Skip to main content

Trajectory Generation for Multiple Robots of a Car Transportation System

  • Chapter
Distributed Autonomous Robotic Systems 8

Abstract

We propose a car transportation system referred to as iCART (intelligent Cooperative Autonomous Robot Transporters). In this system, two robots approach the car autonomously, and lift up it for supporting its weight from right/left side respectively. Then, two robots transport the car in coordination. Collision-free trajectories for approaching and transporting the car are generated based on the potential field in the configuration space. In this paper, we describe details of the way to construct a configuration space, to apply a potential to the configuration space, and to generate a trajectory. Additionally, for generating the collision-free trajectory on the environment where two robots exist, repulsive potentials are applied to each robot. Described methods are integrated to iCART and experimental results illustrate the validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Endo, M., Hirose, K., Hirata, Y., Kosuge, K., Kanbayashi, T., Oomoto, M., Akune, K., Arai, H., Shinozuka, H., Suzuki, K.: A Car Transportation System by Multiple Mobile Robots -iCART. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2008) (to appear)

    Google Scholar 

  2. Sato, K.: Deadlock-free motion planning using the Laplace potential field. Advanced Robotics 7(5), 449–461 (1993)

    Article  Google Scholar 

  3. Lee, N., Kim, M.: Polynomial/Rational Approximation of Minkowski Sum Boundary Curves. Graphical Models and Image Processing 60(2), 136–165 (1998)

    Article  Google Scholar 

  4. Volpe, R., Khosla, P.: Manipulator Control with Superquadric Artificial Potential Functions: Theory and Experiments. IEEE Transactions on Systems, Man, and Cybernetics 20(6) (November/December 1990)

    Google Scholar 

  5. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Endo, M. et al. (2009). Trajectory Generation for Multiple Robots of a Car Transportation System. In: Asama, H., Kurokawa, H., Ota, J., Sekiyama, K. (eds) Distributed Autonomous Robotic Systems 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00644-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00644-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00643-2

  • Online ISBN: 978-3-642-00644-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics