
Efficient Distributed Reinforcement Learning
Through Agreement

Paulina Varshavskaya, Leslie Pack Kaelbling and Daniela Rus

Abstract Distributed robotic systems can benefit from automatic controller design
and online adaptation by reinforcement learning (RL), but often suffer from the
limitations of partial observability. In this paper, we address the twin problems of
limited local experience and locally observed but not necessarily telling reward sig-
nals encountered in such systems. We combine direct search in policy space with an
agreement algorithm to efficiently exchange local rewards and experience among
agents. We demonstrate improved learning ability on the locomotion problem for
self-reconfiguring modular robots in simulation, and show that a fully distributed
implementation can learn good policies just as fast as the centralized implementa-
tion. Our results suggest that prior work on centralized RL algorithms for modular
robots may be made effective in practice through the application of agreement al-
gorithms. This approach could be fruitful in many cooperative situations, whenever
robots need to learn similar behaviors, but have access only to local information.

1 Motivation

Distributed robotics systems, such as teams of vehicles, robotic swarms, or mod-
ular robots, where each individual agent has to engage in decision-making under
uncertainty and coordinate their activity, present a challenge in controller design.
Also, they need to be robust and adaptable to changing environments. Both these
challenges can be addressed by the application of reinforcement learning (RL) al-
gorithms. However, often only the most straightforward RL techniques such as Q-
learning are applied to groups of robots (e.g., [9, 4]), techniques that rely on the
Markov property of the world. Distributed robotic systems, on the other hand, have
limitations that violate the Markov assumption: individual agents do not have ac-

Paulina Varshavskaya, Leslie Pack Kaelbling, Daniela Rus
Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory,
Cambridge MA, USA, e-mail: {paulina|lpk|rus}@csail.mit.edu

1

2 Paulina Varshavskaya, Leslie Pack Kaelbling and Daniela Rus

cess to the full state of the world, but only a partial observational window onto it,
as delimited by their sensors. In fact, the process is even nonstationary if several
agents learn, i.e., change their behavior, at the same time. This partial observability
means that more general RL algorithms need to be used in distributed robotics, such
as methods based on belief-propagation or methods based on direct search in policy
space (e.g.,[1, 12]). The latter have been applied in particular to self-reconfiguring
modular robots (SRMRs); the approach [15] proved fruitful in the case of distributed
controller generation with a learning algorithm, when the learning was done cen-
trally by a single “agent” from the experience gathered by individual modules with
all their observational limitations. However, the fully distributed implementation of
this work, where each module learns its own policy from its own local experience
and reward only, has not been immediately successful and has required extra heuris-
tics to work even for relatively small SRMR systems [16].

In fact, the observation that individual agents have access only to their own local
experience and reward signal goes against a common assumption in the cooperative
distributed RL literature (e.g., [12, 3]) that the reward is a global scalar available
unaltered to all agents1. Instead, the problem for locally sensing SRMR modules or
robotic agents in a group is that the local reward is not necessarily a good measure
of the agent’s performance. For instance, it is possible that the agent’s policy is
optimal, but the bad choices made by others prevent it from ever finding itself in a
configuration from which it can move.

We address here the twin problems of limited local experience and locally ob-
served but not necessarily telling reward signals through the application of agree-
ment algorithms [2]. We demonstrate below that agreement can be used to exchange
both local reward and local experience among agents, and will result in a fully dis-
tributed implementation of a direct policy search learning algorithm, which learns
good policies just as fast as the centralized implementation2.

In what follows, we first give a concise background on reinforcement learning by
policy search in Sect. 2. We then incorporate agreement algorithms into the learning
process in Sect. 3. Section 4 gives experimental results on a simulated distributed
system: a self-reconfiguring modular robot. We discuss our contribution in light of
related work in Sect. 5 and give directions for future research in Sect. 6.

2 Distributed Policy Search

Suppose a group of robots runs a distributed policy search algorithm in the episodic
reinforcement learning framework: at each timestep t each robot i observes the situa-
tion inside its local sensory and communications range (observation oi

t) and chooses
an action ai

t according to its own policy π i. At the end of the episode, each robot
receives a scalar reward signal Ri, which is derived from the robot’s local mea-

1 This assumption is not made in general-payoff fully observable stochastic Markov games [6].
2 The centralized implementation, which serves as a benchmark, can be viewed as an idealized
case where all modules have access to all the experience and rewards of all others.

Efficient Distributed Reinforcement Learning Through Agreement 3

Algorithm 1 Distributed GAPS (DGAPS) for robot i (observation function o)
initialize parameters θi ← small random numbers
for each episode do

calculate policy π(θi)
initialize observation counts N ← 0 and observation-action counts C ← 0
for each timestep in episode do

observe oi and increment N(oi)
choose ai from π(oi,θi), increment C(oi,ai) and execute ai

end for
get local reward Ri and update θi according to
θi (oi,ai)+= η Ri (C(oi,ai)−π(oi,ai,θi)N(oi))
update π(θi) using Boltzmann’s law

end for

surements. This process is formalized as a distributed Partially Observable Markov
Decision Process (POMDP).

The basic Gradient Ascent in Policy Space (GAPS) algorithm [12] does hill-
climbing to maximize the value (that is, long-term expected reward) of the param-
eterized policy. The derivation starts with noting that the value of a policy πθ is
Vθ = Eθ [R(h)] = ∑hεH R(h)P(h|θ), where θ is the parameter vector defining the
policy, R is the reward function, and H is the set of all possible experience histories.
If we could calculate the derivative of Vθ with respect to each parameter, it would be
possible to do exact gradient ascent on the value by making updates ∆θk = α ∂

∂θk
Vθ .

However, we do not have a model of the world that would give us P(h|θ) and so we
will use stochastic gradient ascent instead. The partial derivative of the value of a
policy with respect to one policy parameter is (see [12] for full derivation)

∂
∂θk

Vθ = ∑
hεH

R(h)

(
P(h|θ)

T

∑
t=1

∂
∂θk

lnπθ (at ,ot)

)
. (1)

The stochastic gradient ascent algorithm operates by summing up traces of log-
policy derivatives at every timestep of each learning episode. Each trace reflects
the contribution of a single parameter to the estimated gradient. The makeup of the
traces will depend on the policy representation.

The GAPS algorithm was originally derived [12] for a lookup-table representa-
tion, where there is a parameter θ(o,a) for each observation-action pair. The fully
distributed version of GAPS (DGAPS) is reproduced here for completeness (Alg.
1). The traces are obtained by counting occurrences of each observation-action pair,
and taking the difference between that number and the expected number that comes
from the current policy. The policy itself, i.e., the probability of taking an action at
at time t given the observation ot and current parameters θ is given by Boltzmann’s
law:

πθ (at ,ot) = P(at |ot ,θ) =
eβθ(ot ,at)

∑a∈A eβθ(ot ,a) , (2)

where β is the inverse temperature.
This gradient ascent algorithm has some important properties. As with any

stochastic hill-climbing method, it can only be relied upon to reach a local opti-
mum in the represented space, and will only converge if the learning rate is reduced
over time. Furthermore, distributed GAPS will converge to the same local optimum

4 Paulina Varshavskaya, Leslie Pack Kaelbling and Daniela Rus

as its centralized version (theorem 3.1 in [12]) provided individual learning robots
get the same experience and reward as would the central learner in the centralized
case. Clearly, this condition is not satisfied in any distributed robot system where
individuals have only access to their own local observations (which may well be
different from anybody else’s) and compute rewards based on local information.
To counteract that limitation, we introduce agreement algorithms into the learning
process.

3 Agreement Algorithms in Policy Search

Agreement (also known as consensus or flocking) algorithms are pervasive in dis-
tributed systems research. First introduced by Tsitsiklis et al.[14], they have been
employed in many fields including control theory, sensor networks, biological mod-
eling, and economics. They are applicable in both synchronous and partially asyn-
chronous settings.

3.1 Basic Agreement Algorithm

Suppose there are N robots and therefore N processors, where each processor i is
updating a variable xi. For ease of exposition we assume that xi is a scalar, but the
results will hold for vectors as well. Suppose further that each i sends to a subset
of others its current value of xi at certain times. Each module updates its value
according to a convex combination of its own and other modules’ values:

xi(t +1) =
N

∑
j=1

ai jx j(τ i
j(t)), if t ∈ T i, (3)

xi(t +1) = xi(t), otherwise, (4)

where ai j are nonnegative coefficients which sum to 1, T i is the set of times at which
processor i updates its value, and τ i

j(t) determines the amount of time by which the
value x j is outdated. If the graph representing the communication network among
the processors is connected, and if there is a finite upper bound on communication
delays between processors, then the values xi will exponentially converge to a com-
mon intermediate value x such that xmin(0) ≤ x ≤ xmax(0) (part of Proposition 3.1
in [2]). The agreed-upon value x will depend on the particulars of the averaging
process. It will be equal to the exact arithmetic mean of the initial values xi if the
processors make synchronous, pairwise disjoint, symmetrical updates (under sum
invariance [2]):

xi(t +1) = x j(t +1) =
1
2

(xi(t)+ x j(t)) . (5)

Agreement algorithms can also be used for gradient-style updates performed by
several processors simultaneously in a distributed way [14]. However, GAPS is a
stochastic gradient ascent algorithm, which means that the updates performed climb
the estimated gradient of the policy value function ∇V̂ , which may, depending on

Efficient Distributed Reinforcement Learning Through Agreement 5

Algorithm 2 Synchronous average-based collection of experience. This algorithm
may be run at the end of each episode, or the procedure labeled average may be
used at each time step while gathering experience.

send to all n neighbors message = 〈R,Co,Coa〉
for all time steps do

average:
receive from all n neighbors message m = 〈Rm,Cm

o ,Cm
oa〉

average reward R← 1
n+1 (R+∑n

m=1 Rm)
average experience
Co ← 1

n+1 (Co +∑n
m=1 Cm

o), Coa ← 1
n+1 (Coa +∑n

m=1 Cm
oa)

send to all n neighbors m′ = 〈R,Co,Coa〉
end for

update: GAPS update rule

the quality of the agents’ experience, be very different from ∇V , and may not satisfy
the assumptions of gradient optimization with agreement. In addition, there may
be correlated noise in a system where agents must maintain physical or wireless
connections.

3.2 Agreeing on Common Rewards and Experience

Since agreement is a distributed (weighted) averaging procedure, it is immediately
applicable to learning scenarios where the cooperative reward R can be expressed as
a (weighted) average of the reward signals received by individual learning agents.
We expect the agreed-upon R̂ to be a more accurate measure of how well the entire
system is doing than the individual local reward Ri, which will increase the likeli-
hood of better updates by all robots. The estimate will be exactly right: R̂ = R if
the robots use synchronous, symmetrical, pairwise disjoint updates (Eq. 5), and the
original R is the arithmetic mean of local Ri’s, such as when SRMR modules learn
a locomotion policy [16].

A theorem in [12] states that a distributed version of GAPS, where each agent
maintains and updates its own policy parameters, will make exactly the same up-
dates as the centralized version of GAPS, provided the same experience and the
same rewards. In addition to sharing local rewards, what happens if modules also
exchange local experience?

In the centralized GAPS algorithm, the parameter updates are computed with the
following rule: ∆θoa = αR(Coa−Coπθ (o,a)), where the counters of experienced
observations Co and chosen actions per observation Coa represent the sum of the
agents’ individual counters. If there is a way for the agents to obtain these sums
through local exchanges, then the assumptions of the theorem are satisfied and we
can expect individuals to make the same updates as the global learner in the cen-
tralized case, and therefore to converge to a local optimum. Recall that using syn-
chronous, equal and symmetric pairwise disjoint updates guarantees convergence
to a common x which is the exact average of initial values of xi. If at the end of an

6 Paulina Varshavskaya, Leslie Pack Kaelbling and Daniela Rus

episode, each module runs such an agreement algorithm on each of the counters that
it maintains, then each counter Ci will converge to C = 1

N ∑N
i=1 Ci. If this quantity is

then substituted into the GAPS update rule, the updates become:

∆θoa = αR

(
1
N

N

∑
i=1

Ci
oa−πθ (o,a)

1
N

N

∑
i=1

Ci
o

)
=

1
N

αR(Coa−Coπθ (o,a)) , (6)

which is equal to the centralized GAPS updates scaled by a constant 1
N . Note that

synchronicity is also required at the moment of the updates, i.e., all agents must
make updates simultaneously, in order to preserve the stationarity of the underlying
process. Therefore, robots learning with distributed GAPS using an agreement al-
gorithm with synchronous pairwise disjoint updates to come to a consensus on both
the value of the reward, and the average of experience counters, will make stochas-
tic gradient ascent updates, and therefore will converge to a local optimum in policy
space.

The algorithm (Alg. 2) requires the scaling of the learning rate by a constant
proportional to the number of modules. Since stochastic gradient ascent is in general
sensitive to the learning rate, this pitfall cannot be avoided. In practice, however,
scaling the learning rate up by an approximate factor loosely dependent (to the order
of magnitude) on the number of agents in the system, works just as well.

4 Experiments

We ran the synchronized algorithm described as Algorithm 2 on a case study task
of locomotion by self-reconfiguration in 2D, following prior work on GAPS for
lattice-based SRMRs [16].

4.1 Lattice-Based Self-Reconfiguring Modular Robots

We use the abstract kinematic model of a 2D lattice-based robot as shown in Fig. 1.
The modules are constrained to be connected to each other in order to move with
respect to each other; they are unable to move on their own. The robot is positioned
on an imaginary 2D grid, viewed from above; and each module can observe at each
of its 4 faces (positions 1, 3, 5, and 7 on the grid) whether or not there is another
connected module on that neighboring cell. A module (call it M) can also ask those
neighbors to confirm whether or not there are other connected modules at the corner
positions (2, 4, 6, and 8 on the grid) with respect to M. These eight bits of observa-
tion comprise the local configuration that each module perceives.

Efficient Distributed Reinforcement Learning Through Agreement 7

(a) (b) (c)

Fig. 1 The sliding cubes model for lattice-based reconfiguration: (a) sliding and (b) convex tran-
sitions. (c) The abstract kinematic model of a SRMR on a lattice in 2D.

Thus, the module M in the Fig. 1c knows that lattice cells number 4–6 have other
modules in them, but lattice cells 1–3 and 7–8 are free space3. M has a repertoire
of 9 actions, one for moving into each adjacent lattice cell (face or corner), and
one for staying in the current position. Modules may not move into lattice positions
occupied by other modules or the wall. The robot’s abstract kinematics are defined
by two possible movements for each module: the sliding and convex transitions
shown in Fig. 1a and b. The robot has to remain tethered by at least one module to
some point on the base wall.

Each module is limited in its learning ability by the partial observability of the
robot configuration, as it only perceives the local window shown. The policy it is
learning is represented by a table of parameters, where each entry corresponds to
a possible observation-action pair, as described earlier. The learning task is loco-
motion along the horizontal x axis by self-reconfiguration. Each module i receives
a local reward Ri = xi

T − xi
0 at the end of the episode (time T), which measures its

total horizontal displacement.

4.2 Experimental Results

The purpose of the experiments was to discover how agreement on common re-
wards and/or experience affects the speed and reliability of learning with distributed
GAPS. As in earlier distributed experiments in this setting [16], the learning rate α
here was initially set at the maximum value of 0.01 and steadily decreased over the
first 7,000 episodes to 0.001, and remained at that value thereafter. The temperature
parameter β was initially set to a minimum value of 1 and increased steadily over
the first 7,000 episodes to 3, and remained at that value thereafter. This encouraged
more exploration during the initial episodes of learning.

3 In Fig. 1c, the module M can only guess that cells 2 and 8 are free space, since no neighbors are
available to provide that information. From the point of view of available legal actions, the ‘empty’
guess will always be correct.

8 Paulina Varshavskaya, Leslie Pack Kaelbling and Daniela Rus

0 20,000 40,000 60,000 80,000 100,000
−2

0

2

4

6

8

10

12

14

16

18

episode

sm
oo

th
ed

 a
ve

ra
ge

 d
is

pl
ac

em
en

t

basic DGAPS (1)
with given mean R (2)
with agreement on reward
at every t (3)
with agreement on reward
at end of episode (4)

1

2
3

4

0 20,000 40,000 60,000 80,000 100,000

0

5

10

15

episode

av
er

ag
e

d
is

p
la

ce
m

en
t

basic DGAPS (1)
agreement with original
learning rate (2)
agreement with
scaled learnig rate (3)

1

2

3

(a) (b)

Fig. 2 Smoothed (100-point window), downsampled average center of mass displacement, with
standard error, over 10 runs with 15 modules learning to move right, as compared to distributed
GAPS (DGAPS) and DGAPS with given common mean reward (R). (a) The modules run the
agreement algorithm on R only at each timestep t or to convergence at the end of episodes. (b) The
modules run the agreement algorithm on both R and experience at end of episodes with original
vs. scaled learning rates.

4.3 Agreement on Reward

Figure 2a demonstrates the results of experiments with the learning modules agree-
ing exclusively on the rewards R̂ generated during each episode. The two conditions
diverged on the time at which exchanges of reward took place: at the end of the
learning episode versus at each timestep t during policy execution. In the latter case,
averaging stops with the end of the episode even if agreement has not yet converged
to a common value, which results in lower rewards. However, we see that despite
this early stopping point, not-quite-agreeing on a common reward is significantly
better than using each module’s individual estimate, as predicted. Statistical analy-
sis shows no significant difference between DGAPS with given common (mean) R
and agreement run at the end of each episode. Agreement (two averaging exchanges
at every timestep t) run during locomotion results in a significantly later learning
convergence measure for that condition. Basic DGAPS with no agreement fails to
learn anything beyond essentially a random policy.

Note DGAPS with agreement at the end of each episode seems to learn better
than DGAPS with given common average R for much of the learning curve. There
could be a benefit to estimating R̂ 6= R based on all-neighbor averaging. Consider 15
modules in a typical non-gait configuration that will nonetheless generate a positive
reward and may lead the modules into a bad local optimum in policy space (Fig.
3a). Assume the modules started in a 5x3 rectangular configuration with module
1 at the location labeled ‘start’. The average robot displacement here is R = 2.4.
However, if instead of being given that value, modules actively run the synchronous
agreement at the end of this episode, they will eventually arrive at the value of R̂ =
0.63. This discrepancy is due to the fact that most of the modules, and notably those

Efficient Distributed Reinforcement Learning Through Agreement 9

mean R = 2.4, agreed R̂ = 0.63

(a)

no. stuck

DGAPS 10±0.0
DGAPS with common R 0.4±0.2
agreement at each t 0.5±0.2
agreement at end episode 0.2±0.1

(b)

Fig. 3 Effect of active agreement on reward during learning: (a) The modules with greatest re-
wards in such configurations have least neighbors (module 13 has 1 neighbor and a reward of 5)
and influence the agreed-upon value R̂ the least. The modules with most neighbors (modules 1-10)
do not have a chance to get any reward, and influence R̂ the most. (b) Mean number of stuck con-
figurations, with standard error, out of 10 test runs each of 10 learned policies, after 15 modules
learned to locomote eastward for 100,000 episodes.

that have on average more neighbors, have received zero individual rewards. Those
that have, because they started forming an arm, have less neighbors and therefore
less influence on R̂, which results in smaller updates for their policy parameters, and
ultimately with less learning “pull” exerted by the arm.

Our hypothesis was therefore that, during test runs of policies learned by DGAPS
with common reward versus DGAPS with agreement algorithms, we will see sig-
nificantly more dysfunctional stuck configurations in the first condition. The table
in figure 3b details the number of times, out of 10 test trials, that policies learned
by different algorithms were stuck in such configurations. Our findings do not sup-
port our hypothesis: both types of agreement, as well as the baseline algorithm with
common reward, generate similar numbers of non-gait policies.

4.4 Agreement on Reward and Experience

For the set of experiments involving agreement on experience as well as rewards,
the learning rate α was scaled by a factor of 10 to approximately account for the av-
eraging of observation and observation-action pair counts4. Figure 2b demonstrates
that including exchanges of experience counts results in dramatic improvement in
how early good policies are found. There is also a significant difference in learn-
ing speed between learning with the original learning rate or scaling it to account
for averaging of experience. Finally, we see in figure 4a that DGAPS with agree-
ment on both reward and experience learns comparatively just as fast and just as
well as the centralized version of GAPS for 15 modules (no significant difference
between centralized and agreement groups). However, when we increase the robot
size to 20 modules (and episode length to 100 timesteps) in figure 4b, all three al-

4 This scaling does not in itself account for the difference in experimental results. Scaling up α in
the baseline DGAPS algorithm does not help in any way.

10 Paulina Varshavskaya, Leslie Pack Kaelbling and Daniela Rus

0 2000 4000 6000 8000 10000

0

5

10

15

20

episode

av
er

ag
e

d
is

p
la

ce
m

en
t

basic DGAPS (1)
centralized GAPS (2)
DGAPS with agreement
on rewards and
experience (3)

1

2

2

3

 2000 4000 6000 8000 10000
0

2

4

6

8

10

episode

sm
o

o
th

ed
 a

ve
ra

g
e

d
is

p
la

ce
m

en
t

basic DGAPS (1)
centralized GAPS (2)
DGAPS with agreement
on reward
and experience (3)

1

2

2

3

3

(a) (b)

Fig. 4 Comparing centralized GAPS, DGAPS and DGAPS with agreement on experience: (a)
smoothed (100-point window) average center of mass displacement over 10 trials with 15 modules
learning to move right (T=50), (b) same for 20 modules (T=100): learning was done starting with
α = 0.2 and decreasing it uniformly over the first 1,500 episodes to 0.02.

Table 1 Mean number of non-gait local optima, with standard error, out of 10 test trials for 10
learned policies. The starting learning rate was α = 0.1 for 15 modules and α = 0.2 for 20 modules.

15 mods, T=50 20 mods, T=100

Distributed GAPS (DGAPS) 10±0.0 10±0.0
Centralized GAPS 0.1±0.1 5±1.7
DGAPS with agreement on Ri and Ci 1.1 ±1.0 6±1.6

gorithms yield different reward curves, with agreement-based distributed learning
getting significantly less reward than centralized GAPS.

Where does this discrepancy come from? In table 1, we see that learning in a
fully distributed way with agreement on reward and experience makes the modules
slightly more likely to find non-gait local optima than the centralized version. How-
ever, a closer look at the policies generated by centralized learning vs. agreement
reveals another difference: gaits found by agreement are more compact than those
found by central GAPS. Figure 5a demonstrates in successive frames one such com-
pact gait, as compared to the unfolding gait normally found by centralized GAPS
shown in Fig. 5b. In effect, unless updates are made according to Eq. 5, active agree-
ment results in a modified reward function. Whether or not it is preferable to the
original will depend on the task at hand.

5 Discussion and Related Work

We have demonstrated that agreement-style exchanges of rewards and experience
can be successfully incorporated into gradient-based policy search algorithms to

Efficient Distributed Reinforcement Learning Through Agreement 11

(a)

(b)

Fig. 5 Screenshots at t = 5, 25 and 45, of 20 modules executing (a) a compact gait found by
learning with agreement on Ri and Ci, and (b) an unfolding gait found by centralized GAPS.

enable fully distributed learning with no extra heuristics in lattice-based SRMRs.
This result suggests that the centralized algorithms and extensions that were pre-
viously presented [15, 16] are applicable to fully distributed systems. With higher
numbers of modules and unfavorable initial conditions, there is a significant dif-
ference between rewards obtained by centralized learning and distributed learning
with agreement, which is primarily due to the kinds of policies that are favored by
the different learning algorithms. Non-pairwise agreement on rewards generates an
effect where more densely connected learners have more of an influence on the final
agreed-upon value. This effectively modifies the reward structure, and therefore, the
policy value landscape for local search. However, discussion of reward functions is
beyond the scope of this paper.

There is a large body of research in agreement-style algorithms for distributed
robotic and sensor network systems (e.g., [8] and citations therein); we cannot do it
justice in this space. Our contribution is to combine agreement with a learning algo-
rithms for POMDPs. Our work is very closely related to the distributed optimization
algorithm described by Moallemi & Van Roy [10] for networks, where the global
objective function is the average of locally measurable signals. They proposed a dis-
tributed policy gradient algorithm where local rewards were pairwise averaged, with
no assumptions about the policies being learned beyond continuity and continuous
differentiability. In contrast, here we are interested in a special case where ideally
all individual policies would be identical. This limits the class of applicable prob-
lems, but learners can take advantage of neighbors’ experience as well as rewards.
In addition to prior work on distributed GAPS [12], cooperation in distributed RL
has been addressed in the fully observable domain through distributed value func-
tions [13] and coordination graphs [5, 7]. By contrast, our approach is applicable to
partially observable distributed MDPs.

Practical issues in sharing experience include the required communications band-
width and message complexity. In most cases, communication is much cheaper and
easier than actuation, both in resource (e.g., power) consumption, and in terms of
the learning process: learning from others’ mistakes and thus reducing potentially
dangerous exploration. Additionally, depending on the policy representation, sig-
nificant downsizing of required communications can be achieved using standard
lossless compression schemes, or a more involved distributed protocol such as con-
sensus propagation [11].

12 Paulina Varshavskaya, Leslie Pack Kaelbling and Daniela Rus

6 Conclusion

We have developed a class of algorithms incorporating stochastic gradient ascent
in policy space (GAPS) and agreement algorithms, creating a framework for fully
distributed implementations of this POMDP learning technique. We demonstrated
its success on the learning task of locomotion by self-reconfiguration in 2D simu-
lated SRMRs. Our results suggest that previously published centralized GAPS work
may be relevant to fully distributed implementations. In the future, we may wish to
develop specific caching and communication protocols for passing just the required
amount of information, and therefore requiring less bandwidth, given the policy
representation and current experience.

Acknowledgements The authors gratefully acknowledge the support of The Boeing Company.

References

1. J. Baxter and P. L. Bartlett. Infinite-horizon gradient-based policy search. J. of Artificial
Intelligence Res., 15:319–350, 2001.

2. D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Meth-
ods. Athena Scientific, 1997.

3. Y.-H. Chang, T. Ho, and L. P. Kaelbling. All learning is local: Multi-agent learning in global
reward games. In Advances in Neural Information Processing Systems, volume 16, 2004.

4. F. Fernandez and L. E. Parker. Learning in large cooperative multi-robot domains. Int. J. of
Robotics and Automation, 16(4):217–226, 2001.

5. C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs. In Advances in
Neural Information Processing Systems, volume 14, 2002.

6. J. Hu and M. P. Wellman. Multiagent reinforcement learning: Theoretical framework and an
algorithm. In Proc. Int. Conf. on Machine Learning, pages 242–250, 1998.

7. J. R. Kok and N. Vlassis. Collaborative multiagent reinforcement learning by payoff propa-
gation. J. of Machine Learning Res., 7:1789–1828, 2006.

8. K. M. Lynch, I. B. Schwartz, P. Yang, and R. Freeman. Decentralized environmental modeling
by mobile sensor networks. IEEE Trans. on Robotics, 24(3):710–724, 2008.

9. M. J. Matarić. Reinforcement learning in the multi-robot domain. Autonomous Robots,
4(1):73–83, 1997.

10. C. C. Moallemi and B. Van Roy. Distributed optimization in adaptive networks. In Advances
in Neural Information Processing Systems, volume 15, 2003.

11. C. C. Moallemi and B. Van Roy. Consensus propagation. IEEE Trans. on Information Theory,
52(11), 2006.

12. L. Peshkin. Reinforcement Learning by Policy Search. PhD thesis, Brown University, 2001.
13. J. Schneider, W.-K. Wong, A. Moore, and M. Riedmiller. Distributed value functions. In Proc.

Int. Conf. on Machine Leanring, 1999.
14. J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous deterministic

and stochastic gradient optimization algorithms. IEEE Trans. on Automatic Control, AC-
31(9):803–812, 1986.

15. P. Varshavskaya, L. P. Kaelbling, and D. Rus. Distributed learning for modular robots. In
Proc. Int. Conf. on Robots and Systems, 2004.

16. P. Varshavskaya, L. P. Kaelbling, and D. Rus. Automated design of adaptive controllers for
modular robots using reinforcement learning. Int. J. of Robotics Res., 27(3–4):505–526, 2008.

