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Abstract. Event-driven control systems provide interesting benefits such
as reducing resource utilization. This paper formulates the optimal bound-
ary and regulator design problem that minimizes the resource utilization
of an event-driven controller that achieves a cost equal to the case of
periodic controllers.

1 Event-Driven Control System Model

We consider the control system

ẋ(t) = Ax(t) + B u(t)
y(t) = C x(t)

(1)

with x ∈ R
n×1, A ∈ R

n×n, B ∈ R
n×m, u ∈ R

m×1, and C ∈ R
1×n. Let

u(t) = uk = L x(ak) = L xk ∀t ∈ [ak, ak+1[ (2)

be the control updates given by a linear feedback controller designed in the
continuous-time domain but using only samples of the state at discrete instants
a0, a1, . . . , ak, . . . Between two consecutive control updates, u(t) is held constant.
In periodic sampling we have ak+1 = ak + h, where h is the period of the
controller.

Let ek(t) = x(t)−xk be the error evolution between consecutive samples with
t ∈ [ak, ak+1[. For several types of event-driven control approaches [1, 2], event
conditions can be generalized by introducing a function f(·, ·, Υ ) : R

n × R
n →

R that defines a boundary measuring the tolerated error with to respect the
sampled state [3]. The condition that must be ensured is

f(ek(t), xk, Υ ) ≤ η (3)
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where η is the error tolerance and Υ = {υ1, υ2, . . . , υp}, υi ∈ R is a set of free
parameters. Hence, we can define the complete dynamics of the event-driven
system by the n + 1 order non linear discrete-time system

ak+1 = ak + Λ(xk, Υ, η)
xk+1 = (Φ(Λ(xk, Υ, η)) + Γ (Λ(xk, Υ, η))L)xk

(4)

where Λ(xk, Υ, η) denotes the time separation between two consecutive activa-
tions ak+1 and ak, that solves (1), (2), and (3), assuming that xk = x(ak) is the
state sampled at ak, Υ is the set of free parameters of f , and η is the tolerance
to the error. We also define Φ(t) = eAt and Γ (t) =

∫ t

0
eAsdsB. We highlight that

we have been able to find an expression for Λ(xk, Υ, η) only by approximating Φ

and Γ by Taylor expansion [3]. In all the other cases Λ can only be computed
numerically.

2 Optimal Problem Formulation

The optimal problem for event-driven controllers can be formulated in two com-
plementary ways: to minimize the cost while using the same amount of resources
than the periodic controller, or to minimize the computational demand while
achieving the same cost as in the case of the periodic controller. Here we describe
the resource usage minimization given a cost constraint. The other formulation
simply requires to exchange the goal function and one constraint, as it will be
indicated later.

Let be a standard quadratic cost function in continuous time defined as

J(L, Υ, η) =

∫ aℓ

0

x(t)T Qcx(t) + u(t)T Rcu(t)dt + x(aℓ)
T Ncx(aℓ) (5)

The optimal boundary and regulator design problem for resource minimization
can be formulated as

maximize

∑ℓ−1

k=0
Λ(xk, Υ, η)

k
w.r.t. L, Υ, η (6)

subject to xk+1 = (Φ(Λ(xk, Υ, η)) + Γ (Λ(xk, Υ, η))L)xk (7)

ak+1 = ak + Λ(xk, Υ, η) (8)

J(L, Υ, η) ≤ Jh (9)

where (6) sets the maximization goal equal to the average of the first ℓ sampling
intervals, (7) enforces the relationship between two consecutive sampled states,
(8) describes the constraint among the activations, and Jh is the cost of an
optimal h-periodic controller.

Notice that by exchanging (6) with (9) we obtain the complementary problem
that minimizes the cost given an upper bound on the period.

The problem (6)–(9) can be numerically solved by constrained minimization
techniques such as Lagrange multipliers, or by standards procedures for time
varying discrete-time systems.
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3 Example

Consider the double integrator system

ẋ =

[

0 1
0 0

]

x +

[

0
1

]

u , y =
[

1 0
]

x.

A first closed loop system using a periodic optimal regulator designed using
standard methods to minimize (5) with h = 0.6s gives a cost of 27.3648 with
L =

[

−0.6115 −1.2637
]

, where

x0 =

[

0.54
0.84

]

, Qc =

[

10 0
0 10

]

, Rc =
[

10
]

, Nc =

[

0 0
0 0

]

, an = 100s.

Alternatively, for an event-driven controller, let

ẋT
k+M1ẋk+(ak+1 − ak)2 = ηxT

k M2xk (10)

be an execution rule as in (3) that intuitively mandates to trigger more frequent
control updates when the state moves fast. In (10) we set

ẋk+ = lim
t→a

+

k

ẋ(t) = (A + BL)xk (11)

to denote the state derivative once the controller has been applied to the sampled
state. From (10), it follows that

ak+1 − ak = Λ(xk, Υ, η) =

√

η
xT

k M2xk

xT
k (A + BL)T M1(A + BL)xk

. (12)

The optimal problem (6)–(9) is completely defined except for (9). Note that
for each optimization problem, 9 free parameters have been defined (6 for both
positive semidefinite M1,2, 1 for η, and 2 for L). Considering for example problem
(6)–(9), the optimal solution achieves a slightly better cost than the optimal
periodic controller, 26.6005, with

L =
[

−0.847 −1.723
]

, M1 =

[

0.028 0.091
0.091 0.336

]

, M2 =

[

0.054 0.017
0.017 0.069

]

, η = 0.0.212,

but drastically reducing resource utilization.
Figure 1 a) shows the closed loops dynamics of the periodic optimal con-

troller and event-driven controller respectively, where circles mark control up-
dates. Both trajectories exhibit similar dynamics. Focusing on the dynamics
given by the periodic controller, we can observe that from the first to the second
control update, the state moves fast because it covers a long trajectory. And
as control updates progress, the covered trajectories become shorter (the state
moves slow). Looking at the dynamics given by the event-driven controller, we
can observe the opposite behavior. When the state moves fast, we have more
frequent control updates than when the state moves slow.
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(a) Discrete and event-driven closed loop dynamics
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(b) Event-driven controller activation times

Fig. 1: Numerical example.

Figure 1 b) shows the activation pattern of control updates for the event-
driven controller. The x-axis is simulation time, and each control update is rep-
resented by a vertical line, whose height indicates the time (in seconds) elapsed
to the next control update. It shows that activation times occur within a range
([0.1 2.6]s, approximately) that in average is 1.84s, three times slower than the
periodic controller!! Only the first 10s of simulation time are shown in this sub-
figure. By looking at the rest of simulation time, we would observe that sampling
intervals oscillate within 2.51s and 2.58s.

4 Conclusions

This paper has formalized two optimal control design problems for event-driven
controllers with limited resource utilization. The formalization includes a restric-
tion on the amount of resources to be spent or on the cost to be achieved. Future
work will look for closed solutions to the problem.

References

1. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE
Transactions on Automatic Control, 52(9), pp. 1680–1685 (2007)

2. Wang, X., Lemmon, M.: Self-triggered Feedback Control Systems with Finite-Gain
L2 Stability. IEEE Transactions on Automatic Control, accepted July (2008)

3. Velasco, M. Mart́ı, P., Bini, E.: Control-driven Tasks: Modeling and Analysis. In:
29th IEEE Real-Time Systems Symposium, Barcelona, Spain (2008).


