t annotations to the grammar's produ
tion rules. The annotationsde
lare relations between nodes of the parse tree, whi
h identify sour
e 
odeelements. More pre
isely, a fa
t annotation des
ribes relation tuples that shouldbe 
reated when its produ
tion rule appears in a parse tree node. This 
an be



arbitrary n-ary tuples, 
onsisting of the node itself, its parent, or its 
hildren.Multiple annotations 
an 
ontribute tuples to the same relation.As an example, 
onsider the following produ
tion rule1 for a variable de
la-ration like, for instan
e, int Counter; or 
har[100℄ buffer;:Type Identifier ";" -> StatementA fa
t extra
tion annotation 
an be added to this produ
tion rule as follows:Type Identifier ";" -> Statement {fa
t(typeOf, Identifier, Type)}The fa
t annotation will result in a binary relation typeOf between the nodesof all de
lared variables and their types.In general, a fa
t annotation with n + 1 arguments de
lares an n-ary rela-tion. The �rst argument always 
ontains the name of the relation. The othersindi
ate the parse tree nodes to 
reate the relation tuples with, by referring tothe produ
tion rule elements that will mat
h these nodes. These elements arereferen
ed using their nonterminal name, possibly followed by a number to dis-tinguish multiple elements of the same nonterminal. List elements are post�xedby -list and optionals by -opt. The keyword parent refers to the parent nodeof the node that 
orresponds to the annotated produ
tion rule.Annotation Fun
tions Spe
ial fun
tions 
an be used to deal with the parsetree stru
tures that lists and optionals 
an generate. For instan
e, if the aboveprodu
tion is modi�ed to allow the de
laration of multiple variables within onestatement we get:Type {Identifier ","}+ ";" -> Statement {fa
t(typeOf, ea
h(Identifier-list), Type)}Here, the use of the ea
h fun
tion will extend the typeOf relation with a tuplefor ea
h identi�er in the list. Every tuple 
onsists of an identi�er and its type.In general, ea
h fun
tion or referen
e to a produ
tion rule element will yielda set (or relation). The �nal tuples are 
onstru
ted by 
ombining these setsusing Cartesian produ
ts. Empty lists or optionals thus result in an empty setof extra
ted tuples.Table 1 shows all fun
tions that 
an be used in fa
t annotations. The fun
-tions first, last and ea
h give a

ess to list elements. The fun
tion next is,for instan
e, useful to extra
t the 
ontrol 
ow of a list of statements and index
an be useful to extra
t, for instan
e, the order of a fun
tion's parameters.A fun
tion 
an take an arbitrary number of produ
tion rule elements asarguments. The nodes 
orresponding to these elements are 
ombined into a singlelist before the fun
tion is evaluated. The order of the produ
tion rule elementsspe
i�es the order in whi
h their nodes should be 
on
atenated.1 Produ
tion rules are in Sdf notation, so the left and right hand sides are swit
hedwhen 
ompared to BNF notation.



Fun
tion Des
riptionfirst() First element of a list.last() Last element of a list.ea
h() The set of all elements of a list.next() Create a binary relation between ea
h two su

eeding elements of a list.index() Create a binary relation of type (int, node) that relates ea
h elementin a list to its index.Table 1. Fun
tions that 
an be used in fa
t annotations.
As an example, 
onsider the Java 
onstru
tor body in whi
h the (optional) in-vo
ation of the super 
lass 
onstru
tor must be done �rst. This 
an be des
ribedby the syntax rule:"{" SuperConstru
torInvo
ation? Statement* "}" -> Constru
torBodyTo 
al
ulate the 
ontrol 
ow of the 
onstru
tor we need the order of its 
ontainedstatements. Be
ause the SuperConstru
torInvo
ation is optional and the list ofregular statements 
an also be empty, various 
ombinations of statements arepossible. By 
ombining all existing statements into a single list, the statementorder 
an be extra
ted with only one annotation using the next fun
tion:"{" SuperConstru
torInvo
ation? Statement* "}" -> Constru
torBody {fa
t(su

, next(SuperConstru
torInvo
ation-opt, Statement-list))}This results in tuples of su

eeding statements to be added to the su

 relation,only if two or more (
onstru
tor invo
ation) statements exist.Sele
tion Annotations Sometimes however, the annotation fun
tions might notbe suÆ
ient to extra
t all desired fa
ts. This is the 
ase when, depending on thepresen
e or absen
e of nodes for a list or optional nonterminal, di�erent fa
tsshould be extra
ted, but the nodes of this list or optional are not needed. Inthese situations the sele
tion annotations if-empty and if-not-empty 
an beused. They take as �rst argument a referen
e to a list or optional nonterminaland as se
ond and optionally third argument a set of annotations. If one or moreparse tree nodes exist that mat
h the �rst argument, the �rst set of annotationsis evaluated, and otherwise the se
ond set (if spe
i�ed). Multiple annotations
an be nested this way.For instan
e, suppose the above example of a de
laration statement is mod-i�ed su
h that variables 
an also be de
lared stati
. If we want to extra
t a set(unary relation) of all stati
 variables, this 
an be done as follows:Stati
? Type Identifier ";" -> Statement {if-not-empty(Stati
-opt, [ fa
t(stati
, Identifier) ℄ )}



Additional relations Apart from the relations indi
ated with fa
t annotations, wealso extra
t relations that 
ontain additional information about ea
h extra
tednode. These are binary relations that link ea
h node to its nonterminal type,sour
e 
ode lo
ation (�lename + 
oordinates) and yielded substring. Inje
tion
hains are extra
ted as a single node that has multiple types. This way not everyinje
tion produ
tion has to be annotated. The resulting relations also be
omemore 
ompa
t, whi
h requires less 
omplex analysis rules.
2.4 De
oupling Extra
tion Rules from Grammar RulesDi�erent fa
ts are needed for di�erent analysis purposes. Some fa
ts are 
ommonto most analyses; use-def relations, 
all relations, and the 
ontrol 
ow graph are
ommon examples. Other fa
ts are highly spe
ialized and are seldomly used. Forinstan
e, 
alls to spe
i�
 fun
tions for memory management or lo
king in orderto sear
h for memory leaks or lo
king problems.It is obvious that adding all possible fa
t extra
tion rules to one grammarwill make it 
ompletely unreadable. We need some form of de
oupling betweengrammar rule and fa
t extra
tion rules. It is also 
lear that some form of modu-larization is needed to enable the modular 
omposition of fa
t extra
tion rules.Our solution is to use an approa
h that is reminis
ent of aspe
t-oriented pro-gramming. The fa
t extra
tion rules are de
lared separately from the grammar,in 
ombinable modules. Grammar rules have a name2 and fa
t extra
tion rulesrefer to the name of the grammar rule to whi
h they are atta
hed. Analysis rulesde�ne the fa
ts they need and when the analysis is performed, all desired fa
textra
tion rules are woven into the grammar and used for fa
t extra
tion. Thisweaving approa
h is well-known in the attribute grammar 
ommunity and was�rst proposed in [8℄.
2.5 Relational AnalysisFa
t annotations only allow the de
larations of lo
al relations, i.e., relations be-tween a parse tree node and its immediate 
hildren, siblings or parent. Howeverthis is not suÆ
ient for most fa
t extra
tion appli
ations. For instan
e, the de
-laration and uses of a lo
al variable 
an be an arbitrary number of statementsapart and are typi
ally in di�erent bran
hes of the parse tree.In the analysis phase that follows fa
t extra
tion we allow the 
reation ofrelations between arbitrary parts of the programs. The extra
ted parse treenodes and relations do not have to form a tree anymore. They 
an now be seenas (possibly dis
onne
ted) graphs, in whi
h ea
h node represents a sour
e textelement. Based on these extra
ted relations, new relations 
an be 
al
ulated andanalyzed. Both for this enri
hment of fa
ts and for the analysis itself, we useRs
ript, whi
h is explained below.The fo
us of fa
t annotations is thus lo
al: extra
ting individual tuples fromone syntax rule. We now shift to a more global view on the fa
ts.2 Currently, we use the 
onstru
tor attribute 
ons of SDF rules for this purpose.



2.6 Rs
ript at a glan
eRs
ript is a typed language based on relational 
al
ulus. It has some stan-dard elementary datatypes (booleans, integers, strings) and a non-standard one:sour
e 
ode lo
ations that 
ontain a �le name and text 
oordinates to uniquelydes
ribe a sour
e text fragment. As 
omposite datatypes Rs
ript provides sets,tuples (with optionally named elements), and relations. Fun
tions may have typeparameters to make them more generi
 and reusable. A 
omprehensive set of op-erators and library fun
tions is available on the built-in datatypes ranging fromthe standard set operations and subset generation to the manipulation of rela-tions by taking transitive 
losure, inversion, domain and range restri
tions andthe like. The library also provide various fun
tions (e.g., 
onditional rea
hability)that enable the manipulation of relations as graphs.Suppose the following fa
ts have been extra
ted from given sour
e 
ode andare represented by the relation Calls:type pro
 = strrel[pro
 , pro
℄ Calls = {<"a", "b">, <"b", "
">, <"b", "d">,<"d", "
">, <"d", "e">, <"f", "e">,<"f", "g">, <"g", "e">}.The user-de�ned type pro
 is an abbreviation for strings and improves bothreadability and modi�ability of the Rs
ript 
ode. Ea
h tuple represents a 
allbetween two pro
edures. The top of a relation 
ontains those left-hand sides oftuples in a relation that do not o

ur in any right-hand side. When a relationis viewed as a graph, its top 
orresponds to the root nodes of that graph. Usingthis knowledge, the entry points 
an be 
omputed by determining the top of theCalls relation:set[pro
℄ entryPoints = top(Calls)In this 
ase, entryPoints is equal to {"a", "f"}. In other words, pro
edures"a" and "f" are the entry points of this appli
ation.We 
an also determine the indire
t 
alls between pro
edures, by taking thetransitive 
losure of the Calls relation:rel[pro
, pro
℄ 
losureCalls = Calls+We know now the entry points for this appli
ation ("a" and "f") and theindire
t 
all relations. Combining this information, we 
an determine whi
h pro-
edures are 
alled from ea
h entry point. This is done by taking the right imageof 
losureCalls. The right image operator determines all right-hand sides oftuples that have a given value as left-hand side:set[pro
℄ 
alledFromA = 
losureCalls["a"℄yields {"b", "
", "d", "e"} andset[pro
℄ 
alledFromF = 
losureCalls["f"℄



yields {"e", "g"}. Applying this simple 
omputation to a realisti
 
all graphmakes a good 
ase for the expressive power and 
on
iseness a
hieved in thisdes
ription. In a real situation, additional information will also be in
luded inthe relation, e.g., the sour
e 
ode lo
ation where ea
h pro
edure de
laration andea
h 
all o

urs.Another feature of Rs
ript that is relevant for this paper are the equations,i.e., sets of mutually re
ursive equations that are solved by �xed point iteration.They are typi
ally used to de�ne sets of data
ow equations and depend on thefa
t that the underlying data form a latti
e.
3 A Prototype ImplementationWe brie
y des
ribe a prototype implementation of our approa
h. With this pro-totype we have 
reated two spe
i�
ations for the extra
tion of the 
ontrol 
owgraph (CFG) of Pi
o and Java programs.
3.1 Des
riptionThe prototype 
onsists of two parts: a fa
t extra
tor and an Rs
ript interpreter.Both are written in Asf+Sdf [21, 4℄.DeFa
to Fa
t extra
tor The fa
t extra
tor extra
ts the relevant nodes andfa
t relations from a given parse tree, a

ording to a grammar and fa
t anno-tations. We 
urrently use two tree traversals to a
hieve this. The �rst identi�esall nodes that should be extra
ted. Ea
h node is given a unique identi�er andits non-terminal type, sour
e lo
ation and text representation are stored. In these
ond traversal the a
tual fa
t relations are 
reated. Ea
h node with an anno-tated produ
tion rule is visited and its annotations are evaluated. The resultingrelation tuples are stored in an intermediate relational format, 
alled Rstore,that is supported by the Rs
ript interpreter. It is used to de�ne initial valuesof variables in the Rs
ript (e.g., extra
ted fa
ts) and to output the values ofthe variables after exe
ution of the s
ript (e.g., analysis results). An Rstore
onsists of (name, type, value) triples.Rs
ript interpreter The Rs
ript interpreter takes an Rs
ript spe
i�
ationand an Rstore as input. A typi
al Rs
ript spe
i�
ation 
ontains relationalexpressions that de
lare new relations, based on the 
ontents of the relations inthe given Rstore. The interpreter 
al
ulates these de
lared relations, and out-puts them again in Rstore format. Sin
e the program is written is Asf+Sdf,sets and relations are internally represented as lists.
3.2 Pi
o Control Flow Graph Extra
tionAs a �rst experiment we have written a spe
i�
ation to extra
t the 
ontrol 
owgraph from Pi
o programs. Pi
o is a toy language that features only three typesof statements: assignment, if-then-else and while loop. The spe
i�
ation 
onsists



of 13 fa
t annotations and only 1 Rs
ript expression. The CFG is 
onstru
tedas follows. For ea
h statement we extra
t the lo
al IN, OUT and SUCC relations.The SUCC relation links ea
h statement to its su

eeding statement(s). The INand OUT relations link ea
h statement to its �rst, respe
tively, last substatement.For instan
e, the syntax rule for the while statement is:"while" Exp "do" {Statement ";"}* "od" -> StatementIt is annotated as follows:"while" Exp "do" {Statement ";"}* "od" -> Statement {fa
t(IN, Statement, Exp),fa
t(SUCC, next(Exp, Statement-list, Exp)),fa
t(OUT, Statement, Exp)}The three extra
ted relations are then 
ombined into a single graph 
ontain-ing only the atomi
 (non 
ompound) statements, with the following Rs
riptexpression:rel[node, node℄ basi
CFG = { <N1, N4> | <node N2, node N3> : SUCC,node N1 : rea
hBottom(N2, OUT), node N4 : rea
hBottom(N3, IN) }Where rea
hBottom is a built-in fun
tion that returns all leaf nodes of abinary relation (graph) that are rea
hable from a spe
i�
 node. If the graphdoes not 
ontain this node, the node is returned instead.3.3 Java Control Flow Graph Extra
tionAfter the small Pi
o experiment we applied our approa
h to a more elaborate
ase: the extra
tion of the intrapro
edural 
ontrol 
ow graph from Java pro-grams. We wrote a DeFa
to and an Rs
ript spe
i�
ation for this task, withthe main purpose of 
omparing them (see Se
tion 4.2) with the JastAdd spe
i�-
ation des
ribed in [32℄. We tried to resemble the output of the JastAdd extra
toras 
lose as possible.Our spe
i�
ations 
onstru
t a CFG between the statements of Java methods.We �rst build a basi
 CFG 
ontaining the lo
al order of statements, in thesame way as the Pi
o CFG extra
tion des
ribed above. After that, the 
ontrol
ow graphs of statements with non-lo
al behaviour (return, break, 
ontinue,throw, 
at
h, finally) are added.Fa
t annotations are used to extra
t information relevant for the 
ontrol 
owof these statements. For instan
e, the labels of break and 
ontinue statements,thrown expressions, and links between try, 
at
h and �nally blo
ks. This infor-mation is then used to modify the basi
 
ontrol 
ow graph. For ea
h return,break, 
ontinue and throw statement we add edges that visit the statements ofrelevant en
losing 
at
h and �nally blo
ks. Then their initial su

essor edges areremoved.The spe
i�
ations 
ontain 68 fa
t annotations and 21 Rs
ript statements,whi
h together take up only 118 lines of 
ode. More detailed statisti
s are de-s
ribed in se
tion 4.



4 Experimental ValidationIt is now time to 
ompare our earlier extra
tion examples. In Se
tion 4.1 wedis
uss an implementation in Asf+Sdf of the Pi
o 
ase (see Se
tion 3.2). InSe
tion 4.2 we dis
uss an implementation in JastAdd of the Java 
ase (see Se
-tion 3.3).
4.1 Comparison with Asf+SdfCon
eptual ComparisonAsf+Sdf is based on two 
on
epts user-de�nable syntax and 
onditional equa-tions. The user-de�nable syntax is provided by Sdf and allows de�ning fun
-tions with arbitrary synta
ti
 notation. This enables, for instan
e, the use of
on
rete syntax when de�ning analysis and transformation fun
tions as opposedto de�ning a separate abstra
t syntax and a

essing syntax trees via a fun
-tional interfa
e. Conditional equations (based on Asf) provide the meaning ofea
h fun
tion and are implemented by way of rewriting of parse trees.Fa
t extra
tion with Asf+Sdf is typi
ally done by rewriting sour
e 
odeinto fa
ts, and 
olle
ting them with traversal fun
tions. Variables have to be de-
lared that 
an be used inside equations to mat
h on sour
e 
ode terms. Theseequations typi
ally 
ontain patterns that resemble the produ
tion rules of theused grammar. In our approa
h we make use of impli
it variable de
laration andmat
hing, and impli
it tree traversal. We also do not need to repeat produ
-tion rules, be
ause we dire
tly annotate them. However, Asf+Sdf 
an mat
hdi�erent levels of a parse tree in a single equation, whi
h we 
annot.
Pi
o 
ontrol 
ow extra
tion using Asf+SdfCFG extra
tion for Pi
o as des
ribed earlier in Se
tion 3.2 
an be de�ned inAsf+Sdf by de�ning an extra
tion fun
tion 
flow that maps language 
on-stru
ts to triples of type <IN, SUCC, OUT>. For ea
h 
onstru
t, a 
onditionalequation has to be written that extra
ts fa
ts from it and transforms these fa
tsinto a triple.Extra
tion for statement sequen
es is done with the following 
onditionalequation:[
fg-1℄ <In1, Su

1, Out1> := 
flow(Stat),<In2, Su

2, Out2> := 
flow(Stats)==================================
flow(Stat ; Stats) =< In1,union(Su

1, produ
t(Out1, In2), Su

2),Out2 >The fun
tion 
flow is applied to the �rst statement Stat, and then to theremaining statements Stats. The two resulting triples are 
ombined using rela-tional operators to produ
e the triple for the 
omplete sequen
e.Extra
tion for while statements follows a similar pattern:



DeFa
to + Rs
riptFa
t extra
tion rulesFa
t annotations 11Unique relations 3Lines of 
ode 11Analysis rulesRelation expressions 1Lines of 
ode 2TotalsStatements 12Lines of 
ode 13

Asf+SdfSDFFun
tion de�nitions 2Variable de
larations 10Lines of 
ode 17ASFEquations 6Lines of 
ode 31TotalsStatements 18Lines of 
ode 48Table 2. Statisti
s of Pi
o Control Flow Graph extra
tion spe
i�
ations.
[
fg-3℄ <In, Su

, Out> := 
flow(Stats),Control := <unparse-to-string(Exp), get-lo
ation(Exp)>======================================================
flow(while Exp do Stats od) =< {Control},union(produ
t({Control}, In), Su

, produ
t(Out, {Control})),{Control} >The text as well as the sour
e 
ode lo
ation of the expression are expli
itlysaved in the extra
ted fa
ts. Observe here (as well as in the previous equation)the use of 
on
rete syntax in the argument of 
flow. The text while Exp doStats0 od mat
hes a while statement and binds the variables Exp and Stats0.Comparing the two CFG spe
i�
ationsUsing these and similar equations, leads to a simple fa
t extra
tor that 
anbe 
hara
terized by the statisti
s shown in Table 2. Comparing the Asf+Sdfversion with our approa
h one 
an observe that the latter is shorter and thatthe fa
t extra
tion rules are simpler sin
e our fa
t annotations have built-infun
tionality for building subgraphs, while this has to be spelled out in detailin the Asf+Sdf version. The behaviour of our fa
t annotations 
an a
tuallybe a

urately des
ribed by relational expressions as o

ur inside the Asf+Sdfequations shown above.The Asf+Sdf version and the approa
h des
ribed in this paper both useSdf and do not need a spe
i�
ation for a separate abstra
t syntax.4.2 Comparison with JastAddCon
eptual ComparisonWe have already pointed out that there is some similarity between our fa
textra
tion rules and synthesized attributes in attribute grammars. Thereforewe 
ompare our method also with JastAdd [10℄, a modern attribute grammarsystem. The global work
ow in su
h a system is shown in Figure 3. Given syntaxrules and a de�nition of the desired abstra
t syntax tree, a parser generator



Fig. 3. Ar
hite
ture of attribute-based approa
h
produ
es a parser that 
an transform sour
e 
ode into an abstra
t syntax tree.Attribute De
larations de�ne the further pro
essing of the tree; we fo
us hereon fa
t extra
tion and analysis. Given the attribute de�nitions, an attributeevaluator is generated that repeatedly visits tree nodes until all attribute valueshave been 
omputed. The primary me
hanisms in any attribute grammar systemare:{ synthesized attributes : values that are propagated from the leaves of the treeto its root.{ inherited attributes : values that are propagated from the root to the leaves.{ attribute equations de�ne the 
orrelation between synthesized and inheritedattributes.Due to the interplay of these me
hanisms, information 
an be propagated be-tween arbitrary nodes in the tree. Synthesized attributes play a dual role: forthe upward propagation of fa
ts that dire
tly o

ur in the tree, and for the up-ward propagation of analysis results. This makes it hard to identify a boundarybetween pure fa
t extra
tion and the further pro
essing of these fa
ts. JastAddadds to this several other me
hanisms: 
ir
ular attributes, 
olle
tion attributes,and referen
e attributes, see [10℄ for further details.The de�nitional methods used in both approa
hes are summarized in Table 3.The following observations 
an be made:{ Sin
e we use SDF, we work on the parse tree and do not need a de�nition ofthe abstra
t syntax, whi
h mostly dupli
ates the information in the grammarand doubles the size of the de�nition.{ After the extra
tion phase we employ a global s
ope on the extra
ted fa
ts,so no 
ode is needed for propagating information through an AST.{ In the 
on
ept of attribute grammars the 
al
ulation of fa
ts is s
attereda
ross di�erent nonterminal equations, while in our approa
h the globals
ope on extra
ted fa
ts allows for an arbitrary separation of 
on
erns.



De�nition DeFa
to + Rs
ript JastAddSyntax SDF Any Java based parser grammarAbstra
t Syntax Tree Not needed, uses Parse Trees AST de�nition + Java a
tionsin syntax de�nitionFa
t extra
tion Modular fa
t extra
tion rules(annotation of syntax rules) Synthesized attributes,Inherited attributes,Analysis Rs
ript (relational expressionsand �xed point equations) Attribute equations,Cir
ular attributes, Java 
odeTable 3. Comparison with JastAdd
{ The �xed point equations in Rs
ript and the 
ir
ular attributes in JastAddare used for the same purpose: propagating information through the (poten-tially 
ir
ular) 
ontrol 
ow graph. We use the equations for rea
hability
al
ulations.{ JastAdd uses Java 
ode for AST 
onstru
tion as well as for attribute de�ni-tions. This gives the bene�ts of 
exibility and tool support, but at the 
ostof longer spe
i�
ations.{ Our approa
h uses less (and we, perhaps subje
tively, believe simpler) de�-nitional me
hanisms, whi
h are 
ompletely de
larative. We use a grammar,fa
t extra
tion rules, and Rs
ript while JastAdd uses a grammar, an ASTde�nition, attribute de�nitions, and Java 
ode.Java 
ontrol 
ow extra
tion using JastAddIn [32℄ an implementation of intrapro
edural 
ow analysis of Java is des
ribed,whi
h mainly 
onsists of CFG extra
tion. Here we 
ompare its CFG extra
tionpart to our own spe
i�
ation des
ribed earlier in Se
tion 3.3.The JastAdd CFG spe
i�
ation de
lares a su

 attribute on statement nodes,whi
h holds ea
h statement's su

eeding statements. Its 
al
ulation 
an roughlybe divided into two parts: 
al
ulation of the \lo
al" CFG and the \non-lo
al"CFG, just like in our spe
i�
ation. The lo
al CFG is stored in two helper at-tributes 
alled following and first. The following attribute links ea
h state-ment to its dire
tly following statements. The first attribute 
ontains ea
hstatement's �rst substatement. The following example shows the equations thatde�ne these attributes for blo
k statements:eq Blo
k.first() = getNumStmt() > 0 ?SmallSet.empty().union(getStmt(0).first()) : following();eq Blo
k.getStmt(int i).following() = i == getNumStmt() - 1 ?following() : SmallSet.empty().union(getStmt(i + 1).first());These attributes are similar to the (shorter) IN and SUCC annotations in ourspe
i�
ation:"{" Blo
kStatement* "}" -> Blo
k {fa
t(IN, Blo
k, first(Blo
kStatement-list)),fa
t(SUCC, next(Blo
kStatement-list)),fa
t(OUT, Blo
k, last(Blo
kStatement-list))}



DeFa
to + Rs
riptFa
t extra
tion rulesFa
t annotations 68Sele
tion annotations 0Unique relations 14Lines of 
ode 72Analysis rulesRelation expressions 19Fun
tion de�nitions 2Lines of 
ode 46TotalsStatements 89Lines of 
ode 118

JastAddAnalysis rulesSynthesized attr. de
l. 8Inherited attr. de
l. 15Colle
tion attr. de
l. 1Unique attributes 17Equations (syn) 27Equations (inh) 47Contributions 1Lines of Java 
ode 186TotalsStatements 991Lines of 
ode 2871 Ex
luding Java statementsTable 4. Statisti
s of Java Control Flow Graph extra
tion spe
i�
ations.
Based on these helper attributes the su

 attribute values are de�ned, whi
hhold the entire CFG. This also in
ludes the more elaborate 
ontrol 
ow stru
-tures of the return, break, 
ontinue and throw statements. Due to the lo
alnature of attribute grammars, equations 
an only de�ne the su

 attribute oneedge at a time. This means that for 
ontrol 
ow stru
tures that pass multipleAST nodes, ea
h node has to 
ontribute his own outgoing edges. If multiple 
on-trol 
ow stru
tures pass a node, the equations on that node have to handle allthese stru
tures. For instan
e, the 
ontrol 
ow of a return statement has to passall finally blo
ks of en
losing try blo
ks, before exiting the fun
tion. The equa-tions on return statements have to look for en
losing try-finally blo
ks, andthe equations on finally blo
ks have to look for 
ontained return statements.Similar 
onstru
ts are required for break, 
ontinue and throw statements.In our spe
i�
ation we 
al
ulate these non lo
al stru
tures at a single pointin the 
ode. For ea
h return statement we 
onstru
t a relation 
ontaining apath through all relevant finally blo
ks, with the following steps:1. From a binary relation holding the s
ope hierar
hy (
onsisting of blo
ksand for statements) we sele
t the path from the root to the s
ope thatimmediately en
loses the return statement.2. This path is reversed, su
h that it leads from the return statement upwards.3. From the path we extra
t a new path 
onsisting only of try blo
ks that havea finally blo
k.4. We repla
e the try blo
ks with the internal 
ontrol 
ow of their finallyblo
ks.The resulting relation is then added to the basi
 
ontrol 
ow graph in one go.Here we see the bene�t of our global analysis approa
h, where we 
an operateon entire relations instead of only individual edges.



DeFa
to + Rs
ript JastAddExtra
tion 68 / 61% Fa
t annos 68 {Sele
tion annos 0Propagation { 58 / 45% Syn. attrs + eqs 14Inh. attrs + eqs 44Helper stats 11 / 25% Relation exprs 10 22 / 32% Syn. attrs + eqs 4Fun
tion defs 3 Inh. attrs + eqs 18Cal
ulation 10 / 14% Relation exprs 9 19 / 23% Syn. attrs + eqs 17Fun
tion defs 0 Coll. attrs + 
ontr. 2Table 5. Statement statisti
s of Java Control Flow Graph extra
tion spe
i�
ations
Comparing the two CFG spe
i�
ationsSin
e both methods use di�erent 
on
eptual entities, it is non-trivial to makea quantitative 
omparison between them. Our best e�ort is shown in Tables 4and 5. In Table 4, we give general metri
s about the o

urren
e of \statements"(fa
t annotation, attribute equation, relational expression and the like) in bothmethods. Not surprisingly, the fa
t annotation is the dominating statement typein our approa
h. In JastAdd this are attribute equations. Our approa
h is lessthan half the size when measured in lines of 
ode. The large number of lines ofJava 
ode in the JastAdd 
ase is remarkable.In Table 5 we 
lassify statements per task: extra
tion, propagation, auxiliarystatements, and 
al
ulation. For ea
h statement type, we give a 
ount and theper
entage of the lines of 
ode used up by that statement type. There is aninteresting resemblan
e between our fa
t extra
tion rules and the propagationstatements of the JastAdd spe
i�
ation. These propagation statements are usedto \deliver" to ea
h AST node information needed to 
al
ulate the analysisresults. Interestingly, the propagated information 
ontains no 
al
ulation results,but only fa
ts that are immediately derivable from the AST stru
ture. Our fa
tannotations also sele
t fa
ts from the parse tree stru
ture, without doing any
al
ulations. In both spe
i�
ations the fa
t extra
tion and propagation take upthe majority of the statements.It is also striking that both methods need only a small fragment of their linesof 
ode for the a
tual analysis 14% (Our method) versus 23% (JastAdd).Based on these observations we 
on
lude that both methods are largely 
om-parable, that our method is more su

in
t and does not need inline Java 
ode.We also stress that we only make a 
omparison of the 
on
epts in both methodsand do not yet|given the prototype state of our implementation{
ompare theirexe
ution eÆ
ien
y.
5 Con
lusionsWe have presented a new te
hnique for language-parametri
 fa
t extra
tion
alled DeFa
to. We brie
y review how well our approa
h satis�es the require-ments given in Se
tion 2.1.



The method is 
ertainly language-parametri
 and fa
t-parametri
 sin
e itstarts with a grammar and fa
t extra
tion annotations.Fa
t extra
tion annotations are atta
hed to a single syntax rule and result inthe extra
tion of lo
al fa
ts from parse tree fragments. Our method does globalrelational pro
essing of these fa
ts to produ
e analysis results.Sin
e arbitrary fa
t annotations 
an be added to the grammar, it is inde-pendent from any pre
on
eived analysis model and is fully general. The methodis su

in
t and its notational eÆ
ien
y has been demonstrated by 
omparisonwith other methods.The method is de
larative and modular by design and the annotations 
anbe kept disjoint from the grammar in order to enable arbitrary 
ombinations ofannotations with the grammar. Observe that this solves the problem of meta-model modi�
ation in a 
ompletely di�erent manner than proposed in [36℄.The requirements we started with have indeed been met.We have also presented a prototype implementation that is suÆ
ient to assessthe expressive power of our approa
h. One observation is that the intermediateRstore format makes it possible to 
ompletely de
ouple fa
t extra
tion fromanalysis. We have already made 
lear that the fo
us of the prototype was not onperforman
e. Several obvious enhan
ements of the fa
t extra
tor 
an be made.A larger 
hallenge is the eÆ
ient implementation of the relational 
al
ulatorbut many known te
hniques 
an be applied here. An eÆ
ient implementation is
learly one of the next things on our agenda.Our prototype is built upon Sdf, but our te
hnique does not rely on a spe
i�
grammar formalism or parser. Also, for the pro
essing of the extra
ted fa
ts,other methods 
ould be used as well, ranging from Prolog to Java. We intend toexplore how our method 
an be embedded in other analysis and transformationframeworks.The overall insight of this paper is that a 
lear distin
tion between language-parametri
 fa
t extra
tion and fa
t analysis is feasible and promising.
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