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Abstract. Association analysis is one of the most popular analysis
paradigms in data mining. Despite the solid foundation of association
analysis and its potential applications, this group of techniques is not as
widely used as classification and clustering, especially in the domain of
bioinformatics and computational biology. In this paper, we present dif-
ferent types of association patterns and discuss some of their applications
in bioinformatics. We present a case study showing the usefulness of as-
sociation analysis-based techniques for pre-processing protein interaction
networks for the task of protein function prediction. Finally, we discuss
some of the challenges that need to be addressed to make association
analysis-based techniques more applicable for a number of interesting
problems in bioinformatics.

Keywords: Data Mining, Association Analysis, Bioinformatics, Fre-
quent Pattern Mining.

1 Introduction

The area of data mining known as association analysis1 [1,2,50] seeks to find
patterns that describe the relationships among the binary attributes (variables)
used to characterize a set of objects. The iconic example of data sets analyzed
by these techniques is market basket data, where the objects are transactions
consisting of sets of items purchased by a customer, and the attributes are binary
variables that indicate whether or not an item was purchased by a particular
customer. The interesting patterns in these data sets are either sets of items
that are frequently purchased together (frequent itemset patterns) or rules that
capture the fact that the purchase of one set of items often implies the pur-
chase of a second set of items (association rule patterns). Association patterns,
whether rules or itemsets, are local patterns in that they hold only for a subset
of transactions. The size of this set of supporting transactions, which is known
as the support of the pattern, is one measure of the strength of a pattern. A key

1 Not to be confused with the related, but separate field of statistical association
analysis [3].
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strength of association pattern mining is that the potentially exponential nature
of the search can often be made tractable by using support based pruning of
patterns [1], i.e., the elimination of patterns supported by too few transactions
early on in the search process. Efforts to date have created a well-developed
conceptual (theoretical) foundation [64] and an efficient set of algorithms [2,20].
The framework has been extended well beyond the original application to market
basket data to encompass new applications [8,24,23,57].

Despite the solid foundations of association analysis and the potential eco-
nomic and intellectual benefits of pattern discovery and its various applications,
this group of techniques is not widely used as a data analysis tool in bioinformat-
ics and computational biology. Some prominent examples of these data types are
gene expression data [33] and data on genetic variations (e.g., single nucleotide
polymorphism (SNP) data) [22]. Although the use of clustering and classification
techniques is common for the analysis of these and other biological data sets,
techniques from association analysis are rarely employed (The few exceptions in-
clude the work of researchers [5,13,30,29,40], including ourselves [57,37,35].). For
instance, for the problem of protein function prediction, which is a key problem
in bioinformatics [52], recent surveys [36,48,17] discuss several hundred papers
using clustering and classification techniques, but only a handful using asso-
ciation analysis techniques. Thus, it has to be acknowledged that association
analysis techniques have not found widespread use in this important domain.

In this paper we discuss some applications of association analysis techniques
in bioinformatics and the challenges that need to be addressed to make these
techniques applicable to other problems in this promising area. The rest of the
paper is organized as follows: Section 2 presents a brief overview of various types
of association patterns, which can be very useful for discovering different forms of
knowledge from complex data sets, such as those generated by high-throughput
biological studies. In the next section, we discuss a case study of how an asso-
ciation measure, h− confidence, can be used to address issues with the quality
of the currently available protein interaction data. Section 3 discusses the use
of association patterns for a bioinformatics application, namely addressing the
noise and incompleteness issues with the currently available protein interaction
network data. Section 4 provides concluding remarks and some of the challenges
that needs to be addressed to extend the application of association patterns to
a wide range of problems in bioinformatics.

2 Association Patterns

This section introduces some commonly used association patterns that have been
proposed in the literature.

2.1 Traditional Frequent Patterns

Traditional frequent pattern analysis [50] focuses on binary transaction data, such
as the data that results when customers purchase items in, for example, a grocery
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store. Such market basket data can be represented as a collection of transactions,
where each transaction corresponds to the items purchased by a specific customer.
More formally, data sets of this type can be represented as a binary matrix, where
there is one row for each transaction, one column for each item, and the ijth entry
is 1 if the ith customer purchased the jth item, and 0 otherwise.

Given such a binary matrix representation, a key task in association analysis
is to finding frequent itemsets in this matrix, which are sets of items that fre-
quently occur together in a transaction. The strength of an itemset is measured
by its support, which is the number (or fraction) of transactions in the data set
in which all items of the itemset appear together. Interestingly, support is an
anti-monotonic measure in that the support of an itemset in a given data set can
not be less than any of its supersets. This anti-monotonicity property allows the
design of several efficient algorithms, such as Apriori [2] and FPGrowth [20], for
discovering frequent itemsets in a given binary data matrix. However, an impor-
tant factor in choosing the threshold for the minimum support of an itemset to
be considered frequent is computational efficiency. Specifically, if n is the number
of binary attributes in a transaction data set, there are potentially 2n − 1 possi-
ble non-empty itemsets. Since transaction data is typically sparse, i.e., contains
mostly 0’s, the number of frequent itemsets is far less than 2n − 1. However,
the actual number depends greatly on the support threshold that is chosen.
Nonetheless, with judicious choices for the support threshold, the number of
patterns discovered from a data set can be made manageable. Also, note that,
in addition to support, a number of additional measures have been proposed to
determine the interestingness of association patterns [49].

2.2 Hyperclique Patterns

A hyperclique pattern [61] is a type of frequent pattern that contains items that
are strongly associated with each other over the supporting transaction, and are
quite sparse (mostly 0) over the rest of the transactions. As discussed above, in
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Fig. 1. Different types of association patterns (a) Traditional Frequent Patterns (b)
Hyperclique Patterns (c) Error-tolerant Patterns
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traditional frequent pattern mining, choosing the right support threshold can be
quite tricky. If support threshold is too high, we may miss many interesting pat-
terns involving low support items. If support is too low, it becomes difficult to
mine all the frequent patterns because the number of extracted patterns increases
substantially, many of which may relate a high-frequency item to a low-frequency
item. Such patterns, which are called cross-support patterns, are likely to be spu-
rious. For example, the pattern in Figure 1 (a), {i2, i3, i4, i5, i6} includes a high-
frequency item i2, which does not appear to have any specific association with
other items in the patterns. Hyperclique patterns avoid these cross-support pat-
terns by defining an anti-monotonic association measure known as h-confidence
that ensures a high affinity between the itemsets constituting a hyperclique pat-
tern [61]. Formally, the h-confidence of an itemset X = {i1, i2, . . . im}, denoted
as hconf(X), is defined as,

hconf(X) =
s(i1, i2, . . . , ik)

max[s(i1), s(i2), . . . , s(ik)]

where s(X) is the support of an itemset X . Those itemsets X that satisfy
hconf(X) ≥ α, where α is a user-defined threshold, are known as hyperclique
patterns. These patterns have been shown to be useful for various applications,
including clustering [60], semi-supervised classification [59], data cleaning [58],
and finding functionally coherent sets of proteins [57].

2.3 Error-Tolerant Patterns

Traditional association patterns are obtained using a strict definition of support
that requires every item in a frequent itemset to appear in each supporting
transaction. In real-life datasets, this limits the recovery of frequent itemsets as
they are fragmented due to random noise and other errors in the data. Motivated
by such considerations, various methods [62,38,47,27,11] have been proposed
recently to discover approximate frequent itemsets, which are also often called
error-tolerant itemsets (ETIs). These methods tolerate some error by allowing
itemsets in which a specified fraction of the items can be missing. This error
tolerance can either be specified on the complete submatrix of the collection of
items and transactions or in each row and/or column. For instance, in Figure
1(c), the itemset shown is a error tolerant itemset with 20% error tolerance in
each row. It is important to note that each of the proposed definitions of error
tolerant patterns will lead to a traditional frequent itemset if their error-tolerance
is set to 0. For a detailed comparison of several algorithms proposed to discover
ETIs from binary data sets, and their extensions, the reader is referred to our
previous work [19].

2.4 Discriminative Pattern Mining

A variety of real-life data sets include information about which transactions
belong to which of some pre-specified classes, i.e., class label information. For
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such data sets, patterns of considerable interest are those that occur with dis-
proportionate support or frequency in some classes versus the others. These
patterns have been investigated under various names such as emerging patterns
[16], contrast sets [4] and discriminative patterns [9,18,10], but we will refer
to them as discriminative patterns. Consider the example in Figure 2, which
displays a sample dataset, in which there are 14 items and two classes, each
containing 10 instances (transactions). In this data set, four discriminative pat-
terns can be observed: P1 = {i1, i2, i3}, P2 = {i5, i6, i7}, P3 = {i9, i10} and
P4 = {i12, i13, i14}. Intuitively, P1 and P4 are interesting patterns that occur with
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Fig. 2. Example of interesting discriminative pat-
terns (P1, P4) and uninteresting patterns (P2, P3)

.

differing frequencies in the
two classes, while P2 and
P3 are uninteresting pat-
terns that have a relatively
uniform occurrence across
classes. Furthermore, we ob-
serve that P4 is a dis-
criminative pattern whose
individual items are also
highly discriminative, while
P1 is a discriminative pat-
tern whose individual items
are not.

Discriminative patterns
have been shown to be use-
ful for improving the clas-
sification performance for
transaction data sets when
combinations of features have
better discriminative power
than individual features
[9,55,53]. Discriminative pat-
tern mining has the potential to discover groups of genes or SNPs that are
individually not informative but are highly associated with a phenotype when
considered as a group.

3 Case Study: Association Analysis-Based Pre-processing
of Protein Interaction Networks

One of the most promising forms of biological data that are used to study the
functions and other properties of proteins at a genomic scale are protein interac-
tion networks. These networks provide a global view of the interactions between
various proteins that are essential for the accomplishment of most protein func-
tions. Due to the importance of the knowledge of these interactions, several
high-throughput methods have been proposed for discovering them [25]. In fact,
several standardized databases, such as DIP [56] and GRID [7] have now been
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set up to provide systematic access to protein interaction data collected from a
wide variety of experiments and sources.

It is easy to see that a protein interaction network can be represented as an
undirected graph, where proteins are represented by nodes and protein-protein in-
teractions as edges. Due to this systematic representation, several computational
approaches have been proposed for the prediction of protein function from these
graphs [36,45,46,39,54,26,31]. These approaches can be broadly categorized into
four types, namely neighborhoodbased, global optimization-based, clustering-
based and association analysis-based. Due to the rich functional information in
these networks, several of these approaches have produced very good results, par-
ticularly those that use the entire interaction graph simultaneously and use global
optimization techniques to make predictions [31,54]. Indeed, recently, some stud-
ies have started using protein interaction networks as benchmarks for evaluating
the functional relationships between two proteins, such as [63].

However, despite the advantages of protein interaction networks, they have
several weaknesses which affect the quality of the results obtained from their
analysis. The most prominent of these problems is that of noise in the data,
which manifests itself primarily in the form of spurious or false positive edges
[44,21]. Studies have shown that the presence of noise has significant adverse af-
fects on the performance of protein function prediction algorithms [15]. Another
important problem facing the use of these networks is their incompleteness, i.e.,
the absence of biologically valid interactions even from large sets of interactions
[54,21]. This absence of interactions from the network prevents even the global
optimization-based approaches from making effective use of the network beyond
what is available, thus leading to a loss of potentially valid predictions.

A possible approach to address these problems is to transform the original in-
teraction graph into a new weighted graph such that the weights assigned to the
edges in the new graph more accurately indicate the reliability and strength of
the corresponding interactions, and their utility for predicting protein function.
The usefulness of hypercliques in noise removal from binary data [58], coupled
with the representation of protein interaction graphs as a binary adjacency ma-
trix to which association analysis techniques can be applied, motivated Pandey
et al. [37] to address the graph transformation problem using an approach based
on h − confidence measure discussed earlier. This measure is used to estimate
the common neighborhood similarity of two proteins P1 and P2 as

h − confidence(P1, P2) = min
( |NP1 ∩ NP2 |

|NP1 |
,
|NP1 ∩ NP2 |

|NP2 |
)

(1)

where NP1 and NP2 denote the sets of neighbors of P1 and P2 respectively. As dis-
cussed earlier, this definition of h− confidence is only applicable to binary data
or, in the context of protein interaction graphs, unweighted graphs. However, the
notion of h-confidence can be readily generalized to networks where the edges
carry real-valued weights indicating their reliability. In this case, Equation 1
can be conveniently modified to calculate h− confidence(P1, P2) by making the
following substitutions: (1) |NP1 | → sum of weights of edges incident on P1 (sim-
ilarly for P2) and (2) |NP1 ∩ NP2 | → sum of minimum of weights of each pair
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(b) Results on the DIPCore network

Fig. 3. Comparison of performance of various transformed networks and the input
networks (Best viewed in color and a larger size)

of edges that are incident on a protein P from both P1 and P2. In both these
cases, the h − confidence measure is guaranteed to fall in the range [0, 1].

Now, with this definition, it is hypothesized that protein pairs having a high
h − confidence score are expected to have a valid interaction between them,
since a high value of the score indicates a high common neighborhood sim-
ilarity, which in turn reflects greater confidence in the network structure for
that interaction. For the same reason, interactions between protein pairs hav-
ing a low h − confidence score are expected to noisy or spurious. Accordingly,
Pandey et al [37] proposed the following graph transformation approach for
pre-processing available interaction data sets. First, using the input interaction
network G = (V, E), the h − confidence measure is computed between each
pair of constituent proteins, whether connected or unconnected by an edge in
the input network. Next, a threshold is applied to drop the protein pairs with
a low h − confidence to remove spurious interactions and control the density
of the network. The resultant graph G′ = (V, E′) is hypothesized to be the less
noisy and more complete version of G, since it is expected to contain fewer noisy
edges, some biologically viable edges that were not present in the original graph,
and more accurate weights on the remaining edges.

In order to evaluate the efficacy of the resultant networks for protein func-
tion prediction, the original and the transformed graphs was provided as input
to the FunctionalFlow algorithm [31], which is is a popular graph theory-based
algorithm for predicting protein function from interaction networks. The per-
formance was also compared with transformed versions generated using other
common neighborhood similarity measures for such networks, such as Samanta
et al [45]’s p-value measure. Figure 3 shows the performance of this algorithm
on these transformed versions of two standard interaction networks, namely the
combined data set constructed by combining several popular yeast interaction
data sets (combined) and weighted using the EPR Index tool [14], and the other
being a confident subset of the DIP database [14] (DIPCore). The performance is
evaluated using the accuracy of the top scoring 1000 predictions of the functions
of the constituent proteins generated by a five-fold cross-validation procedure,
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where the functional annoitations are obtained from the classes at depth two of
the FunCat functional hierarchy [43].

The results in Figure 3 show that for both the data sets, the h− confidence-
based transformed version(s) substantially outperform the original network and
the other measures for this task. The margin of improvement on the highly
reliable DIPCore data set is almost consistently 5% or above, which is quite sig-
nificant. Similar results are observed using the complete precision-recall curves.
The interested reader is referred to [37] for more details on the methodology
used and the complete results.

4 Concluding Remarks and Directions for Future
Research

Association analysis has proved to be a powerful approach for analyzing tradi-
tional market basket data, and has even been found useful for some problems in
bioinformatics in a few instances. However, there are a number of other important
problems in bioinformatics, such as finding biomarkers using dense data like SNP
data and real-valued data like gene-expression data, where such techniques could
prove to be very useful, but cannot currently be easily and effectively applied.

An important example of patterns that are not effectively captured by the
traditional association analysis framework and its current extensions, is a group
of genes that are co-expressed together across a subset of conditions in a gene
expression data set. Such patterns have often been referred to as biclusters.
Figure 4 illustrates a classification of biclusters proposed by Madeira et al. [28].
They classified different types of biclusters into four categories: (i) biclusters with
constant values (Figure 4(a)), (ii) biclusters with constant rows or columns (Ex-
ample of a bicluster with constant rows is shown in Figure 4(b)), (iii) biclusters
with coherent values, i.e., each row and column is obtained by addition or multi-
plication of the previous row and column by a constant value (Figure 4(c)), and
(iv) biclusters with coherent evolutions, where the direction of change of values
is important rather than the coherence of the values (Figure 4(d)). Each of these
types of biclusters hold different types of significance for discovering important
knowledge from gene expression data sets.

Since gene expression data is real-valued, traditional association techniques
can not be directly applied since they are designed for binary data. Methods
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for transforming these data sets into binary form (for example, via discretiza-
tion [5,13,30]) often suffer from loss of critical information about the actual.
Hence, a variety of other techniques have been developed for and/or applied
to this problem. These approaches include a wide variety of clustering tech-
niques: ordinary partitional and hierarchical clustering, subspace clustering, bi-
clustering/co-clustering, projective clustering, and correlation clustering. In ad-
dition, a variety of biclustering algorithms have been developed for finding such
patterns from gene expression data, such as ISA [6], Cheng and Church’s algo-
rithm [12] and SAMBA [51], and more recently, for genetic interaction data [41].
Although these algorithms are often able to find useful patterns, they suffer
from a number of limitations. The most important limitation is an inability to
efficiently explore the entire search space for such patterns without resorting to
heuristic approaches that compromise the completeness of the search. Pandey
et al. [34] have presented one of the first methods for directly mining associa-
tion patterns from real-valued data, particularly gene expression data, that does
not suffer from the loss of information often faced by discretization and other
data transformation approaches [34]. These techniques are able to discover all
patterns satisfying the given constraints, unlike the biclustering algorithms that
may only be able to discover a subset of these patterns. There are several open
opportunities for designing better algorithms for addressing this problem.

Another challenge that has inhibited the use of association analysis in
bioinformatics–even when the data is binary–is the density of several types of
data sets. Algorithms for finding association patterns often break down when
the data becomes dense because of the large number of patterns generated, un-
less a high support threshold is used. However, with a high threshold, many
interesting, low-support patterns are missed. One particularly important cat-
egory of applications with dense data are applications involving class labels,
such as finding connections between genetic variations and disease. Consider
the problem of finding connections between genetic variations and disease using
binarized version of SNP-genotype data, which is 33% dense by design, since
each subject must have one of the three variations of SNP pairs: major-major,
major-minor, minor-minor. Traditional algorithms that do not utlize the class
label information for pruning can only find patterns at high support, thus miss-
ing the low support patterns that are typically of great interest in this domain.
In fact, most of the existing techniques for this problem only apply univariate
analysis and rank individual SNPs using measures like p-value, odds ratio etc
[3,22]. There are some approaches like Multi-Dimensionality Reduction (MDR)
[42] and Combinatorial Partitioning Methods (CPM) [32], which are specially
designed to identify groups of SNPs. However, due to their brute-force way of
searching the exponential search space, these approaches also can only be ap-
plied to data sets with small number of SNPs (typically of the order of few
dozen SNPs). Also, existing discriminative pattern mining algorithms [4,9,18,10]
are only able to prune infrequent non-discriminative patterns, not the frequent
non-discriminative patterns, which is the biggest challenge for dense data sets
like SNP data and gene expression data. New approaches should be designed to
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enable discriminative pattern mining on dense and high dimensional data, where
effectively making use of class label information for pruning is crucial. Extension
of association analysis based approaches to effectively use the available class la-
bel information for finding low-support discriminative patterns is a promising
direction for future research.

In conclusion, significant scope exists for future research on designing novel
association analysis techniques for complex biological data sets and their asso-
ciated problems. Such techniques will significantly aid in realizing the potential
of association analysis for discovering novel knowledge from these data sets and
solve important bioinformatics problems.
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