Skip to main content

Alignment and Analysis of Closely Related Genomes

  • Conference paper
  • 1122 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5462))

Abstract

Complex strategies have been developed for whole genome alignment of multiple species. In the case of population genomics studies, the sequences being aligned are often very similar. We propose a reference coordinate system that simplifies the task of comparing many closely related genomes while taking into account structural rearrangements. We implemented software to compare a group of three strains of the malaria mosquito, Anopheles gambiae and a group of three strains of the malaria parasite, Plasmodium falciparum. Our simplified representation enables us to leverage existing work on the species while performing fine-grained analysis on the new draft genomes. Further, this approach will easily scale to hundreds of closely related genomes, enabling new analyses in population genomics as additional genomic sequences become available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feuk, L., et al.: Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies. PLoS Genet. 1(4), 56 (2005)

    Article  Google Scholar 

  2. Kent, W.J., et al.: Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. Proceedings of the National Academy of Sciences 100(20), 11484–11489 (2003)

    Article  CAS  Google Scholar 

  3. Darling, A.C., et al.: Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14(7), 1394–1403 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ovcharenko, I., et al.: Mulan: Multiple-sequence local alignment and visualization for studying function and evolution. Genome Res. (2004) gr.3007205

    Google Scholar 

  5. Blanchette, M., et al.: Aligning Multiple Genomic Sequences With the Threaded Blockset Aligner. Genome Res. 14(4), 708–715 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dewey, C.: Whole-genome alignments and polytopes for comparative genomics. PhD Thesis (2006)

    Google Scholar 

  7. Kellis, M., et al.: Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423(6937), 241–254 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Ma, J., et al.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16(12), 1557–1565 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stark, A., et al.: Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450(7167), 219–232 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Begun, D.J., et al.: Population genomics: Whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biology 5(11), e310 (2007)

    Article  Google Scholar 

  11. D. simulans syntenic assembly, http://www.dpgp.org/syntenic_assembly/

  12. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)

    Article  CAS  PubMed  Google Scholar 

  13. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz, S., et al.: PipMaker|A Web Server for Aligning Two Genomic DNA Sequences. Genome Res. 10(4), 577–586 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwartz, S., et al.: Human-mouse alignments with BLASTZ. Genome Res. 13(1), 103–107 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brudno, M., et al.: Fast and sensitive multiple alignment of large genomic sequences. BMC Bioinformatics 4, 66 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Delcher, A.L., et al.: Fast algorithms for large-scale genome alignment and comparison. Nucl. Acids Res. 30(11), 2478–2483 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Haas, B.J., et al.: DAGchainer: A tool for mining segmental genome duplications and synteny. Bioinformatics 20(18), 3643–3646 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Bray, N., et al.: AVID: A Global Alignment Program. Genome Res. 13(1), 97–102 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bray, N., Pachter, L.: MAVID: Constrained Ancestral Alignment of Multiple Sequences. Genome Res. 14(4), 693–699 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brudno, M., et al.: LAGAN and Multi-LAGAN: Eficient Tools for Large-Scale Multiple Alignment of Genomic DNA. Genome Res. 13(4), 721–731 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brudno, M., et al.: Glocal alignment: Finding rearrangements during alignment. Bioinformatics 19(suppl. 1), i54–i62 (2003)

    Article  Google Scholar 

  23. Pevzner, P., Tesler, G.: Genome rearrangements in mammalian evolution: Lessons from human and mouse genomes. Genome Res. 13(1), 37–45 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Couronne, O., et al.: Strategies and Tools for Whole-Genome Alignments. Genome Res. 13(1), 73–80 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kurtz, S., et al.: Versatile and open software for comparing large genomes. Genome Biol. 5(2) (2004)

    Google Scholar 

  26. Frazer, K.A., et al.: VISTA: Computational tools for comparative genomics. Nucl. Acids Res. 32(suppl. 2), W273–W279 (2004)

    Article  Google Scholar 

  27. Miller, W., et al.: 28-Way vertebrate alignment and conservation track in the UCSC Genome Browser. Genome Res. (2007) gr.6761107

    Google Scholar 

  28. MUMmer 3 manual, http://mummer.sourceforge.net/manual/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Regier, A., Olson, M., Emrich, S.J. (2009). Alignment and Analysis of Closely Related Genomes. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00727-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00726-2

  • Online ISBN: 978-3-642-00727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics