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Abstract. The BATIC3S project5 (Building Adaptive Three-dimensional
Interfaces for Controlling Complex Control Systems) proposes a method-
ology to prototype adaptive graphical user interfaces (GUI) for control
systems. We present a domain specific language for the control systems
domain, including useful and understandable abstractions for domain ex-
perts. This is coupled with a methodology for validation, verification and
automatic GUI prototype generation. The methodology is centered on
metamodel-based techniques and model transformations, and its foun-
dations rely on formal models. Our approach is based on the assumption
that a GUI can be induced from the characteristics of the system to
control.

1 Introduction

Modeling user interfaces for the domain of control systems has requirements and
challenges which are sometimes hardly met by standard, general-purpose mod-
eling languages. The need to express domain features, as well as to express them
using paradigms familiar to domain experts, calls for domain specific languages.

We propose a methodology to develop 3D graphical user interfaces for moni-
toring and controlling complex control systems. Instead of developing or specify-
ing the interface directly, an automated prototype is generated from knowledge
about the system under control. The methodology is comprised of a domain spe-
cific language for modeling control systems, and integrates a formal framework
allowing model checking and prototyping. In the following sections we will de-
scribe the domain and goals of this project. A case study will be introduced to
serve as a guide example. Section 2 will discuss the methodology from an abstract
point of view; section 3 will give details on the technologies of the framework
implementing the methodology. A related work section, conclusions and a future
work overview will wrap up the article.
5 This project is funded by the Hasler foundation of Switzerland
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1.1 Domain definition

Control systems (CS) can be defined as mechanisms that provide output vari-
ables of a system by manipulating its inputs (from sensors or commands). While
some CS can be very simple (e.g. a thermostate) and pose little or no prob-
lem to modeling using general-purpose formalisms, other CS can be complex
with respect to the number of components, dimensions, physical and functional
organization and supervision issues.

A complex control system will generally have a composite structure, in which
each object can be grouped with others; composite objects can be, in their turn,
components (or ”children”) of larger objects, forming a hierarchical tree in which
the root represents the whole system and the leaves are its most elementary de-
vices. Typically this grouping will reflect a physical container-contained compo-
sition (e.g. an engine contains several cylinders), but it could reflect other kinds
of relations, such as functional or logic. Elementary and composite objects can
receive commands and communicate states and alarms. It is generally the case
that the state of an object will depend both on its own properties and on the
states of its subobjects.

Operators can access the system at different levels of granularity, and with
possibly different types of views and levels of control, according to several factors
(their profile, the conditions of the system, the current task being executed).

1.2 Requirements

The main goal of this project is defining a methodology that allows easy pro-
totyping of a graphical user interface (GUI) for such systems. The prototyping
has to be done by users who have a knowledge of the system under control;
they should not necessarily have any deep knowledge of programming or GUI
design. In this, our approach is different from several others which try to be
general by focusing on GUI specification formalisms (see the Related Work sec-
tion). This work proposes to model the system under control instead of the GUI.
On one hand, this makes the methodology less general and only applicable to
the domain of control systems (and possibly similar domains). But on the other
hand, the methodology becomes accessible by people who don’t have a specific
GUI development know-how, and allows rapid prototyping by reusing existing
information.

The requirements are the following:

– a system expert must be able to specify the knowledge of the system under
control

– it must be possible to generate an executable prototype of the GUI from the
specification

– it must be feasible to verify properties and to validate the specification
– it must be possible to classify users into profiles
– it must be possible to define tasks, which may be available only to some user

profiles
– tools must be in place for accomplishing the previous requirements in a

coordinated workflow
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Fig. 1. Cosmic Rack hierarchy

1.3 Case study

As a reference for the examples in this article, we will use a case study from the
European Laboratory for Particle Physics (CERN) in Geneva, published in [1].

The CMS experiment at CERN is a large particle detector installed along the
Large Hadron Collider facility. Its Silicon Strip Tracker component is a complex
system made of about 24000 silicon detectors, organized in 1944 Power Groups.
These have several environmental and electric parameters to monitor. Tens of
thousands of values and probes have to be controlled by the Tracker Control
System[2]. We worked on an early prototype of the Silicon Strip tracker, called
the Cosmic Rack. This is equivalent to a section of the full tracker, mantaining
the same hierarchical complexity, but with a reduced total number of compo-
nents. The Cosmic Rack has been used to test the hardware and software of the
full tracker. The hierarchical structure of the Cosmic Rack is shown in Fig. 1.

There are four types of components: Partitions, Control Groups, Power Groups
and Control Channels. There is only one Partition, the Cosmic Rack object.
There are two Control Groups; twenty Power Groups (ten per Control Group);
and two Control Channels (one per Control Group).

Each component is characterized by a finite state machine (FSM). They are
represented in Figg. 2 (for Partitions and Control Groups, which have the same
FSM), 3 (for Power Groups) and 4 (for Control Channels).
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Fig. 2. Partitions and Control Groups FSM

The shape of every component, and its position in space, is defined by the
Cosmic Rack mechanical project. This information is stored in a database.
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Each component can receive commands. They trigger transitions in the FSM.
A command will generally trigger a transition having the same name as the
command. There are some transitions, however, which are not triggered by com-
mands, but rather by internal system events. It is the case for all transitions
going to the ”ERROR” state of all FSMs (triggered by property values out of
range) and those going to the ”INTERLOCKED” state of the Power Groups
FSM (triggered by a hardwired security mechanism). In addition to this, Power
Groups have a Clear command which triggers one of the transitions leaving the
”INTERLOCKED” state (chosen according to current system values).

States are propagated up through the component hierarchy according to rule
sets. Table 1 shows the rule set for propagating Control Groups (CG) states to
the Partition. Each row is a rule. All non-empty conditions must be met for a
rule to be applied. The table is a slight simplification of reality - there exist
”mixed” states, for example when going from OFF to ON CTRL, where only
some of the Control Groups have already switched state. These mixed states,
however, are normally ignored as they are not part of the ”ideal” behaviour of
the machine. Control Groups on their turn also have a similar table of rules for
propagating the states of their children components, Power Groups and Control
Channels.

Power Groups have a temperature property. On this property, an alarm is
defined with temperature thresholds defining value intervals. Each interval cor-
responds to a diagnostic on the temperature (normal, warning, alert and severe).
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Partition State CG in OFF CG in ON CTRL CG in ON LV CG in ON CG in ERROR

OFF ALL

ON CTRL ALL

ON LV ALL

ON ALL

ERROR ALL

Table 1. State propagation rules for the Partition. CG stands for Control Groups.

This is needed to detect temperature anomalies and take action before a hard-
ware safety mechanism (based on PLCs) intervenes to cut power to components
in order to preserve them (which brings a Power Group to the INTERLOCKED
state).

There are command sequences which constitute the normal operation of the
Cosmic Rack. These are turning on the system, turning off the system, clearing
errors and clearing interlock events.

Turning on the system consists in turning on the Control Channels, then
turning on the Power Groups.

Turning on the Control Channels means enabling (DISABLED→ OFF) and
then turning on (OFF → ON) the Control Channels (in any order).

Turning on the Power Groups means turning on low voltage (OFF→ ON LV)
and then high voltage (ON LV → ON) of Power Groups (in any order).

Turning off the system consists in the inverse sequence as turning on the
system.

Clearing an error consists in sending commands to a Control Channel or
Power Group in ERROR state, according to the situation at hand (most of the
times, this will mean trying to power down a component and power it up again
with a turn off / turn on sequence on the concerned branch).

Clearing an interlock state consists in sending a Clear command to an inter-
locked Power Group.

2 Methodology

The engineering process for prototyping a GUI for a control system is illustrated
in Figure 5. There are four steps in this methodology. In the first step, knowledge
about the control system is gathered. This is usually present under the form of
a collection of more or less formal documents. In the case of complex systems,
it is often the case that many of the aspects of the system are modeled in
electronic form for engineering purposes. These models can have various levels
of reusability depending on the format they are in. Knowledge about the system
is essential because the composition of the system, its inputs and outputs, and
its behaviour in terms of state evolution are key information for automated GUI
prototyping. In the second step, this information is expressed using a domain
specific language. This language models the domain of the information gathered
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Fig. 5. The methodology process

in step one. This domain model is comprised of several models: one, the system
model, describes the structure and internal behaviour of the system; the others,
namely the visual model, the user model and the task model, describe rather the
geometrical and interactive aspects of the system. An abstract overview of the
models is shown in Figure 6. The various models are not completely separate,
but are linked by several relationships, abstracted in Figure 6 by lines.

System modelVisual model Task model User model

Domain Model

Fig. 6. Packages of the specification model. Arcs are abstractions of existing relation-
ships among classes in the packages.

The third step of Figure 5 sees the generation of deliverables from this specifi-
cation: a database containing data used for GUI generation (the visual, user and
task model and part of the system model), and an executable system simulator.
This is done by automated tools.

The fourth and final step is the dynamic generation of a GUI prototype built
from the database data, which interacts with the system simulator.

Steps 2-4 are those tackled by our model-based approach. We will now de-
scribe the features of the domain specific model, then the simulator generation
and GUI prototyping activity.
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2.1 The domain model

We will now describe the sub-models of Figure 6.

The System model contains useful abstractions to describe the structure of
the system and its behaviour. It includes the following concepts:

– Objects in the system
– Types, defining sets of similar objects
– A hierarchical composition relationship between objects
– Behaviour of objects in terms of states and transitions
– State dependency between components
– Properties of objects
– Commands and events of objects

Objects are identified by a name and represent components in the system.
Types are where we define all features which are not specific to individual

instances of objects. Typing objects enables quick definition of properties com-
mon to a large number of objects (a typical situation in control systems which
are highly repetitive). A type is identified by a name.

The hierarchical composition is modeled as a tree of objects. Each ob-
ject can have one parent and/or several children. The hierarchical relationship
can semantically express either physical containment or logical groupings (e.g.
electrical connection, common cooling pipes...).

Behaviour of objects is modeled by finite state machines (FSMs). These
are well-suited for control systems as they express expected behaviour in a clear
way and are a standard in the control systems domain.

State dependency is expressed with conditional rules. Conditions can be
of type “if at least one of the children (or - if all of the children) of an object is
in state x, then go to state y”.

Properties are identified by names and data types. Their possible values can
be divided in intervals corresponding to four diagnostic levels: normal, warning,
alert or severe.

Commands, as control systems are asynchronous by nature, are defined by
their name and parameters only (i.e. no return value). For the sake of simulation,
the possibility of defining a simplified behaviour for a command is provided (e.g.
it is possible to specify that a command changes a property of an object).

Events are defined by their name and parameters. An event can be triggered
by state transitions (also in children objects), command, property changes. An
event can also trigger state transitions, commands and other events.

The behaviour of objects, their commands, events and properties are not
directly associated in the model to individual objects, but rather to their types.
This is because they are common features of all objects of a given type (e.g. a
model of power supply). Individual objects instantiate types, inheriting all of the
above features without having to specify them for each object. Figure 7 shows
an abstract overview of the relationships among concepts in the system model.
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Each arc in the figure sums up one or more relationships existing among the
concepts. Individual relationships will be detailed in Section 3, while discussing
the language metamodel.

Object

TypeFSM
State 

dependency 
rules

Properties CommandsEvents

Fig. 7. Concepts in the system model and their relationships

The Visual model describes all aspects of the system which are visually rele-
vant. This includes their geometrical space and their position in space.

Geometrical shape is defined for each type (and not per-object, for the
same reasons mentioned earlier). The geometry is expressed by association to a
geometry file URL. This is a file in the Object format[3], a commonly used stan-
dard for 3D object description. The language also includes pre-defined common
primitive shapes (box, sphere, cylinder...) that are mapped to pre-made object
files. Geometrical shapes can be modified by scaling attributes. For this reason
a single shape can be used to model different objects. For example, using the
cube primitive, one can model different cuboids by modifying its scale along one
or more axis.

Position in space can be defined in different ways. The simplest is express-
ing translation and rotation for each object. This requires defining coordinates
for each object. Components of complex systems, however, are sometimes posi-
tioned according to repetitive patterns (arrays, circles...). Thus, a more efficient
choice could be positioning an object by specifying its relationship with other
objects. Relationships of type ”x is parallel to y”, or ”x is concentric to y” can
be repeatedly applied to rapidly express whole sets of coordinates in such cases.

Figure 8 shows an abstract overview of the concepts of the visual model and
their relationships. Individual relationships will be detailed in Section 3.

The User model, as a general definition, is a knowledge source that contains
a set of beliefs about an individual on various aspects, and these beliefs can be
decoupled from the rest of the system[4].
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Fig. 8. Concepts in the visual model and their relationships (Type and Object are
those from the System model)

We used the Generic Ontology based User Model (GenOUM) [5, 6] as a user
model. This is a general-purpose user model based on an onlology including in-
formation about users’ personality and knowledge. The GenOUM ontology is
quite rich and goes beyond our needs. We are using a subset of it, represented
in Fig. 9. The full GenOUM ontology is presented in [5]. We model what profile
users have (Behaviour) and what is their level of knowledge for tasks to accom-
plish. The object of a user’s knowledge in the ontology is generic (the Thing
concept from OWL); we will replace Thing with the Task concept. The task
model is described in section 2.1.

User's personality

owl:Thing

Knowledge

KnowledgeLevelDesc

date

intisKnowledgeAbout
hasLevel

achievedKnowledgeTS

hasKnowledgeLevelDesc

User's knowledge

Behaviour Agent
Foaf:Agent hasKnowledgebehavesAs

Fig. 9. GenOUM concepts and properties

Clear Error 
task

k: 
Knowledge

Advanced

22.10.2006

20isKnowledgeAbout
hasLevel

achievedKnowledgeTS

hasKnowledgeLevelDesc

Physicist Peter Piper
hasKnowledgebehavesAs

Fig. 10. Example of User’s knowledge level

As an example referring to our Cosmic Rack case study, Figure 10 states that
user Peter Piper has a physicist profile. He knows how to perform the ”Clear
error” task, his knowledge level about this task is 20, an advanced knowledge
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level, and he acquired this knowledge on October 22, 2006. The interpretation
of the knowledge level ’20’ depends on the domain and is not defined a priori
by GenOUM.

The Task model: a task defines how the user can reach a goal in a specific
application domain. The goal is a desired modification of the state of a system
or a query to it [7]. Tasks must be seen as structured entities. As they represent
the complex interaction between user and GUI, we should be able to deal with
more than just atomic or linear tasks. Consequently, we chose to base our task
model on the ConcurTaskTree formalism[7] (CTT). In CTT, a task is identified
by a name, a type and an ordered list of subtasks, in a hierarchical composition
structured like a tree. Temporal relationships between subtasks are defined.

There are four task types: abstract, user, application and interaction. An
abstract task is generally a complex task we can define in terms of its subtasks.
A user task is something performed by the user outside the interaction with the
system (e.g. deciding or reading something). An application task is something
completely executed by the system (e.g. cashing a coin inserted in a drink vending
machine). Finally, an interaction task is performed by the user interacting with
the system (e.g. clicking a button).

Concurrency relationships between tasks are defined by a number of process
algebra operators (called temporal operators in [7]). A non-exhaustive list of
these taken from [7] follows as an example:

– T1 ||| T2 is interleaving : the actions of the two tasks can be performed in
any order

– T1 [] T2 is choice: T1 or T2 can be performed
– T1 >> T2 is enabling : when the first task is terminated then the second is

activated
– T1* is iteration: the task is iterative

CTT has a visual syntax, representing a task as a tree (where the root is the
highest abstraction of the task, and the leaves are the most elementary actions)
and is supported by editing tools and libraries. For the four task types mentioned,
the symbols in Figures 11 are used.

Fig. 11. CTT task types: abstract, user, application and interaction

An example of CTT applied to our Cosmic Rack case study is shown in Figure
12.
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Fig. 12. CTT for the turn on control channels task

Through the association of task and user models, we add to the CTT model
the possibility to specify for which user profiles (the behaviour in GenOUM)
each task is available. This will be clearer later, when we give the detailed im-
plementation of the task model.

2.2 System simulator generation

The system simulator is built by giving executable semantics to the syntactic
specification of the control system. Through model transformation techniques
(detailed in section 3), a formal concurrent model is obtained from the speci-
fication, as shown in Figure 5. This implements, notably, the instantiation of
objects, the execution of the FSMs of the objects, the command input model,
and the event model.

This model has executable concurrent and transactional semantics. Com-
mands and events can be processed in a parallel and/or non-deterministic way,
while the execution of command-event chains supports full transactionality and
roll-back (to model command failures). The concurrent semantics greatly help
in simulating a system which is, by nature, concurrent (several events can hap-
pen independently together in a control system). Transactionality, on one hand,
might not be 100% corresponding to the actual system behaviour. In particular,
it does not model system or communication failures. However, these are issues
which are not specifically related to the GUI we are validating, and it is actu-
ally useful to abstract them by assuming that the system is always responding
according to the specification.

2.3 GUI prototype

The GUI prototype engine is a software framework capable of loading the system
specification from the database, and presenting the user with an interface allow-
ing interaction with the system, as shown in Figure 5. A driver in this framework
instantiates and runs the system simulator, so that interaction with the actual
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system can be emulated. Commands and events are transmitted to and from the
system simulator so that the users can evaluate the interface.

The task model information is used to know what tasks are available for a
user when an object is selected. Thanks to the executable nature of the CTT
formalism, it is possible to have the GUI automate a task, with the user only
initiating it (at least in the case where only enabling operators are used). Alter-
natively, step-by-step cues can be shown to the user to perform the task (wizard-
style). The user model is used as an authorization model for determination of
the available tasks.

For the kind of systems we are modeling (geometrically complex, where error
detection and diagnostic is important), we need an adaptation mechanism able
to highlight components which are having errors. Difficulties in seeing a faulty
object can come from it being out of the current view, and/or being hidden by
other objetcs.

However, a low-level definition of the GUI’s adaptive behaviour in the lan-
guage would defeat one of the goals of the project, which is not to require a deep
knowledge of HCI techniques by the user.

To address the problem, the GUI prototype engine implements a rule-based
adaptation system. An adaptation rule is a concept which depends on user profile
and current task, and that is triggered by an error event. The rule defines an
adaptation method, which says what type of behaviour the GUI must adapt to
react to the event. A set of rules has been defined to address common problematic
situations which prevent object visibility. Strategies to solve these situations are
centering the camera on an object, moving objects which block the view out
of the way, or making them transparent. When an error event is produced, the
rendering engine applies these strategies. If the object is not in the field of view,
the camera moves to include it. If it is impossible to get an unobstructed view
of the object, other objects in the line of sight are either made transparent (if
they are not in error themselves) or moved aside (if they are).

2.4 Validation

Besides using the prototype as a basis for a production-level interface, the main
interest of producing the GUI prototype and system simulator in this model-
based way is the possibility of performing validation and verification techniques
and refining the model accordingly.

Validation is an activity that checks if a model adheres to the original re-
quirements (answering the question: am I building the right model? ). From the
point of view of a control system GUI, validation allows knowing if the GUI lets
a user view the status of the system and interact with it in the expected way.

Many aspects can be validated in a GUI. Relevant ones are presentation, in-
teraction and environmental ones[8], such as navigation, interaction, appropriate
user profiling, correct error detection. But one of the most interesting aspects to
validate are task models. For example, if a given system status is supposed to be
corrected via a task, a few things we want to know are: if the user can view all of
the information needed for executing the task (like viewing all objects involved);
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Fig. 13. Validation activities with their actors and models

if in all relevant cases the task is available; and in which cases the task may
not be adapted to the circumstances. This type of validation can be led in two
ways: first, an automated way, in which the task model is used to automatically
run task commands in the GUI, and blocks or inconsistencies are detected; and
second, a user-centric way, in which users are presented with a set of situations
needing them to perform a task, and they evaluate manually the ease (or possi-
bility) to perform it. In both cases, what we discover are misunderstandings of
the requirements for the model. The result of this activity is an input for refining
and improving the task model.

Another interesting aspect to validate is the structure of the system, as we
need to be sure we are modeling the right system (and thus, the right GUI).
Properties on the structure of the system can be specified using a constraint
language in the model, and these constraints can be checked at design time, in a
static way. We will be able to check if, for example, a certain type of object always
has children of a certain other type, or if all interaction tasks are associated to a
command. The actors in the discussed validation activities are shown in Figure
13 together with the involved products of the methodology.

2.5 Verification

Verification is an activity allowing to know if a model has been correctly made
(answering the question: am I doing the model right? ). In our domain, this
means for example if all transitions in an object’s FSM have the correct source
and target state, or if an object’s state change is correctly reflected in its parent
object’s state.

There are two types of interesting verification in this methodology. The first
focuses on the model itself and tries to make sure that the simulator we run
against is respecting the actual system properties. This type of verification can
be performed on the system simulator (which has executable semantics and
supports state space generation and exploration), by specifying properties in a
suitable formalism, like temporal logic. Model checking tools can evaluate these
properties on the state space of the simulator and confirm if the model satisfies
them. We can also use testing: feeding the simulator a known input and detecting
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Fig. 14. Verification activities with their actors and models

if the output matches expected values. The second type of verification is on the
GUI-related aspects, like task and user models, geometry, and adaptation rules.
It checks, for example, if the geometry respects the system structure, or if a rule
will always be triggered when its conditions are met. This type of verification
can be done via property specification and model checking or by manual testing.
What we discover are errors in the model specification that have to be corrected.

In both cases (refinement and correction), a model-based methodology is
useful because one only needs to modify the original model, and all the code
generation and prototyping is redone automatically. The actors in the discussed
verification activities are shown in Figure 14 together with the involved products
of the methodology.

3 Framework

The methodology described in the previous section has been implemented by
integrating a set of tools. We preferred choosing well-known and open tools and
frameworks, filling the gaps with ad hoc-developed tools when necessary.

We will now describe the various phases of the methodology with concrete
references to the technologies and methods we propose.

3.1 The specification language

One of the purposes of the methodology we propose is to introduce a compre-
hensive domain specific language for the domain of control systems that is based
on useful abstractions for domain experts. The modularity of our domain model
led us to design a DSL called COntrol system SPEcification Language (Cospel)
that is made of different parts, or packages, modeling different aspects of the sys-
tem. We used the Eclipse Modeling Framework[9] (EMF) to specify the abstract
syntax of Cospel by defining its metamodel. The semantics have been given by
transformation to a different formalism, which will be described in section 3.2.

Cospel specifications can be created via an editor, generated automatically
by EMF from the abstract syntax. The concrete syntax provided by this editor
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is a tree-like visualization of the specification, where each node is a syntactic
element. The tree is structured according to the aggregations in the abstract
syntax. Properties and associations other than aggregations can be specified by
editing properties of tree nodes. Specifications are serialized in a special XML
format. The editor runs as an Eclipse application.

Based on extensions of related work[10], Cospel is composed of the following
packages (following the order in which models have been introduced in section
2).

The Cospel core package is part of the System model. It defines the hier-
archical structure of the control system. Figure 15 shows the metamodel of this
package. The Specification element is the top level element for any Cospel
specification. It serves as the container for all specification elements. The Type
element serves as a template for similar objects: all features which are common
to a number of similar objects can be modeled only once in their type. This
choice is motivated by the highly repetitive structure of control systems, and is
supported by the common practice of using such a template system to reduce
the workload of specification in the domain. The other key concept here is the
Object. It represents an individual component, and it models the hierarchical
structure of the control system (an object can be the child of another object).
All other features of the system are modeled in other packages and associated
with either the type (for features common to many objects) or the object (for
object-specific features).

ID
Object

name
Type

Specification

0..1
childOf

type

objects0..*

1..1
0..*0..*

ownedObjects ownedTypes

Fig. 15. Cospel core metamodel

With respect to our Cosmic Rack example of Figure 1, we model here four
types: PARTITION, CTRL-GRP, CTRL-CHN and POWER-GRP. Individual objects are
then defined (and associated to their type): CosmicRack, CG1-5, CG6-10,
Ctrl-Channel-1, Ctrl-Channel-2, and all Power Groups from 1 to 20 (num-
bered according to a layer and index convention, e.g. PG-Layer-4-Rod-2 is num-
ber 8).
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The Finite State Machine (FSM) package is part of the System model. The
behaviour of objects in terms of states and transitions is modeled via a simple
FSM model. This is supported by FSMs being well known and understood in
the domain. An FSM, comprised of States and Transitions, is associated to a
Type (from the core package). This means that all objects of that type will have
that FSM. Figure 16 shows the FSM package metamodel.

FSM

State Transition

ownedTransitionsownedStates

fromState

toState

Typefsm1..1

1..* 0..*
1..1

1..1

Fig. 16. FSM package metamodel

Using this metamodel we can, for example, model the FSM of a Control
Channel (from Figure 4). We create four states: DISABLED, OFF, ON and ERROR.
Also, we define a transition for each arc in the FSM. These states and transitions
are grouped in an FSM called FSMControlChannel which is associated to the
CTRL-CHN type.

The State dependency rules package is part of the System model. Recalling
what was said in section 2, we want to be able to define rules in the form “if all of
the children of this object are in state x, set this object to state y”. This is achieved
by associating a state composition rule (StateCompRule) to a type. All objects of
that type will implement this rule. The rule is associated to a state (representing
the children objects’ state) via a childrenState relationship. It is also associated
to a resulting state via a resultingState relationship. StateCompRule also has an
orAndType attribute. This defines if the rule is triggered when all children are
in a given state, or when at least one child is. Figure 17 shows the metamodel
of this package.

orAndType

StateCompRule childrenState

resultingState

Type

0..*
1..1

1..1
ownedStateCompRules State

Fig. 17. State composition rules package metamodel

For the Cosmic Rack example, referring to Table 1, we declare a
PartitionErrorDependency rule, with the orAndType attribute set to And. This
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rule is associated with the PARTITION type. Through the childrenState relation-
ship, it is associated to the Control Groups ERROR state. Through the result-
ingState relationship, it is associated to the Partition’s ERROR state. Other rules
implementing the table can be defined in the same way.

The Property package is part of the System model. It defines the Property
class, associated to a type. All objects of that type will have the property. The
property has a data type. It also has attributes defining value intervals associated
to diagnostic alerts (normal, warning, alert and severe). For the Power Groups in
the Cosmic Rack example, we define the temperature property, an integer value.
For each of the four diagnostic values, we define upper and lower temperature
limits.

The Command and Event package is part of the System model. The meta-
model in Figure 18 describes events.

name
paramlist

EventCondition

0..*
ownedCondition AbstractEvent Sequence

triggerEvent
0..1

TypeCommand

0..*
ownedEvents

Fig. 18. Event package metamodel

An AbstractEvent is associated to a Type, meaning that all objects of that
type will have it. It can be either a simple Event, or, recursively, a Sequence
of events. A simple event has a name and a list of parameters. A Command is a
specialization of an event. Based on the satisfaction of a Condition, an event
can be executed, and can optionally trigger another event. The event can also
be associated (not shown) to a transition of the type’s FSM; this means when
the event is executed, the transition is triggered. Conditions are characterized
by expressions, evaluated on properties and/or event parameters, and include
the definition of pre-postcondition expressions. Multiple conditions can be used
to axiomatize an event.

The Control Channels in our Cosmic Rack case study have an Enable com-
mand. This command has no parameters, thus its condition does not state any
particular precondition for its execution. However, Enable is associated to the
OFF transition going from state DISABLED to state OFF (see Figure 4). This implies
that the command is only executable if the control channel is in state DISABLED
(otherwise the transition would not be fireable).
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The Geometry package corresponds to the visual model. A
Geometry class (abstract, that generalizes several classes like Box, Cylinder,
GeomFile...) is associated to a Type, defining the shape of all objects of that
type. A Scale class is also associated to a Type, allowing the reuse of the same
geometry at different scales for different types (e.g. one might have two types
of screws, identical but for the length). Classes defining position in space and
rotation are directly associated to the object, placing the object in space. For the
position in space various possibilities exist: giving absolute coordinates, or plac-
ing the object with relationships to other objects (parallel surfaces, distance...).
The metamodel of this package is in Figure 19, with a simplification on the rela-
tionship class (which generalizes a number of possible relationships). Note that
having a geometry/position is optional; this is because we could make models
in which there are some objects which are only logical objects. They do not
corresponding to a physical object, but are only used to group other objects for
diagnostic purposes.

ID
Object

name
Type

0..1
childOf

type

objects0..*

1..1 Geometrygeometry
0..1

width
length
depth

Box
rMax
rMin
height

Cylinder

URL
GeomFile

...

xScale
yScale
zScale

Scale

scale
0..1

Position
x
y
z

CoordinatesRelationship

x
y
z

Rotation
ownedPositionowned-

Rotation

0..1

0..1

Fig. 19. Geometry package metamodel

In the Cosmic Rack, all components are cuboids (although with different
sizes, proportions and orientations). To model their geometry, we define a Box
with unitary dimensions and associate it to all types. Then we associate a differ-
ent Scale to each of the four types, giving the size in the three axes of the box.
Also, all Power Groups with a name ending in ”Rod 1” have a rotation on the
X axis, so we define a Rotation and apply it to all those objects. Thus, to char-
acterize all shapes, we only define one geometry, one rotation and four scales.
We then position each object in space according to the mechanical drawings of
the Cosmic Rack.

The Tasks package corresponds to the Task model. Building the metamodel
for the CTT formalism, we chose to use binary task trees to avoid the problem of
defining a priority for the temporal operators, as suggested in [7]. The resulting
metamodel is shown in Figure 20. An individual Task can be associated with a
Type; this means that the task will be available for every object of that type. A
task can also be associated with a Command from the Event package, which means
that performing the task involves sending that command to the object associated
with the task. Finally, a task is associated to a Profile, a concept described in
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the user model in the following paragraph, meaning that only certain profiles are
allowed to perform that task. Tasks are related in a tree structure by Operators
(here we show only three of them).

Modeling the turn on control channels task for Control Channel (Figure 12),
we create a task for each CTT node (turn on control channels, turn on control
channel 1...). Each task is associated to the CTRL-CHN type. The leaf nodes are
associated to the Enable and TurnOn commands of the Control Channel. We
relate the tasks using the enabling (>>) and interleaving (|||) operators.

name
TaskOperator

ownedOperator
0..1

leftTask
rightTask

1..11..1

Interleaving Choice Enabling Abstract
Task

UserTaskInteraction
Task

Application
Task

Typetype
0..1

Commandcommand
0..1

Profileprofile
0..*

Fig. 20. Task package metamodel

The Users Package corresponds to the User model. The metamodel corre-
sponds to what has already been shown in Figure 9, with the Thing class re-
placed by the Task class from the task package. We also renamed Behaviour to
Profile for clarity. The metamodel is shown in Figure 21.

UserProfile level
date
description

Knowledge Task

profile ownedKnowledge task

1..10..*1..*

Fig. 21. User package metamodel

We already showed an example for the Cosmic Rack in Figure 10: we create
a Profile called Physicist, and a User named Peter Piper associated to this
profile. We associate Peter to the task model for the Clear Error task through
an instance of Knowledge, which is characterized by a level of 20, and a date
of 22.10.2006.
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3.2 Transformation

To give semantics to a Cospel model, we use model transformation techniques.
Instead of defining a semantic for each element of the Cospel language, our
approach establishes mapping rules between the Cospel metamodel and the CO-
OPN[11] metamodel. CO-OPN (Concurrent Object-Oriented Petri Nets) is an
object oriented modeling language based on algebraic Petri nets, allowing the
execution of specifications and providing tools for simulation, verification and
test generation. CO-OPN support concurrency and transactionality, and there
are tools to generate executable Java code from a CO-OPN model. Since the se-
mantics of CO-OPN are already defined (in formal terms), we obtain the Cospel
semantics as a result of the transformation.

In the context of the BATIC3S project we chose to use the Atlas transfor-
mation language (ATL) framework[12], a declarative, rule-based language and
framework for specifying mapping rules in language transformations. ATL is
particularly well suited for its declarative style and its modularity. The ATL
framework is very usable, and runs as an Eclipse plugin, another advantage for
our methodology which is mainly based on Eclipse-related tools.

We followed a modular approach, identifying the different packages of the
Cospel language (e.g. tasks, users, object hierarchy...) as sources for the trans-
formation; for each module, we gave a transformation pattern with ATL rules.
The patterns have then been composed, with syntactic and semantic composi-
tion techniques, to obtain a set of transformation rules able to transform the
whole Cospel framework.

Object hierarchy

FSM

State 
dependency

rules
Properties

Commands/Events
Geometry

Tasks

Users

Information used
for CO-OPN model

Information used
for Database

Information used
for both

Fig. 22. The CO-OPN model and the database are built by transformation of Cospel
packages; some packages are used to produce both models, while others only contribute
to one of them

As we said before, the methodology’s artifacts are two: a system simulator
and a GUI. To produce them, the ATL transformation creates two models from
the Cospel specification. The first one is the CO-OPN model which has just been
described. Since the system simulation is purely behavioural, no visualization-
related information is used for building the CO-OPN model. The second model
created by the ATL transformation is a database, which has to be used as a
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data source for creating the dynamic 3D scene in the GUI. Information includ-
ing object hierarchy, geometrical data, FSMs (for representing states), tasks,
properties and commands/events (to create interaction methods) are stored in
this database. Figure 22 shows which Cospel packages contribute to which model.

An overview of the transformation process is given in Figure 23, showing what
the players in the transformation of the Cospel model to a CO-OPN+Database
model are. It is shown how the individual language packages and their transfor-
mation patterns are composed into a global metamodel and a global transfor-
mation. A detailed description of this composition and transformation process
is in [10]

CO-OPN
Metamodel

Database
Metamodel

Transformation 
instance

CO-OPN
Model

Database
Model

uses uses

uses produces

conforms to conforms to conforms todefines

Cospel Metamodel

Cospel Model

ATL Transformation

Fig. 23. Transformation overview. Smaller rectangles inside Cospel metamodel and
model and inside the ATL transformation represent individual language packages and
their individual transformation patterns

Without getting too deep in the details of the CO-OPN specification result-
ing from the Cospel transformation, we will now describe its structure. We used
the object-oriented features of CO-OPN to create the hierarchical structure, by
using Cospel types as a template for instantiating CO-OPN objects. Commands
are transformed to CO-OPN methods, and events to CO-OPN gates (a kind
of parameterized event). Since CO-OPN objects contain an algebraic Petri net,
Cospel object states and properties are translated to CO-OPN places, and be-
havioural rules (such as FSM transitions or dependency rules) are translated to
axioms. Figure 24 shows the structure of a part of the Cosmic Rack hierarchy
using CO-OPN’s visual syntax. It shows how objects are instantiated inside im-
bricated contexts (a CO-OPN context is an encapsulation allowing coordination
among object instances), how commands are routed (arrows) down the hierar-
chy until their destination object, and how events are routed up. The routes
(called synchronizations) are decided based on conditions (e.g. the name of the
destination object, or the parameters of the command/event), a part of which
comes from the specification, and the rest are automatically generated in the
transformation patterns.

Verification can be performed on the CO-OPN model by using decision di-
agrams. Tools are under development[13] for model checking CO-OPN. These
tools implement decision diagrams model checking for algebraic Petri nets. This
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PartitionContext

ControlGroupContext

PowerGroupContext

CosmicRack CG1-5 PG-Layer-4
-Rod-2

Commands

Events

Fig. 24. Hierarchical structure of CO-OPN model

allows exploring a specification’s state space to check whether properties are sat-
isfied. Verification of temporal properties is thus possible (for example properties
concerning dynamic behaviours, like tasks, events or interaction).

The CO-OPN specification is finally used by the CO-OPN tools to gener-
ate Java code. This code constitutes the formal executable system simulator
mentioned in Figure 5. It serves as the executable basis for evaluating the GUI
prototype.

3.3 GUI engine

The GUI engine which creates the GUI for the user to interact with is written in
Java. It presents a 3D rendering of the system which allows spatial navigation
and interaction with system components. Figure 25 shows the data flow of the
GUI engine. Its source of information for rendering the scene are the database
(DB) produced in the transformation phase, and the set of Object files containing
the shapes of the system components. By loading these resources, a 3D scene
is initialized and shown to the user. At the same time, the CO-OPN system
simulator produced in the transformation is instantiated and initialized.

To minimize memory usage (a serious problem for systems with a large num-
ber of components), features common to sets of objects (i.e. those features as-
sociated in the specification language to types rather than to individual ob-
jects, like geometrical shape) are loaded only once and stored in instances of a
Object3DStructure class. Individual objects are obtained by instantiating an
Object3D class which applies individual features (e.g. position in space) to the
associated Object3DStructure instances.

Objects are organized in a tree, according to the hierarchy in the specification.
Each of them keeps an instance of FSM, and the current state of an object is
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Fig. 25. GUI engine communication

represented in the scene by colors, according to common practices in the field
(green=ok, yellow=warning, red=error, blue=powered, gray=off or unknown).

Upon selecting objects, users are shown with clickable controls corresponding
to the commands defined for that object. These, when clicked, send a command
message to the driver, which transmits it in the appropriate format to the CO-
OPN simulator. Events coming from the simulator are also translated by the
driver and can be interpreted by the GUI to update the scene (e.g. an object
state change will modify its color, or trigger an error message).

After the development phase, when the prototype can be considered final, the
CO-OPN driver can be substituted by a driver for the real system (see Figure
25), so that the interface can be evaluated in a real-life environment.

Rendering is done by using the JoGL API[14], a Java binding of the OpenGL
libraries developed by Sun and Silicon Graphics. JoGL provides all necessary
methods for 3D rendering and navigation. In addition to that, it has built-in
support for stereoscopic visualization, which allowed us to experiment with how
stereoscopic perception can affect interaction and navigation in a control system.
We also used the FengGUI API[15], which allows drawing 2D components, like
windows and buttons, in a 3D stereoscopic scene.

There are two navigation modes: spatial and hierarchical. Different con-
trollers can be used for spatial navigation: keyboard, mouse (via click and drag
gestures) or 3D controllers (e.g. six degrees of freedom knobs like 3D Connexion’s
SpaceNavigator [16]). Hierarchical navigation is done via a tree-like representa-
tion of the system.

The two navigation modes answer different types of tasks. When investi-
gating a faulty component, the user may be interested in checking the nearby
components’ values to prevent further alarms, especially when the faults are of
environmental nature (temperature, humidity). These components might well be
”far” in terms of system hierarchy (i.e. belonging to a whole different branch of
the hierarchy), but will be at a short distance in the 3D scene. The spatial nav-
igation system provides easy access by moving the camera and directly clicking
on them. On the other hand, if a user wants to quickly jump to another part
of the system following an error, spatial navigation is not efficient as it requires
several zooming, panning and rotating operations. In these cases, a few clicks on
the tree representation provide a quick focus switch to another region of the sys-
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tem. Also, the tree representation can help selecting objects which are difficult
to pick (very small or hidden by other objects).

Fig. 26. GUI prototype screenshot. The Power Groups of the Cosmic Rack can be seen
in the 3D scene

Figure 26 shows a screenshot of the GUI prototype. A 3D representation of
the Cosmic Rack is shown, and Power Groups are visible. Objects containing
Power Groups (i.e. the Control Groups and the Cosmic Rack external shell)
have been made invisible, in order to show one of the Power Groups which is
having an error (it can be seen in a different color). The 3D scene is built using
the information about the system hierarchy, FSMs and geometry.

The user middle-clicked on the component, which brought up possible com-
mands in the bottom panel. The temperature property is also shown here. The
engine knows what commands and properties to show because they had been
specified in the model.

The right panel marks the name of the currently selected component in the
hierarchical tree view of the system. Since the model says that the current user
has access to the off, on lv, on and clear commands of the Power Group, all these
buttons appear in the bottom panel. A user with monitoring responsibilities only
would not see the buttons.

4 Related work

4.1 Control systems and GUI models

There are two main lines of research related to this work. The first is about
specification languages for control systems. The second concerns techniques and
languages for GUI generation.
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Several models have been proposed in the domain of control systems to be
used as a specification language. RSML[17] exploits the fact that control sys-
tems are reactive and evolve their state depending on conditions. It is based on
a modified version of Statecharts. It defines a mapping to an underlying for-
mal model based on Mealy automata, but presents the user with a set of more
readable syntaxes. The Fujaba tool[18] treats decentralized control systems. It
models systems using a UML class diagram syntax, to which users can add detail
such as Statecharts or collaboration diagrams. It supports specification simula-
tion and Java code generation, but no model-checking features (except for those
which can be applied to Java, of course).

VEG[19] treats two-dimensional GUIs as reactive event driven systems per
se. It proposes a scalable notion to specify, design, validate and verify a GUI.
Specifications are modular, separated into control and data, and are layout-
independent. The syntax supports event-based behaviours, parallel composition
and runtime instantiation. Java code functions can be added to model complex
behaviours. VEG offers model checking possibility in that specifications can be
transformed to Promela and model-checked with SPIN[20]. A Java prototype of
the GUI can be generated.

In the domain of GUI generation techniques, various approaches tackle spec-
ification and prototyping. Bastide et al. [21] use a formal object-oriented formal-
ism (ICO) to describe interactive applications. The developer can specify the
interface behaviour as an Object Petri net. The GUI presentation is specified
using the commercial tool JBuilder. Verification and validation can be performed
because of the formal semantics of ICO, as well as prototype generation. There
is no simulation of the system under control, the specification process demands
a knowledge of Petri nets, and the specification of the presentation is manual.

Calvary et al. [22] define a general, unifying reference framework for clas-
sifying multi-target interfaces. Four levels of abstraction are defined (task and
concepts, abstract UI, concrete UI, final UI). This framework is instantiated for
a few GUI generation approaches, including ARTStudio [23], a tool by the same
authors to generate multi-target GUIs from tasks and data specification. Here
also, the simulation of the system under control is not one of the goals. The focus
is abstraction and flexibility, and the definition of a generic framework which can
be used as a reference to compare or unify similar approaches.

UsiXML (several papers in [24]) is an abstract user interface description
language, allowing specification of the interactive aspects of a GUI. It can be
rendered on different platforms and as different types of GUIs thanks to its
level of abstraction. This flexibility makes it suitable as an underlying format
for storing the interface model, and its use is currently being evaluated by our
project.

The AID project [25] has a rather similar scope to our work. One of the
fundamental goals of AID is generating a GUI from an existing model of the
system under control. The syntax and semantics of the system model (called
Domain Model) are used to build an interaction model and a presentation model.
The task model for the interface is part of the domain model, which also is the
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case for our project. However, this approach is mainly focused on automatic
interface design; it does not provide simulation of the system, nor verification
and validation activities.

Finally, Vanderdonckt et al. developed the Envir3D tool[26], which can gen-
erate a virtual 3D GUI from an abstract model of the interaction elements,
dialog and presentation. The underlying model, hidden from the developer, al-
lows evaluation, model checking and verification of the GUI. The main focus of
the work is evaluating usability with respect to standard guidelines. There is no
simulation of the system under control. This project complements our work, in
that we focus a lot on system semantics and not really on ergonomics of the
GUI, while the Envir3D project does the opposite.

4.2 Task models

A very in-depth survey about task models has been done in [27]. It shows and
discusses several task models from the 1960’s to early 2000’s, thus we will not
rewrite it here in detail. All reviewed task models express goals, task hierarchies,
temporal constraints and role specification in terms of tasks. When it comes to
comparing models however, the following factors differentiate and motivate the
choice CTT from other reviewed choices:

– Discipline of origin: some other reviewed models are based on disciplines
aside from software engineering (i.e. psychology or cognitive science) and
give too much relevance to behavioural or cognitive aspects for our context

– Formalization: semantically, CTT is based on process algebra, which is suit-
able for the domain and activities we treat, while other models are not based
on an underlying formal system

– Context of use variations: most reviewed models do not support task vari-
ations based on context of use, while CTT supports conditional subtrees of
tasks

– System response: some of the reviewed models do not distinguish any type
of task from the technical system, while CTT does

4.3 Adaptation models

In AWE3D [28], the authors focus on proposing a general approach to build
adaptive 3D Web sites, and illustrate a specific application of the approach to
a 3D e-commerce case study. In SLIM-VRT [29], the authors present the design
and implementation of an efficient strategy for adapting multimedia informa-
tion associated to virtual environments in the context of e-learning applications.
They propose a strategy for VRML scenes which consists in separating the mul-
timedia information to be associated to the virtual scene from the 3D models
themselves. In AMACONT [30], the authors present an approach to deploy the
adaptive hypermedia architecture AMACONT [31] together with the component
oriented 3D document model CONTIGRA [32] to achieve various types of 3D
adaptation within Web pages. The authors present implicit rule-based media
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adaptation observing users interactions.In [33, 34], the authors present a system
that is able to deliver personalized learning content in 3D Educational Virtual
Environments. The techniques extend those employed in the field of Adaptive
Hypermedia by the well known AHA! system [35]. In [36], the authors have pre-
sented an ontology-based model which is well-suited to create adapted views of
an urban planning project. Adaptation is based on two factors: the user’s pro-
file, which is used to select a viewpoint-ontology; and the user’s current centre of
interest, which corresponds to a theme in the ontology of the themes. The gen-
eration of the links in the interface is carried out according to generation rules
that correspond to different linking semantics. In 3DSEAM [37, 38] , the authors
present an open framework supporting rule-based adaptations of 3D scenes is
used. The main role of the framework is to arrange the adaptation process fol-
lowing an adaptation strategy, materialized by rules that come with the scene
request. The adaptation framework relies on the 3DAF (3D Annotation Frame-
work) that handles the identification of objects matching the rule criterion, and
external engines that either adapt individual objects or regions [39].

5 Conclusion and perspectives

We presented a methodology to prototype adaptive graphical user interfaces
(GUI) for control systems. We introduced a DSL for the control systems domain,
called Cospel, based on useful and understandable abstractions for domain ex-
perts. Transformation techniques and semantic mapping to a formal model allow
for simulation, validation, verification and automatic GUI prototype generation.
Our approach is based on the assumption that a GUI can be induced from the
characteristics of the system to control.

Several perspectives will guide the future of this work:
Improving the language: the modular structure we used for metamodels

and transformations allows for a relatively easy extension of Cospel. Features
can be added, such as defining a type-based template system for the hierarchy
or specifying the behaviour of commands in a more complex way, or again mod-
eling the interaction between the GUI and the system.

Enriching user information: the user model we have defined is actually
richer than what we currently use. By implementing metrics in the GUI engine,
we could measure factors like user mood, learning style and cognitive style based
on how the user interacts with the GUI. This information could be used for eval-
uation of the GUI prototype.

3D adaptation: apart from open issues of defining procedural versus declar-
ative 3D adaptation, work is ongoing on defining ontology-based 3D adaptation.
We are currently investigating a case study for building 3D adaptive GUIs based
on ontologies for urban planning communication[36]. Urban planning is con-
cerned with assembling and shaping the urban, local or municipal environment
by deciding on the composition and configuration of geographical objects in a
space-time continuum. The main characteristics of the ontology-based model
are the semantic integration in a knowledge base of the urban knowledge coming
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from various sources (geographical information systems databases, master plans,
local plans); and the modelling of the centre of interest of an urban actor. These
models can be then used to generate adapted GUIs to present the project’s data
and knowledge according to each actor’s background and interests.

3D stereoscopy impact: we want to evaluate if, in this domain, stereoscopy
helps navigation; if immersion is relevant to knowledge representation; if there
are unexpected side effects of using a 3D interactive environment; and if there
is an advantage in using haptic devices or multitouch interaction.

Introducing ergonomy and usability criteria: while our current work is
mainly interested in the semantic and methodological aspects of GUI generation,
one should not forget that usability and ergonomy of a GUI are capital factors in
its success. Existing approaches for applying standard usability metrics to GUIs
should be integrated in the prototyping process.

We are also interested in extending the methodology to similar but distinct
domains. Apart from the case study mentioned in section 1.3, we did another
study [40] on an interface for data acquisition at a high energy physics experiment
at CERN, called ATLAS. Results of the case study are still under evaluation,
especially for what concerns the role of 3D representation in this particular
domain.
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