Skip to main content

Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5453))

Abstract

Two main components in AES-GCM (Advanced Encryption Standard with Galois Counter Mode) are an AES engine and a finite field multiplier over GF(2128) in the universal hashing function (GHASH). Because of the inherent computation feedback, the system performance is usually determined by the finite field multiplier based on the known FPGA implementations to date. In this paper, we present the throughput optimization of AES-GCM with a 4-stage pipelined finite field multiplier based on Karatsuba-Ofman algorithm on FPGAs. The critical delay of the pipelined multiplier then matches that of the AES implementation with either the BlockRAM SubBytes, pipelined composite field SubBytes or LUT-based SubBytes. The AES-GCM throughput reaches more than 30Gbps on a single Xilinx Virtex Chip. The experimental results show that we achieve the most efficient AES-GCM implementations on FPGAs to date.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGrew, D.A., Viega, J.: The Galois/Counter Mode of Operation (GCM). Updated submission to NIST, Modes of Operation Process (May 2005)

    Google Scholar 

  2. NIST, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D (November 2007)

    Google Scholar 

  3. NIST, Advanced Encryption Standard (AES). FIPS Publication 197 (November 26, 2001)

    Google Scholar 

  4. Viega, J., McGrew, D.: The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload. RFC 4106 (2005)

    Google Scholar 

  5. McGrew, D., Viega, J.: The Use of Galois Message Authentication Code (GMAC) in IPsec ESP and AH. RFC 4543 (2006)

    Google Scholar 

  6. IEEE, 802.1AE - Media Access Control (MAC) Security (2006)

    Google Scholar 

  7. IEEE, P1619.1, Standard for Authenticated Encryption with Length Expansion for Storage Devices (2006)

    Google Scholar 

  8. INCITS, Fibre Channel Security Protocols, REC 1.74 (2006)

    Google Scholar 

  9. Jaervinen, K.U., Tommiska, M.T., Skyttae, J.O.: A Fully Pipelined Memoryless 17.8Gbps AES-128 Encrypto. FPGA (2003)

    Google Scholar 

  10. Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: Efficient Implementation of Rijndael Encryption in Reconfigurable Hardware: Improvements and Design Tradeoffs. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 334–350. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Zhang, X., Parhi, K.K.: High-Speed VLSI Architectures for the AES Algorithm. IEEE Transaction on VLSI 12(9), 957–967 (2004)

    Article  Google Scholar 

  12. Good, T., Benaissa, M.: AES on FPGA: from the fastest to the smallest. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 427–440. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Bulens, P., Standaert, F.-X., Quisquater, J.-J., Pellegrin, P., Rouvroy, G.: Implementation of the AES-128 on Virtex-5 FPGAs. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 16–26. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Lemsitzer, S., Wolkerstorfer, J., Felber, N., Braendli, M.: Multi-gigabit GCM-AES Architecture Optimized for FPGAs. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 227–238. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Zhou, G., Michalik, H., Hinsenkamp, L.: Efficient and High-Throughput Implementations of AES-GCM on FPGAs. In: Proceedings of International Conference on Field Programmable Technology, ICFPT 2007, pp. 185–192 (December 2007)

    Google Scholar 

  16. Satoh, A., Sugawara, T., Aoki, T.: High-speed Pipelined Hardware architecture for Galois Counter Mode. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 118–129. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Satoh, A.: High-speed hardware architectures for authenticated encryption mode GCM. In: Proceedings IEEE International Symposium on Circuits and Systems (ISCAS) (May 2006)

    Google Scholar 

  18. Xilinx, Virtex-4 User Guide, V2.3 (August 2007), http://www.xilinx.com

  19. Xilinx, Virtex-5 User Guide, V3.3 (Feburary 2008), http://www.xilinx.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, G., Michalik, H., Hinsenkamp, L. (2009). Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs. In: Becker, J., Woods, R., Athanas, P., Morgan, F. (eds) Reconfigurable Computing: Architectures, Tools and Applications. ARC 2009. Lecture Notes in Computer Science, vol 5453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00641-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00641-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00640-1

  • Online ISBN: 978-3-642-00641-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics