Skip to main content

Computational Protocol for Screening GPI-anchored Proteins

  • Conference paper
Bioinformatics and Computational Biology (BICoB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5462))

Included in the following conference series:

  • 1165 Accesses

Abstract

Glycosylphosphatidylinositol (GPI) lipid modification is an important protein posttranslational modification found in many organisms, and GPI-anchoring is confined to the C-terminus of the target protein. We have developed a novel computational protocol for identifying GPI-anchored proteins, which is more accurate than previously proposed protocols. It uses an optimized support vector machine (SVM) classifier to recognize the C-terminal sequence pattern and uses a voting system based on SignalP version 3.0 to determine the presence or absence of the N-terminal signal of a typical GPI-anchored protein. The SVM classifier shows an accuracy of 96%, and the area under the receiver operating characteristic (ROC) curve is 0.97 under a 5-fold cross-validation test. Fourteen of 15 proteins in our sensitivity test dataset and 19 of the 20 proteins experimentally identified by Hamada et al. that were not included in the training dataset were identified correctly. This suggests that our protocol is considerably effective on unseen data. A proteome-wide survey applying the protocol to S. cerevisiae identified 88 proteins as putative GPI-anchored proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Powell, S.K., Cunningham, B.A., Edelman, G.M., Rodriguez-Boulan, E.: Targeting of transmembrane and GPI-anchored forms of N-CAM to opposite domains of a polarized epithelial cell. Nature 353, 76–77 (1991)

    Article  CAS  PubMed  Google Scholar 

  2. Ikezawa, H., Yamanegi, M., Taguchi, R., Miyashita, T., Ohyabu, T.: Studies on phosphatidylinositol phosphodiesterase (phospholipase C type) of Bacillus cereus. I. purification, properties and phosphatase-releasing activity. Biochim. Biophys. Acta. 450, 154–164 (1976)

    Article  CAS  PubMed  Google Scholar 

  3. Rijnboutt, S., Jansen, G., Posthuma, G., Hynes, J.B., Schornagel, J.H., Strous, G.J.: Endocytosis of GPI-linked membrane folate receptor-alpha. J. Cell Biol. 132, 35–47 (1996)

    Article  CAS  PubMed  Google Scholar 

  4. Stahl, N., Baldwin, M.A., Hecker, R., Pan, K.M., Burlingame, A.L., Prusiner, S.B.: Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid. Biochemistry 31, 5043–5053 (1992)

    Article  CAS  PubMed  Google Scholar 

  5. Cashman, N.R., Loertscher, R., Nalbantoglu, J., Shaw, I., Kascsak, R.J., Bolton, D.C., Bendheim, P.E.: Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell 61, 185–192 (1990)

    Article  CAS  PubMed  Google Scholar 

  6. Udenfriend, S., Kodukula, K.: Prediction of omega site in nascent precursor of glycosylphosphatidylinositol protein. Methods Enzymol. 250, 571–582 (1995)

    Article  CAS  PubMed  Google Scholar 

  7. Udenfriend, S., Kodukula, K.: How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu. Rev. Biochem. 64, 563–591 (1995)

    Article  CAS  PubMed  Google Scholar 

  8. Caro, L.H., Tettelin, H., Vossen, J.H., Ram, A.F., van den Ende, H., Klis, F.M.: In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13, 1477–1489 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. von Heijne, G.: A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 14, 4683–4690 (1986)

    Article  Google Scholar 

  10. Nuoffer, C., Horvath, A., Riezman, H.: Analysis of the sequence requirements for glycosylphosphatidylinositol anchoring of Saccharomyces cerevisiae Gas1 protein. J. Biol. Chem. 268, 10558–10563 (1993)

    CAS  PubMed  Google Scholar 

  11. De Groot, P.W., Hellingwerf, K.J., Klis, F.M.: Genome-wide identification of fungal GPI proteins. Yeast 20, 781–796 (2003)

    Article  PubMed  Google Scholar 

  12. Nielsen, H., Engelbrecht, J., Brunak, S., von Heijne, G.: Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. Nakai, K., Kanehisa, M.: A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897–911 (1992)

    Article  CAS  PubMed  Google Scholar 

  14. Eisenhaber, B., Schneider, G., Wildpaner, M., Eisenhaber, F.: A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J. Mol. Biol. 337, 243–253 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. Fankhauser, N., Maser, P.: Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21, 1846–1852 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Caras, I.W., Weddell, G.N.: Signal Peptide for Protein Secretion Directing Glycophospholipid Membrane Anchor Attachment. Science 243, 1196–1198 (1989)

    Article  CAS  PubMed  Google Scholar 

  17. Eisenhaber, B., Bork, P., Eisenhaber, F.: Prediction of potential GPI-modification sites in proprotein sequences. J. Mol. Biol. 292, 741–758 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  Google Scholar 

  19. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, Inc., Chichester (1998)

    Google Scholar 

  20. Zien, A., Ratsch, G., Mika, S., Scholkopf, B., Lengauer, T., Muller, K.R.: Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16, 799–807 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Ding, C.H., Dubchak, I.: Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17, 349–358 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Hua, S.J., Sun, Z.R.: Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17, 721–728 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. Software (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  24. Kyte, J., Doolittle, R.F.: A Simple Method for Displaying the Hydropathic Character of a Protein. J. Mol. Biol. 157, 105–132 (1982)

    Article  CAS  PubMed  Google Scholar 

  25. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1998), Piscataway, NJ, pp. 69–73 (1998)

    Google Scholar 

  26. Bendtsen, J.D., Nielsen, H., von Heijne, G., Brunak, S.: Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004)

    Article  PubMed  Google Scholar 

  27. Menne, K.M., Hermjakob, H., Apweiler, R.: A comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics 16, 741–742 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. Hamada, K., Terashima, H., Arisawa, M., Yabuki, N., Kitada, K.: Amino acid residues in the omega-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J. Bacteriol. 181, 3886–3889 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Caras, I.W., Weddell, G.N., Williams, S.R.: Analysis of the Signal for Attachment of a Glycophospholipid Membrane Anchor. J. Cell Biol. 108, 1387–1396 (1989)

    Article  CAS  PubMed  Google Scholar 

  30. Moran, P., Caras, I.W.: A nonfunctional sequence converted to a signal for glycophosphatidylinositol membrane anchor attachment. J. Cell Biol. 115, 329–336 (1991)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cao, W., Sumikoshi, K., Terada, T., Nakamura, S., Kitamoto, K., Shimizu, K. (2009). Computational Protocol for Screening GPI-anchored Proteins. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00727-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00726-2

  • Online ISBN: 978-3-642-00727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics