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1 Introduction

Information has a diversity of meanings, from everyday usage to a variety of technical settings.
There is no single theory of information, but several theories, Shannon’s information theory [27,
28, 16], semantic theories [2], logic of information [18], information algebra [21], philosophy of in-
formation [19], information flow [3], quantum information theory [24], evolutionary information
[30], algorithmic information theory [15, 4], to name just a few. Each theory focuses on some spe-
cific aspects of information, and overlaps are minimal. Information is context-sensitive and heavily
dependent on the adopted coding.

In this paper we will present, through a sequence of examples, some ideas and results of the
algorithmic approach to information. In this approach information is measured by counting bits
encoding computations.

2 Counting bits

Information, in a broad sense, can be measured in various units, from bits to dollars. In this paper
we shall confine ourselves to bits. The bit, short for binary digit, was first used in 1946 by John
Tukey. A single bit can hold only one of two values: 0 or 1. More information is obtained by
combining consecutive bits into larger units, bit-strings (shortly, strings): 00, 01,10,11, 000, 001,. . . ,
111, 0000,. . . Sometimes it is useful to consider the empty string denoted by λ.

Strings have length: the number of characters of a string. For example, the length of 0 is 1,
the length of 1110111 is 7, the length of the empty string is 0. Strings can be concatenated: the
concatenation of the strings x and y is xy. The length of xy is the sum of the lengths of x and y.

Bits can be very useful to measure information. The power of bits can be illustrated with the
information which can be encoded in, say, 20 bits. With a simple strategy, twenty questions/answers
elicit 20 bits of information, which correspond to a single choice among 220 = 1, 048, 576 equally
probable alternatives. For example, with the information in a bit-string of length 20 one can identify
any town in USA. The limit of this approach is most visible at the level of semantics: No meaning
is captured! For example, translated in binary, ’happy birthday’, ’ya dirthbppayh’ have the same
information content.

The following guessing game is a more interesting example illustrating the power of bits: one
person chooses a (secret) natural number and another person tries to guess it. The person who
guesses is only allowed to ask questions of the following form: “Is your number less than n?” for
every natural n ≥ 0; the other person truthfully answers yes or no. The aim is to guess the number
as fast as possible, that is, with as few questions as possible.



As an example consider the following questions:
1. Is your number less than 1?
2. Is your number less than 2?
3. Is your number less than 3?
4. Is your number less than 4?
. . .

and so on until the first yes comes out.
To guess the number 10 we need to ask the first 11 questions; in general, to guess the number n

we have to ask the first n+1 questions. This solution leads to an encoding of all naturals numbers:
with a bit-string of length n + 1 we encode the number n.

Can we do it better? Certainly. For example, we start asking the questions “Is your number
less than 2i?” for i = 1, 2, . . . till we get the answer “yes”. This will happen at a value i such that
2i−1 ≤ n < 2i. Then, we continue by halving the length of the interval. For example, to guess the
number 10 we need 8 questions (corresponding to i = 1, 2, 4, 8, 16, 12, 9, 10). In general, to guess the
number n we have to ask the first 2 log n + 1 questions (here log n is the integer part of log2 n, the
base-2 logarithm of n). Note that this approach is better than the first one for n > 3.

Still, can we do it better? This is possible if we consider large enough numbers n: we can design
better and better solutions. Does there exist an optimal solution? An answer will be given in the
next section.

3 The halting problem

The halting problem (for Turing machines) is the problem to decide whether an arbitrary Turing
machine eventually halts on an arbitrary input:

Does there exist a Turing machine Thalt which given the code code(T ) of a Turing machine
T , and the input x, eventually stops and produces 1 if T (x) stops and 0 if T (x) does not
stop?

Turing’s result states that the halting problem cannot be solved by any Turing machine, i.e. there
is no such Thalt. Here is an information-theoretical proof, [14, 4]. Instead of Turing machines we will
deal with the informal notion of “program”. We assume that programs incorporate inputs—which
are coded as natural numbers. So, a program may run forever (does not halt) or may eventually
stop, in which case it prints a natural number.

Assume that there exists a halting program deciding whether an arbitrary program will ever
halt. Construct the following program, called P :

1. read a natural N;
2. generate all programs up to N bits in size;
3. use the halting program to check for each generated program whether it

halts;
4. simulate the running of the above generated programs, and
5. output a number different from each output produced by the above programs.

The program P halts for every natural N . How long is P? Answer: log N +constant bits. Reason:
to code N we need about log2 N bits and the rest of the program P is constant.



For large N , the program P belongs to the set of programs having less than N bits (because
log N + constant < N). Accordingly, for such an N , the program P will be generated by itself at
some stage of the computation. We have got a contradiction since P outputs a natural number
different from the output produced by itself!

Consider now all programs of length at most n, i.e. 2n+1−1 programs. Some programs halt, some
do not halt. If we order lexicographically all programs of length n and ask, for each such program,
whether it halts or not, we get a bit-string of length 2n+1− 1 encoding the whole information. Is it
possible to encode the same amount of information with fewer bits?

The answer is affirmative and a solution will be presented in what follows. We need more
technical details. We revert our discussion to Turing machines, but of a very special type, self-
delimiting Turing machines. The domain of a Turing machine T—dom(T )—is the set of strings
where T halts; if dom(T ) is prefix-free, i.e. no string in dom(T ) is a proper extension of another
string in dom(T ), then T is called a self-delimiting Turing machine. An important result is the
universality theorem:

There effectively exists a self-delimiting Turing machine U , called universal, such that for
every self-delimiting Turing machine T we can compute a constant c, depending only on U
and T , satisfying the following property: if T (x) stops, then U(x′) = T (x), for some string
x′ with length no longer than the length of x plus c.

In the framework of self-delimiting Turing machines the above coding problem can be stated as
follows: given a universal self-delimiting Turing machine U and an integer n > 0, find an encoding
via a bit-string shorter than 2n from which one can check which program x of length less than n
stops on U . This encoding was discovered by Chaitin in 1975 who introduced the Omega number,
see [15, 4]:

ΩU =
∑

{x|U(x)halts}

2−|x|, (1)

where |x| denotes the length of x. We consider the binary expansion of ΩU

ΩU = 0.ω1ω2 · · ·ωm · · · (2)

Given the first n bits of the binary expansion (2) of ΩU , ω1ω2 · · ·ωn, we can decide which
programs x of length less than n halt on U : we enumerate enough elements p1, p2, . . . , pk in the
domain of U till the sum

∑k
i=1 2−|pi| becomes larger than or equal to 0.ω1ω2 · · ·ωn. We have:

{x | |x| ≤ n, U(x) halts} ⊆ {p1, p2, . . . , pk},

so the halting programs x with |x| ≤ n can be obtained by eliminating from the set {p1, p2, . . . , pk}
all programs of length larger than n. Indeed,

ΩU < 0.ω1ω2 · · ·ωn + 2−n,

and for every halting program q 6∈ {p1, p2, . . . , pk} with |q| ≤ n we then have:

k∑
i=1

2−|pi| + 2−|q| ≥ 0.ω1ω2 · · ·ωn + 2−n > ΩU ,



a contradiction.
We have shown that the halting information for all programs of length less than or equal to n

(a set containing 2n+1 − 1 elements) can be compressed into a string of length n: ω1ω2 · · ·ωn.1

We are now in the position to give an answer to the question posed at the end of the section 2.
Recall, we are interested in constructing an infinite prefix-free set of bit-strings to code as efficiently
as possible all non-negative integers. The domain of a universal self-delimiting Turing machine is
such a code (cf. [1]):

Let A be a set of bit-strings. The following two conditions are equivalent:

a) The set A is the domain of a universal self-delimiting Turing machine.

b) For every computable one-one function g : {0, 1, 2, . . .} → Σ∗ having a prefix-free range,
there exist a computable one-one function f : {0, 1, 2, . . .} → Σ∗ and a constant k ≥ 0 such
that

a. f({0, 1, . . .}) ⊆ A,

b. |f(n)| ≤ |g(n)|+ k, for every n ≥ 0.

The good news is that coding with programs in the domain of a universal self-delimiting Turing
machine is optimal up to an additive constant (and one can show that a better coding does not
exist). The bad news is that this coding is computably enumerable, but not computable.

Finally, we ask the question: which problems can be solved knowing finitely many bits of ΩU (see
2)? To answer this question we will present an implementation of a specific universal self-delimiting
Turing machine U based on a register machine program, see [6]. A register machine has a finite
number of registers, each of which may contain an arbitrarily large non-negative binary integer.
The register machine U (labelled) instructions are:

L: EQ R1 R2 R3
L: SET R1 R2
L: ADD R1 R2
L: READ R1
L: HALT

The names of the above instructions are self-explanatory. For instance, the first instruction is
the classical if-then-else condition. In all cases R2 denotes either a register or a binary constant of
the form 1(0 + 1)∗ + 0, while R1 and R3 must be register variables.

A register machine program consists of a finite list of labelled instructions from the above list,
with the restriction that the HALT instruction appears only once, as the last instruction of the list.
The input data (a binary string) follows immediately after the HALT instruction. A program not
reading the whole data or attempting to read past the last data-bit results in a runtime error. Some
programs have no input data.

It is perhaps surprising that many problems in mathematics can be reformulated in terms of
the halting/non-halting status of appropriately constructed self-delimiting Turing machines. For

1 The converse implication is not true: we may know exactly which programs of length less than n halt
and still not know any bit of ΩU , cf. [5].



example, consider Fermat’s Last Theorem, stating that there are no integers x, y, z, n > 3 such that
xn + yn = zn. We can construct a self-delimiting Turing machine TFermat which systematically
enumerates all possible integers (for example, written in binary) x, y, z, n > 3, checks whether
xn + yn = zn, and stops if for some values x, y, z, n the relation is true (which would mean that
the program has found a counter-example); otherwise, T generates a new 4-tuple x, y, z, n and
repeats the above procedure. Fermat’s Last Theorem is equivalent with the statement “TFermat

never halts”, hence knowing that Fermat’s Last Theorem is true we know that TFermat never halts.
In this way we can measure the difficulty of Fermat’s Last Theorem by the complexity of TFermat,

for example, by the number of bits necessary to specify TFermat in some fixed formalism (say, U). Of
course, there are many self-delimiting Turing machines equivalent to TFermat, so a natural way to
evaluate the complexity is to consider the least complex such machine. And, of course, this extends
to any problem Π for which we can construct a self-delimiting Turing machine TΠ such that Π is
false if and only if U(TΠ) halts (if such a program exists): the difficulty of such a problem Π is the
minimal number of bits of ΩU necessary to test whether CΠ stops on U .

Here are three important open questions that can be analysed with this method (cf. [6]):

– Goldbach’s Conjecture:2 the program TGoldbach has 135 instructions totalling 3,484 bits.
– Riemann Hypothesis:3 the program TRiemann consists of 290 instructions totalling 7,780 bits.
– Collatz’ Conjecture:4 there is a non-constructive way to prove that there exists a program

TCollatz which never stops iff the Collatz’ Conjecture is true.

Are the numbers specified above the exact difficulties of the corresponding problems? Definitely
not, they are upper bounds! The bad news is that, as expected, the problem of computing the diffi-
culty of a problem is not computable. The good news is one can work with upper bounds: changing
U will result in a change of upper bounds, but the order of difficulty will be preserved, namely if Π1

is more difficult than Π2 for U , the same relation will be true for any other universal self-delimiting
Turing machine U∗. Specifically, the above analysis shows that the Riemann Hypothesis is more
difficult than the Goldbach’s Conjecture. For Collatz’ Conjecture we cannot even evaluate an upper
bound for the difficulty as the proof is not constructive.

4 Can computers create information?

Can computation produce new information? To answer this question we will introduce a measure
of information based on counting bits encoding computations. The motivation for this complexity
measure may be rooted in Leibniz’s work (1686): “A theory must be simpler than the data is explains
”. Hence, a bit-string for which there is no theory is “unexplainable”, “incomprehensible” except as
‘a thing in itself’ (Ding an sich in Kant’s terminology).

Bearing in mind these facts we say that if a self-delimiting Turing machine T with program p
produces the bit-string x, then p generates x via T , and the amount of information T extracts from
x is

HT (x) = min{|p| | T (p) = x}.

2 The conjecture was tested up to 4× 1017, see [25].
3 One of the Clay Mathematical Institute Millennium Problems, see [31, 17].
4 See more in [23]; the conjecture was tested and proved true up to 10 · 258, see [26].



It is possible that T (p) = x is false for any program p; in this case HT (x) = ∞. This definition
heavily depends on T , but using the universality theorem we can make H as independent as possible
on the underlying Turing machine because HU is optimal up to an additive constant in the class of
all possible HT :

For every self-delimiting Turing machine T there exists a constant c (depending on U and
T ) such that for all strings x:

HU (x) ≤ HT (x) + c.

So, for now on we shall fix a universal self-delimiting Turing machine U and write H instead of
HU .

If H(x) > H(y), then the complexity of x is larger than the complexity of y, that is, x encodes
more information than y. In this framework, to create information means to start with an input x
and produce an output y which has more information than x, that is, H(x) < H(y). Our initial
question becomes: is there any computable process capable of producing infinitely many outputs
each of which has more information than its corresponding input? The problem is trivial for finitely
many inputs.

One possible way to answer the above question is to assume that we have a one-to-one self-
delimiting Turing machine T that halts on infinitely many inputs x, each of which having H(x) ≤
|x| − c/2, where c is a fixed constant. Is it possible that T produces infinitely many outputs with
the property that H(T (x)) ≥ |T (x)| + c/2, that is, T produces a fixed amount (c bits) of newly
created information5)? The answer is negative: no T is capable of such performance. Indeed, this is
not possible because otherwise T would generate an infinite computably enumerable set of strings
y with H(y) ≥ |y|+ c/2, an impossibility (because the set {z | H(z) ≥ |z|+ c} is immune, see [4]).

The above result suggests that a computer cannot create too much new information. Then the
next question is: how much information can we expect to be created by computation?

A “Gödelian theory” is a finitely-specified, arithmetically sound, consistent theory strong enough
to formalize arithmetic. For example, ZFC—Zermelo-Fraenkel set theory with choice, the classical
axiomatic system in which virtually all current mathematics can be formalised—is a Gödelian
theory. Define a new complexity measure

δ(x) = H(x)− |x|.

The motivation in working with δ instead of H is the following. The complexity measures H and δ
are similar as δ is defined from H and a simple computable function; for example, both measures are
uncomputable. But H and δ differ in an essential way: given a positive N , the set {x | H(x) ≤ N}
is finite while the set {x | δ(x) ≤ N} is infinite. A sentence with a large δ-complexity has also a
large H-complexity, but the converse is not true. For example, the H-complexity of (true) sentences
of the form “1 + n = n + 1” tends to infinity as n →∞; however, their δ-complexity is bounded.

We can now state the main result in [9]:

For every Gödelian theory there exists a constant N , such that the theory proves no state-
ment x with δ(x) > N .

5 This is a very small increase in information.



Any Gödelian theory can be used to prove theorems which have a bit more information than
the theory itself, but not too much: everything is “hardwired” into the theory, there is very little
room for “creativity” to produce more information.

The above result is a form of Gödel’s incompleteness:

Any statement x with δ(x) > N cannot be proved by the Gödelian theory.

Even more, the set of statement which cannot be either proved or disproved by the Gödelian
theory is large.

5 The algorithmic coding theorem

Shannon’s coding theorem [27] says that the minimal average code string length is about equal
to the entropy of the source string set. The coding theorem plays an important role in Shannon’s
information theory [27, 28, 16]. In what follows we will briefly present an algorithmic version of
Shannon’s coding theorem.

Self-delimiting Turing machines have a prefix-free domain. Prefix-free sets S satisfy Kraft’s
inequality, [16]: ∑

p∈S

2−|p| ≤ 1.

The following (more general) converse result, known as Kraft-Chaitin theorem (see [4]), is frequently
used to build self-delimiting Turing machines:

Given a computable list of “requirements” (ni, si), (si are strings, ni ≥ 1) such that∑
i 2−ni ≤ 1, we can effectively construct a self-delimiting Turing machine T and a com-

putable one-to-one enumeration x0, x1, x2, . . . of strings xi of length ni such that T (xi) = si,
for all i, and T (x) is undefined if x 6∈ {xi | i ≥ 1}.

Let Σ∗ be the set of all binary strings. A function P : Σ∗ → [0, 1] such that
∑

x P (x) ≤ 1 is called
a semi-distribution over the strings. In case

∑
x P (x) = 1, P is a distribution. A semi-distribution

P is semi-computable from below (above) in case the set {(x, r) | x ∈ Σ∗, r ∈ Q, P (x) > r}
({(x, r) | x ∈ Σ∗, r ∈ Q, P (x) < r}) is computably enumerable (Q is the set of rationals). A semi-
distribution P is computable if it is semi-computable from below and from above. For example, the
probability6 that the self-delimiting Turing machine T produces the output x,

PT (x) =
∑

T (u)=x

2−|u|,

is a semi-distribution semi-computable from below. The function P (x) = 2−2|x|−1 is a computable
distribution.

A prefix-code for strings is a one-to-one function C : Σ∗ → Σ∗ such that C(Σ∗) is prefix-free. If
C(x) = u, then u is a code for x. The injectivity of C implies unique decodability.

For every self-delimiting Turing machine T and string x such that PT (x) > 0, we denote by

x∗T = min{u | T (u) = x},
6 See more about the underlying probability space in [4].



where the minimum is taken according to the quasi-lexicographical ordering of strings (λ < 0 < 1 <
00 < 01 < 10 < 11 < 000 < · · ·); x∗T is called the minimal (canonical) program of x with respect
to T . For every surjective self-delimiting Turing machine T , CT (x) = x∗T is a prefix-code; universal
machines are surjective.

The average code-string length of a prefix-code C with respect to a semi-distribution P is

LC,P =
∑

x

P (x) · |C(x)|,

the minimal average code-string length with respect to a semi-distribution P is

LP = inf {LC,P | C prefix-code},

and the entropy of a semi-distribution P is

HP = −
∑

x

P (x) · log P (x).

Shannon’s classical (noiseless) coding theorem [27, 16] can be expressed in the language of semi-
distributions as follows:

The following inequalities hold true for every semi-distribution P :

HP − 1 ≤ HP +

(∑
x

P (x)

)
log

(∑
x

P (x)

)
≤ LP ≤ HP + 1.

If P is a distribution, then log(
∑

x P (x)) = 0, so we get the classical inequalityHP ≥ LP , cf. [16].
However, this inequality is not true for every semi-distribution. For example, take P (x) = 2−2|x|−3

and C(x) = x1x1 . . . xnxn01. It follows that LP ≤ LC,P = HP − 1
4 .

Under which conditions, given a semi-distribution P , can we find a (universal) self-delimiting
Turing machine T such that HT (x) is equal, up to an additive constant, to − log P (x), i.e. the
complexity is equal up to an additive constant to entropy? An answer is given by the following
general result proved in [8]:

Assume that P is a semi-distribution such that P (x) > 0, for every x, and there exist a
computably enumerable set S ⊂ Σ∗×{0, 1, . . .} and a constant c ≥ 0 such that the following
two conditions are satisfied for every x ∈ Σ∗:

(i)
∑

(x,n)∈S 2−n ≤ P (x),

(ii) if P (x) > 2−n, then (x,m) ∈ S, for some m ≤ n + c.

Then, there exists a machine T (depending upon S) such that for all x,

− log P (x) ≤ HT (x) ≤ (1 + c)− log P (x).



The above result makes no direct computability assumptions on P . To get sharper consequences
we will introduce the halting probability of a self-delimiting Turing machine T,ΩT

7, and the minimal
(canonical) programs with respect to T . First, in analogy with (1) we define

ΩT =
∑

{x|T (x)halts}

2−|x|.

Specialising P we show that minimal programs are almost optimal for P . Minimal programs of
universal machines are almost optimal for every semi-computable semi-distribution P :

Assume that P is a semi-distribution semi-computable from below. Then, there exists a
machine T (depending upon P ) such that for all x,

− log P (x) ≤ HT (x) ≤ 2− log P (x).

Consequently, minimal programs for T are almost optimal: the code CT satisfies the inequal-
ities:

0 ≤ LCT ,P −HP ≤ 2.

When the semi-distribution P is given, an optimal prefix-code can be found for P . However, that
code may be far from optimal for a different semi-distribution. For example, let C be a prefix-code
such that |C(x)| = 2|x|+2, for all x. Let α > 0 and consider the distribution

Pα(x) = (1− 2−α) 2−(α+1)|x|.

If α ≤ 1, then
LC,Pα

−HPα
= ∞,

but if α > 1, then
LC,Pα −HPα < ∞.

So, C is asymptotical optimal for every distribution Pα with 1 < α, but C is far away from optimality
if 0 < α ≤ 1. Clearly, Pα is computable provided α is computable.

Minimal programs are asymptotical optimal for every semi-distribution semi-computable from
below:

Let P be a semi-distribution semi-computable from below, and U a universal self-delimiting
Turing machine. Then, there exists a constant cP (depending upon P ) such that

0 ≤ LCU ,P −HP ≤ 1 + cP .

The next result establishes a tight relation between complexity (HT ) and entropy (− log PT ):

Let T be a machine and c ≥ 0. The following statements are equivalent:

(a) for all x, HT (x) ≤ (1 + c)− log PT (x),

(b) for all non-negative n, if PT (x) > 2−n, then HT (x) ≤ n + c.

In particular we get the algorithmic coding theorem (Chaitin–Gács):

There exists a constant c ≥ 0 such that for all strings x,

|HU (x) + log PU (x)| ≤ 1 + c.

7 The reader may recall the number ΩU introduce in section 1.



6 Algorithmic randomness and incompleteness

Defining randomness is very tricky. There are many proposals, among them the algorithmic one
which equates randomness with incompressibility, and then proves other natural properties of “al-
gorithmic randomness”: stochasticity, unpredictability, etc. Algorithmic randomness comes into two
forms, for finite bit-strings and for infinite sequences.

An infinite sequence x = x1x2 . . . , xn . . . is algorithmically random if there exists a positive
constant c > 0 such that H(x1x2 . . . , xn) ≥ n− c. Chaitin’s theorem (see [13]) states

The sequence of bits of ΩU (i.e. the sequence ω1ω2 . . . ωn . . . in (2)) is algorithmically ran-
dom.

We say that the real ΩU is algorithmically random.

Two questions come naturally: a) are there any other “natural” algorithmically random se-
quences?, b) ΩU is not only algorithmically random, but also computably enumerable, that is, ΩU

is the limit of a computable increasing sequence of rationals; are there other computably enumerable
and algorithmically random numbers?

The answer to the first question is affirmative while the second question has a negative answer.
Let bin : {1, 2, . . .} → Σ∗ be the bijection which associates to every n ≥ 1 its binary expansion

without the leading 1,

n n2 bin(n) |bin(n)|
1 1 λ 0
2 10 0 1
3 11 1 1
4 100 00 2
...

...
...

...

If A ⊂ Σ∗, then we define Υ [A] = {n ≥ 1 | bin(n) ∈ A}. In other terms, the binary expansion
of n is n2 = 1bin(n). The zeta number of the Turing machine M ,8 denoted ζM , is defined by

ζM =
∑

n∈Υ [dom(M)]

1
n

.

In [10] one proves the following result:

The zeta number ζU of a universal self-delimiting Turing machine U is algorithmically
random.

In fact, the above theorem is true for a larger class of Turing machines. A convergent Turing
machine is a Turing machine V whose zeta number is finite, ζV < ∞.9 Every self-delimiting Tur-
ing machine is convergent, but the converse is not true. The universality theorem holds true for
convergent Turing machines as well. We can now state a more general result, [10]:

8 M is not necessarily self-delimiting; of course, ζM could be infinite.
9 Clearly, ΩV < ∞ iff ζV < ∞, so convergence can be equally defined in terms of zeta or Omega.



The zeta number ζV of a universal convergent Turing machine V is algorithmically random.

The answer to the second question is provided by the following theorem (cf. [7, 22], see also [4]):

A real α ∈ (0, 1) is computably enumerable and algorithmically random iff there exists a
universal self-delimiting Turing machine U such that α = ΩU .

Algorithmic randomness is intimately related to incompleteness in Gödel’s sense. Here are two
results:

Chaitin’s theorem [13]: Every Gödelian theory cannot determine more than finitely many
digits of ΩU .

Solovay’s theorem [29]: Fix a Gödelian theory. We can construct universal self-delimiting
Turing machines U such that the theory cannot determine any digit of ΩU .

Generalised Solovay’s theorem [5]: Fix a Gödelian theory and a universal self-delimiting
Turing machine U . Assume that ΩU = 0.11 · · · 10 · · ·. Then, we can effectively construct
a universal self-delimiting Turing machine U ′ such that ΩU ′ = ΩU and the theory can
determine at most the digits of ΩU before the first 0.

7 Algorithmic randomness and halting

In this section we answer the question: Can a program stop at an algorithmically random time?

First we introduce yet another complexity measure, the natural complexity, cf. [11]. The natural
complexity of the string x (with respect to the Turing machine10 M) is ∇M (x) = min{n ≥ 1 |
M(bin(n)) = x}. Using ∇ the universality theorem has the following form:

One can effectively construct a (universal) Turing machine V such that for every machine
M , there is a constant ε > 0 (depending on V and M) such that ∇V (x) ≤ ε · ∇M (x), for
all strings x.

We fix the universal Turing machine V and write ∇ instead of ∇V . A binary string x is algo-
rithmically random if ∇(x) ≥ 2|x|/|x|.11 One can prove (see [15, 4]) that algorithmically random
strings have many properties one naturally associate with randomness, among them strong uncom-
putability:

No Turing machine is capable of enumerating an infinity of algorithmically random strings.

10 Not necessarily self-delimiting.
11 In the language of the complexity H, the string x is algorithmically random if H(x) ≥ |x| − log |x|.

Algorithmically randomness for strings is a matter of degree, so we can set various bounds on the
complexity; see [4].



Most binary strings of a given length n are algorithmically random because they have high
density:

density(n) = #{x ∈ Σ∗ : |x| = n,∇(x) ≥ 2n/n} · 2−n ≥ 1− 1/n,

hence
lim

n→∞
density(n) = 1.

We are interested in the properties of the exact times programs stop. A time t will be called
algorithmically random if bin(t) is algorithmically random. In [12] one proves the following result:

Let V be a universal Turing machine. One can effectively compute a constant c (depending
on V ) such that the following is true: if an N -bit program p has not stopped on V by the
time 22N+2c+1, where N ≥ 2, then V (p) cannot exactly stop at any algorithmically random
time t ≥ 22N+2c+1.

In other words, given V and a program p of length N we can compute the time θV,N = 22N+2c+1

with the following property: either V (p) stops before the time θV,N , or if it has not stopped by that
time, then either V (p) will never stop or V (p) will stop at a non-algorithmically random time
t ≥ θV,N . Because non-algorithmically random times have effectively zero density, “chances” that
an N -bit program p that has not stopped on V by the time θV,N will eventually stop effectively
approach zero:

For every length N , we can effectively compute a threshold time θV,N (which depends on V
and N) such that if a program of length N runs for θV,N steps without halting, then the
density of times greater than θV,N at which the program can stop has effective zero density.
More precisely, if an N -bit program runs for T > max{θN , 22+5·2k} steps, then the density
of times at which the program can stop is less than 2−k.

8 Incompleteness and uncertainty

Gödel’s hostility to any suggestion regarding possible connections between his incompleteness the-
orem and physics, particularly, Heisenberg’s uncertainty relation, is well-known: J. Wheeler was
thrown out of Gödel’s office for asking the question “Professor Gödel, what connection do you see
between your incompleteness theorem and Heisenberg’s uncertainty principle?”

Still, there is a huge interest in the relations between these two statements. For example, Hawk-
ing’s view (see [20]) is that

“a physical theory is self-referencing, like in Gödel’s theorem . . . Theories we have so far
are both inconsistent and incomplete”.12

In [12] a relation between incompleteness and uncertainty is established. To present it we will
use the natural complexity ∇ = ∇U induced by a universal self-delimiting Turing machine U ; recall
that H = HU . One can see that

2H(x) ≤ ∇(x) < 2H(x)+1,

12 It is worth noting that a theory which is inconsistent is not necessarily complete, although in many cases
this is true.



hence, ∆(x) = 2H(x), the uncertainty in the value ∇(x), is the difference between the upper and
lower bounds given.

Finally let ∆s = 2−s. The property of Ω = ΩU to be algorithmically random can be expressed
in the following way:

∆s ·∆(ω1 . . . ωs) ≥ 1, (3)

In (3), an uncertainty relation, the complexity measures the uncertainty in the total information.
One can prove that the relation (3) implies Chaitin’s theorem (presented at the end of section 6),
hence, Gödel’s incompleteness.

Of course, this is a formal approach and much more is required to check its “physical” base (see
more in [12]).
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