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Abstract We investigate the performance of three bio-inspired odor source local-

ization algorithms used in non-cooperating multi-robot systems. Our performance

metric is the distance overhead of the first robot to reach the source, which is a good

measure for the speed of an odor source localization algorithm. Using the perfor-

mance distribution of single-robot experiments, we calculate an ideal performance

for multi-robot teams. We carry out simulations in a realistic robotic simulator and

provide quantitative evidence of the differences between ideal and realistic perfor-

mances of a given algorithm. A closer analysis of the results show that these differ-

ences are mainly due to physical interference among robots.

1 Introduction

With the advances in robotics and chemicals sensor research in the last decade, odor

sniffing robots have become an active research area. Notably the localization of odor

sources would allow for very interesting robotic applications, such as search and res-

cue operations, safety and control operations on airports or industrial plants, and hu-

manitarian demining [21] [5] [17] [8]. Many of these applications are time-critical,

i. e. odor sources should be found as fast as possible. Moreover, as the structure of

plumes in the air is intermittent in both time and space [22], tracking plumes is a

challenging problem.

Through real-robot [16] [15] and simulation [14] experiments, we have recently

shown that the surge-spiral [6] [7] [2] [4] and the surge-cast [15] algorithms are

faster and more reliable than pure casting [11] [10] [23] [13] [12] [1] in laminar

wind flow. The experiments were run using a single robot, and the result was in-
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Fig. 1 Distance overhead of single-robot vs. multi-robot systems. (1) Performance gain due to

randomness (mathematically derived in Section 3). (2) Performance loss due to physical interfer-

ence among robots (simulated with a robotic simulator). (3) Performance gained with collaboration

among robots (not discussed in this paper).

sofar surprising, as the casting algorithm got much more attention by the research

community up to date.

In this paper, we are studying the same algorithms with multiple non-cooperating

robots. In particular, we compare the performance difference when moving from

a single-robot to a homogeneous multi-robot system with 2 or 5 robots. Our per-

formance metric is the distance overhead (traveled distance dt divided by upwind

distance du), which is an excellent indicator for the speed of a plume following al-

gorithm on a holonomic robot [15]. Moreover, we only require one robot to reach

the odor source, and use the distance overhead of the first robot to reach the source

as the performance of the robotic team.

As sketched in Figure 1, the difference in distance overhead between single-

robot (A) and non-cooperating multi-robot systems (C) consists of two components.

First, randomness due to the noise in the system boosts the performance (Figure 1

(1)). This performance gain can be calculated by using the distribution of the dis-

tance overhead of single-robot experiments, and would be achieved if the robots

were not interacting with each other (B). Second, physical interference among the

robots result in a loss in performance (Figure 1 (2)), which we quantify by running

simulations in a realistic robotic simulator [19]. Cooperation among robots (D, not

discussed in this paper) would again result in a performance gain.

Multi-robot odor source localization experiments with an algorithm called spiral

surge (which is close to the surge-spiral algorithm used here) have previously been

carried out by Hayes et al. [6] [7]. Hayes ran experiments with up to 6 real robots,

and up to 10 robots in simulation. Results showed that increasing the number of

robots is beneficial in terms of time to find the source. To our knowledge, casting

strategies have never been tested with multiple robots.

In two other projects [9] [18], multi-robot odor source localization algorithms

based on Particle Swarm Optimization (PSO) were tested in simulation. In both

papers, the robots were communicating with each other.

The remainder of this paper is structured as follows. In Section 2, we present the

three algorithms used in this paper. In Section 3, we derive the ideal performance
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for non-cooperative multi-robot systems. The simulator and the odor propagation

model are introduced in Section 4. Finally, we discuss the results in Section 5 and

conclude in Section 6.

2 Algorithms

All three algorithms used in this paper are bio-inspired [20] and use binary odor

information. That is, they either perceive the odor or do not perceive any odor,

but ignore different concentrations levels. Finally, all three algorithms need a wind

sensor to measure the wind direction.

With the casting algorithm, the robots move in a zig-zag pattern under an upwind

angle β towards the source. With surge-spiral, the robots move upwind as long

as they are in the plume, and spiral with a gap length dgap to reacquire the plume

whenever they lose it. The surge-cast algorithm, finally, works in a very similar

fashion, except that the robot casts in crosswind direction for a distance dcast to

reacquire the plume. A detailed description of these algorithms can be found in

[15].

To avoid collisions, all robots are running a Braitenberg obstacle avoidance al-

gorithm using 9 on-board infrared proximity sensors. Both algorithms run (inde-

pendently from each other) in parallel at all times. While obstacle avoidance has

virtually no influence on the behavior of the robot in open space, it overrides the

plume tracking algorithm when the robot is close to an obstacle (i. e., another robot

in our case).

Finally, a robot gives up and stops after having lost the plume for too long, or

reached the arena boundary.

In this paper, we only consider plume traversal and intentionally omit plume

finding (i. e. randomized or systematic search until the plume is found) and source

declaration (i. e. declaring that the source is in close vicinity), to prevent those two

parts from interfering in the results. Hence, the robots start in the plume, and source

declaration is done by a supervisor (ideal source declaration). Experiments are con-

sidered successful as soon as the first robot has come in physical vicinity of the

source, and unsuccessful if all robots gave up.

3 Expected Performance of Multi-Robot Experiments

Assume a performance value q that can be associated with each experimental run.

In this paper, this metric is the distance overhead (traveled distance dt divided by

upwind distance du) of the first robot that reaches the source. Hence, a small q value

stands for a good performance, with q = 1 being the optimum.

The distance overhead of an experiment with a single-robot algorithm (with a

fixed set of parameters) can be expressed as a distribution Q1, which can be ap-
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Fig. 2 Q1: Experimentally measured distribution of the distance overhead with a single robot. Q2

and Q5: The expected distributions for 2 resp. 5 robots, based on the assumption that the robots

do not physically interfere with each other. The triangles on top of the diagram indicate the mean

values of the respective distributions.

proximated by performing a large number of runs. Examples of such distributions

estimated with 200 runs are shown in Figure 2.

If two independent robots are going for the same source, their performances qa
and qb are random samples drawn from Q1. Clearly, the smaller of these two num-

bers (corresponding to the faster robot) will set the overall performance of the team,

qab = min(qa,qb) (1)

Hence, the performance distribution of a system with two independent robots is the

distribution of qab, and can be expressed as

Q2(q) =
1

cQ

∫∫

[min(qa,qb) = q] Q1(qa)Q1(qb) dqadqb (2)

with cQ =
∫∫

Q1(qa)Q1(qb) dqadqb (3)

where [·] stands for the Iverson bracket. Generalizing this for N robots is straight-

forward.

3.1 Calculating QN

Closed-form expressions for QN only exist for a few well-known distributions. If

Q1 is exponentially distributed with mean 1
λ , for instance, then QN is exponentially

distributed with mean 1
Nλ .

The algorithms used in this paper yield complicated distributions, however, and

an approximation by an exponential distribution would be very rough for the surge-

spiral and surge-cast algorithms, and not justifiable for the casting algorithm. We

therefore calculated the distributions for multiple robots numerically, by randomly

sampling from the distribution Q1 (Monte-Carlo simulation). Formally, we esti-

mated the distribution QN with 100000 samples of the form
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min(q1,q2, ...,qN) (4)

where q1, q2, ..., qN are randomly selected performance samples of the single-robot

runs. Distributions obtained in this way for 2 and 5 robots executing the casting

algorithm are shown in Figure 2. On that figure, it can be observed how the dis-

tribution and its mean value shift towards the left (lower distance overhead) as the

number of robots increases.

4 Simulation Experiments

We are using Webots [19] for the experiments. Webots is a commercial realistic

robotic simulator, which ships with a calibrated model of the Khepera III robot that

we used for the real-robot experiments [15]. The simulation environment (Figure 4)

was enhanced with a wind and odor propagation model, and the robot model was

extended with the corresponding sensors to measure the odor concentration and a

wind direction (Figure 3).

The simulation setup was kept close to the setup in the wind tunnel that we used

in previous work for the experiments with real robots [16] [15]. The simulation time

step, ∆ t, was set to 32ms.

4.1 Experimental Arena

The experimental arena was a rectangular area of 18m length and 4m width, which

corresponds roughly to the dimensions of the wind tunnel. At 1m from one end of

the arena, a circular odor source of radius 12 cm was placed. The robots were placed

at roughly 14.5m downwind from the source.

4.2 Advection Model

A constant wind field of 1m/s was used, which corresponds to a constant laminar

flow comparable to the one in the wind tunnel. In the coordinate system indicated

in Figure 4, the wind vector at position u, a(u), can be written as

a(u) =





1

0

0



 (5)
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4.3 Odor Propagation Model

The odor propagation model closely resembles the filament-based model proposed

by Farrell et al. [3]. This model is easy to implement and requires only a very limited

amount of CPU power. Yet, it generates an intermittent plume which is similar to

the real plume in the wind tunnel.

Odor is thereby simulated as a set of filaments (i = 0, ...,N), each containing a

constant amount s = 8.3 ·109 of molecules or particles. Each filament is defined by

its position, pi,t , and its width, wi,t .

In each time step, the position of a filament is updated according to the wind flow

and a stochastic process:

pi,t+∆ t = pi,t +a(pi,t)∆ t+ vp (6)

The stochastic component vp is a vector of three independent Gaussian random

variables, N(0,σ2
p), with standard deviation σp = 0.1m.

To model molecular dispersion, filaments become wider with time while their

peak concentration decreases. The width of a filament evolves as

wi,t+∆ t = wi,t +
γ

2wi,t

with γ = 4 ·10−7 (7)

Our virtual odor source released 100 such filaments per second with an initial

width of wi,0 = 10 cm and an initial position which was uniformly distributed over

the circular area of the source. This resulted in a plume comparable to the real plume

in the wind tunnel.

4.4 Odor Sensor Model

The odor concentration at time t and position u was calculated as the sum over the

concentration contribution of all filaments,

Ct(u) =
N

∑
i=0

ci,t(u) (8)

and each filament i contributed

ci,t(u) =
s

w3
i,t

exp

(

|u− pi,t |

w2
i,t

)

(9)

to the concentration. Hence, the concentration decayed exponentially with increas-

ing distance from the center of a filament.

The virtual odor sensor reported this concentrationCt(u) without adding any ad-
ditional noise, as the perceptual noise related to the chemical-to-electrical transduc-
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Fig. 3 Simulated Khepera

III robot equipped with an

odor sensor (small cylinder on

top of the robot) and a wind

sensor (big cylinder). The

hexagons in the air represent

odor filaments.

Fig. 4 Simulated environ-

ment (18m by 4m arena) in

Webots.

tion is negligible even on the real platform [15]. Furthermore, since the concentra-

tion is anyway thresholded and filtered through dlost by the algorithms in use here, a

precise calibration of the odor propagation and odor sensor model was not required.

4.5 Wind Direction Sensor Model

The wind sensor reported a noisy wind measurement,

as(u) = a(u)+ va (10)

where va was a vector with samples of a zero-mean normal distribution (N(0,σ2
a )).

Since the wind field was constant in all our simulations, the reported value in world

coordinates was simply

as(u) =





1

0

0



+





N(0,σ2
a )

N(0,σ2
a )

N(0,σ2
a )



 with σa = 0.1m (11)

This vector was rotated into the local reference system of the robot to account for

the robot’s pose.

4.6 Experiments

For all three algorithms, we run experiments with 9 different parameters (upwind

angle β for casting, spiral gap dgap for surge-spiral, and cast distance dcast for surge-



8 Thomas Lochmatter and Alcherio Martinoli

1 2 5
1

1.05

1.1

1.15

1.2

1.25

1.3

Casting: β=25°

Robots

T
ra

v
e

le
d

 d
is

ta
n

c
e

 d
t /

 u
p

w
in

d
 d

is
ta

n
c
e

 d
u
 [

m
/m

]

(a) (b)

Fig. 5 (a) Results obtained with the casting algorithm. The error bars indicate the 95% confidence

interval for the mean. (b) Close-up for β = 25o. The thin arrows indicate the intrinsic performance

gain by passing from a single-robot to a multi-robot system (Figure 1 (1)), while the thick arrows

indicate the performance loss due to physical interaction between the robots (Figure 1 (2)).

cast), each with 1, 2, or 5 robots. For β = 25o, dgap = 22 cm and dcast = 34 cm, we

performed 200 independent runs and calculated the ideal performance as described

in Section 3. For all other configurations, 50 runs were carried out.

In each run, the robots were released in the odor at fixed positions (evenly spaced)

between 14.5m and 16m downwind from the source. If one robot reached the

odor source, the run was stopped and considered successful. During the run, the

trajectory, the measured odor concentration and the measured wind direction were

recorded for each simulation step. Distance and upwind distance were derived from

the trajectory.

The forward speed of the robot (on straight lines) was 10.6 cm/s and therefore

same as with the real-robot experiments in the wind tunnel. The plume threshold

was set to c = 100.

5 Results and Discussion

5.1 Casting

The results for the casting algorithm are presented in Figure 5. The differences

between the single-robot and the multi-robot experiments are very small and statis-

tically not significant for most configurations. However, as a general trend, multiple

robots seem to yield slightly better performance for upwind angles β > 20o, and

worse performance otherwise.
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Fig. 6 (a) Results obtained with the surge-spiral algorithm. (b) Close-up for dgap = 22 cm.

As Figure 5 (b) reveals, even the ideal performance (for robots that are not phys-

ically interfering) is not much better than the single-robot performance. Indeed,

single-robot experiments with the casting algorithm yield a compact — almost nor-

mal — performance distribution with a small variance, and the resulting ”left shift“

of the distribution for multiple robots is small.

A noticeable gain can be observed for the success rate, however. For small angles,

where the success rate with a single robot is small, a team of robots can achieve

very high success rates. This robustness is an advantage often cited in the context

of multi-robot systems. Surprisingly, physical interference seems not to have a big

influence here. As the following table shows, the actual success rates obtained in the

multi-robot experiments are close to the expected success rates calculated based on

the success rate of the single-robot runs.

1 robot 2 robots 5 robots

actual actual expected actual expected

Casting, β = 5o 0.66 0.76 0.884 1.0 0.995

Casting, β = 10o 0.78 0.96 0.952 1.0 0.999

5.2 Surge-Spiral

The picture for the surge-spiral algorithm looks pretty different. As the perfor-

mance distribution of single-robot runs resembles an exponential distribution, its

mean value decreases as 1
N
with increasing numbers N of robots. Hence, large per-

formance gains are expected.
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Fig. 7 (a) Results obtained with the surge-cast algorithm. (b) Close-up for dcast = 34 cm.

For small spiral gaps, no performance gain is noticed in the simulation results.

For large gaps, however, the difference between the single-robot and the multi-robot

runs are significant. Even though the theoretical model would expect an even larger

difference, the multi-robot runs were clearly faster than the single-robot runs and

achieved similarly good results as the single-robot runs with small spiral gaps. The

reason for this is that a spiraling robot spends enough time aside the plume, such

that other robots can safely overtake. This could be interpreted as an indirect and

implicit coordination scheme (without communication), whereby robots losing the

plume try to make room for other robots in the plume.

5.3 Surge-Cast

The results for the surge-cast are similar: the longer the cast distance, the more

performance is gained by using multiple robot. This has to be taken with a grain of

salt, though, since longer cast distances yield worse performance in the single-robot

case and are therefore not desired anyway. Hence, in well-configured systems with

near-optimal cast distances (here 27 cm - 34 cm), no performance gains are visible.

Contrary to the casting experiments, using multiple robots does not increase the

robustness of the algorithm here. In some cases, the success rate even got worse. The

surge-cast algorithm in its present form is clearly not robust with respect to physical

collisions. Especially during plume reacquisition, a robot blocking the way at the

plume boundary can cause another robot to lose the plume completely. This could

certainly be improved by adaptively increasing the cast distance until the plume is

found.
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6 Conclusion

We carried out single-robot and non-cooperative multi-robot odor source localiza-

tion experiments in simulation with three different bio-inspired algorithms, and

compared their results in terms of success rate and distance overhead. The setup

was similar to the single-robot experiments carried out with real Khepera III robots

in the wind tunnel [15].

While the theoretically ideal performance of the multi-robot teams was expected

to be significantly better than that of the single-robot runs, the actual performance

was found to be comparable for most configurations. Statistically significant dif-

ferences were mainly found for the surge-spiral algorithm with large spiral gaps.

With such large gaps, the robots leave the plume for a significant time and distance,

which allows other robots to overtake without interference. This underlines the neg-

ative effect of physical interference among the robots on the team performance. In

particular, uncoordinated teams of robots have troubles overtaking each other dur-

ing plume following. A simple, local coordination scheme dealing with this problem

would presumably offer a significant performance gain.

In future work, we will test the algorithms in turbulent flow and/or meandering

plume conditions, and test different multi-robot coordination schemes in simulation

and using real robots.
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