Skip to main content

Cumulative State Coherence Transform for a Robust Two-Channel Multiple Source Localization

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5441))

Abstract

This work presents a novel robust method for a two-channel multiple Time Difference of Arrival (TDOA) estimation. The method is based on a recursive frequency-domain Independent Component Analysis (ICA) and on the novel State Coherence Transform (SCT). ICA is computed at different independent time-blocks and the obtained demixing matrices are used to generate observations of the propagation model of the intercepted sources. For the assumed time-frequency sparse dominance of the recorded sources, the observed propagation models are likely to represent all the active sources. The global coherence of the models is evaluated by a cumulated SCT, which provides a precise TDOA estimation for all the sources. Experimental results show that an accurate localization of 7 closely-spaced sources is possibile given only few seconds of data even in the case of low SNR. Experiments also show the advantage of the proposed strategy when compared with other popular two-microphone GCC-PHAT based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saruwatari, H., Kurita, S., Takeda, K., Itakura, F., Nishikawa, T., Shikano, K.: Blind source separation combining independent component analysis and beamforming. EURASIP J. Appl. Signal Process. 2003(1), 1135–1146 (2003)

    Article  MATH  Google Scholar 

  2. Sawada, H., Araki, S., Mukai, R., Makino, S.: Grouping separated frequency components by estimating propagation model parameters in frequency-domain blind source separation. IEEE Transactions on Audio, Speech, and Language Processing 15(5), 1592–1604 (2007)

    Article  Google Scholar 

  3. Sawada, H., Mukai, R., Makino, S.: Direction of arrival estimation for multiple source signals using independent component analysis. In: Proceedings of ISSPA, vol. 2, pp. 411–414 (July 2003)

    Google Scholar 

  4. Nesta, F., Omologo, M., Svaizer, P.: A novel robust solution to the permutation problem based on a joint multiple TDOA estimation. In: Proceedings of IWAENC, Seattle, USA (September 2008)

    Google Scholar 

  5. Knapp, C.H., Carter, G.C.: The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech, and Signal Processing 24, 320–327 (1976)

    Article  Google Scholar 

  6. Nesta, F., Omologo, M., Svaizer, P.: Separating short signals in highly reverberant environment by a recursive frequency-domain BSS. In: Proceedings of HSCMA, Trento, Italy (May 2008)

    Google Scholar 

  7. Nesta, F., Omologo, M., Svaizer, P.: Multiple TDOA estimation by using a state coherence transform for solving the permutation problem in frequency-domain BSS. In: Proceedings of MLSP, Cancun, Mexico (October 2008)

    Google Scholar 

  8. Nesta, F., Svaizer, P., Omologo, M.: A BSS method for short utterances by a recursive solution to the permutation problem. In: Proceedings of SAM, Darmstadt, Germany (July 2008)

    Google Scholar 

  9. Aarabi, P., Mavandadi, S.: Multi-source time delays of arrival estimation using conditional time-frequency histograms. Information Fusion 4(2), 111–122 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nesta, F., Svaizer, P., Omologo, M. (2009). Cumulative State Coherence Transform for a Robust Two-Channel Multiple Source Localization. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds) Independent Component Analysis and Signal Separation. ICA 2009. Lecture Notes in Computer Science, vol 5441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00599-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00599-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00598-5

  • Online ISBN: 978-3-642-00599-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics