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Abstract. Pyrosequencing is among the emerging sequencing techniques, capa-
ble of generating upto 100,000 overlapping reads in a single run. This technique
is much faster and cheaper than the existing state of the art sequencing technique
such as Sanger. However, the reads generated by pyrosequencing are short in size
and contain numerous errors. Furthermore, each read has a specific position in
the reference genome. In order to use these reads for any subsequent analysis, the
reads must be aligned . Existing multiple sequence alignment methods cannot be
used as they do not take into account the specific positions of the sequences with
respect to the genome, and are highly inefficient for large number of sequences.
Therefore, the common practice has been to use either simple pairwise alignment
despite its poor accuracy for error prone pyroreads, or use computationally expen-
sive techniques based on sequential gap propagation. In this paper, we develop a
computationally efficient method based on domain decomposition, referred to as
pyro-align, to align such large number of reads. The proposed alignment algo-
rithm accurately aligns the erroneous reads in a short period of time, which is
orders of magnitude faster than any existing method. The accuracy of the align-
ment is confirmed from the consensus obtained from the multiple alignments.

1 Introduction

Pyrosequencing is among the emerging sequencing techniques developed for deter-
mining the sequences of DNA bases from a genome. It is capable of generating up
to 100,000 overlapping reads in a single run. However, multitude of factors, such as
relatively short read lengths (i.e., as of 2008 an average of 100 − 250 nt compared to
800 − 1000 nt for Sanger sequencing), lack of a paired end protocol, and limited ac-
curacy of individual reads for repetitive DNA, particularly in the case of monopolymer
repeats, present many computational challenges [14] to make pyrosequencing useful
for biology and bioinformatics applications.

For over more than a decade, Sanger sequencing has been the cornerstone of genome
sequencing including that of microbial genomes. Improvements in DNA sequencing
techniques and the advances in data storage and analysis, as well as developments in
bioinformatics have reduced the cost to a mere 8000$ − 10000$ per megabase of high
quality genome draft sequence. However, the need of more efficient and cost effective
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approaches has led to development of new sequencing technologies such as the 454
GS20 sequencing platform. It is a non-cloning pyrosequencing based platform that is
several orders of magnitude faster than the Sanger machines. However, the new tech-
nology despite its enormous advantage in terms of time and money will not be able to
replace the current Sanger technology, unless the reads generated are properly aligned
with respect to the reference genome.

The key issues associated with the use of pyrosequencing technique are as under:
Read Length: The read length is expected to be of the order of 100 − 250bp on

average. This is much shorter than the other state of the art Sanger machines which give
out consistent read lengths of the order of > 800− 900bp.

Orientation: This is generally the case for most of the sequencing technologies.
Each DNA helix will be broken into the original and its Watson-Crick complement.
These would be further broken up into pieces, and there is generally no way to reveal
which of the two is it. The problem is more severe and usually encountered for genome
reconstruction.

Errors: Each individual DNA sequence or read is likely to have errors in the form
of insertions and deletions. It may also have mutations and the pyrosequencer may
itself make errors. These errors correspond to homopolymer effects, including extension
(insertions), incomplete extensions (deletions), and carry forward errors (insertions and
substitutions). Insertions are considered the most common type of error (36% of errors)
followed by deletions (27%), ambiguous bases, Ns (21%), and substitutions (16%) [28].

Fig. 1. Pairwise alignment of the reads with the reference genome is shown

For most practical purposes, pyroreads without any post processing are of limited
use. One of the most widely required tasks as a pre processing step for many applica-
tions, including haplotype reconstruction [12] [13], analysis of microbial community
analysis [3], analysis of genes for diseases [2], is the alignment of these reads with the
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wild type. For important applications such as viral population estimation or haplotype
reconstruction of various viruses e.g., HIV in a population, scientists usually have the
information about the wild type genome of the virus. While for other sequencing tech-
nologies, such as Sanger, simple pair-wise alignment with the wild type may produce
reasonable multiple alignment, in the case of pyrosequencing, the variation in the hap-
lotype population compounded with the errors introduced in the reads does not allow
feasible multiple alignment by simple pair-wise alignment. Fig. 1 depicts simple pair-
wise alignment of pyrosequence reads with a reference genome. We assert that accurate
and workable multiple alignment is often necessary for a variety of applications and
statistical packages to work with these pyroreads, as demonstrated in [12] [13] [3] [2].

In theory, alignment of multiple sequences can be achieved using pair-wise align-
ment, each pair getting alignment score. But for optimal alignment the sum of all the
pair-wise alignment scores need to be maximized, which is an NP complete prob-
lem [15]. Towards this end, dynamic programming based solutions of O(LN ) com-
plexity have been pursued, where N is the number of sequences and L is the average
length of a sequence. Such accurate optimizations are not practical for large number of
sequences -as is the case in pyrosequencing- , thus making heuristic algorithms as the
only feasible option. The literature on these heuristics is vast and includes widely used
works, such as Notredame et. al. [16], Edgar [18], Thompson et. al. [17], Do et. al.
[22], and Morgenstern et.al. [20]. These heuristics are complex combination of ad-hoc
procedures with some flavor of dynamic programming. Despite the usefulness of these
widely used heuristics, they scale very poorly with increasing number of sequences.

For multiple alignment of pyroreads, ’out of the box’ use of these heuristics is not
feasible because of two main reasons: 1) the pyrosequencing reads can be very large
in number (up to 100, 000 usable reads in a single run (with a Roche GS20 platform),
and 2) the heuristics do not take into account the positions of the reads with respect to
the reference genome. Additional factors such as short lengths and errors, and the fact
that these reads have preceding or trailing ’gaps’ pose further alignment challenges.
In [12], an alignment technique based on sequential gap propagation has been used.
This technique is computationally expensive and its alignment quality decreases with
the increase in the mutation value.

In this paper, we present a computationally efficient algorithm pyro-align, specif-
ically designed for multiple alignment of DNA reads obtained from pyrosequencing.
The proposed algorithm is based on a novel domain decomposition concept, therefore
it is capable of aligning very large number of pyrosequences. It takes into account the
position of the reads with respect to the reference genome, and assigns weight to the
leading and trailing gaps for the reads.

The objective of our work is to develop a multiple alignment system for small error
prone reads, such that the errors in the alignment are ’highlighted’ and the system is
able to handle large number of reads, as may be expected from pyrosequencing reads.

We assume that the reads may be generated from one or many genomes, with ’for-
ward’ orientation. We also assume that the reference genome (or its wild type) from
which the reads are generated is available, as is generally the case for haplotype re-
construction. In our experiments, we have used HIV-pol gene virus as the reference
genome (with length of 1970bp) and simulator Readsim [11] to generate these reads.
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The algorithm uses concepts from domain decomposition and parallel multiple align-
ment techniques [1, 21].

For the sake of completeness, let’s first formally define the Multiple Sequences
Alignment problem in its generic form, without indulging with the issues such as scor-
ing functions. Let N sequences be presented as a set S = {S1, S2, S3, · · · , SN} and
let S

′
= {S′

1, S
′

2, S
′

3, · · · , S
′

N} be the aligned sequence set, such that all the sequences
in S

′
are of equal length, have maximum overlap, and the score of the global map is

maximum according to some scoring mechanism suitable for the application.
A perfect multiple alignment for pyroreads would be, that the reads are aligned with

each other such that the position of the reads with respect to the reference genome is
conserved; the reads have maximum overlap and are of equal lengths after the align-
ment, including leading and trailing gaps.

The intuitive idea behind the proposed pyro-align algorithm is to first place the
reads in correct orientation with respect to the reference genome and then use progres-
sive alignment to achieve the final alignment. For efficient progressive alignment, the
correctly placed reads are reordered according to the starting position, and a computa-
tionally low complexity similarity metric is extracted from this ordering position. The
similarity metric is then used to align pairs of aligned reads using a hierarchical de-
composition strategy. The proposed multiple alignment algorithm takes advantage of
the pyroreads characteristics and brings in techniques from data structures and parallel
computing to realize a low complexity solution in terms of time and memory.

The proposed alignment algorithm, pyro-align, consists of the following two main
components:

1. Semi-Global alignment
2. Hierarchical progressive alignment

(a) Reordering of reads to generate guidance tree
(b) Pairwise and profile-profile alignment

Each component is designed considering the characteristics of pyroreads and it is
described in the following sections along with its justification.

1.1 Semi-Global Alignment

The first step is to determine the position of each read with respect to the reference
genome. If this step is omitted, there are number of alignments that would be correct,
but would be inaccurate if analyzed in the global context. A read that is not constricted
in terms of position, may give the same score (SP score) for the multiple alignment but
would be incorrect in context of the reference. To accomplish the task of ’placing’ the
reads in the correct context with respect to the reference genome we employ semi-global
alignment procedure.

The semi global alignment is also referred to as overlapping alignment because
the sequences are globally aligned ignoring the start and end gaps. For semi-global
alignment we use a modified version of Needleman-Wunsch algorithm [5].

The modification in the basic version of Needleman-Wunsch is required to handle
the leading and trailing gaps of the reads when aligning to the reference genome. If
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the leading and trailing gaps are not ignored, considering the short length of the reads,
the alignment scores would be dominated by these gaps, hence giving an inaccurate
alignment with respect to the genome.

Let the two sequences to be aligned be s and t, and M(i, j) presents the score of
the optimal alignment. Since, we do not wish to penalize the starting gaps, we mod-
ify the dynamic programming matrix by initializing the first row and first column
to be zero. The gaps at the end are also not to be penalized. Let M(i, j) represent
the optimal score of s1, · · · , si and t1, · · · , tj . Then M(m, j) is the score that repre-
sents optimally aligning s with t1,···,j . The optimal alignment therefore, is now de-
tected as the maximum value on the last row or column. Therefore the best score is
M(i, j) = maxk,l(M(k, n), M(m, l)), and the alignment can be obtained by tracking
the path from M(i, j) to M(0, 0). For additional details on semi-global alignment we
refer the reader to [8].

Once each read has been semi-globally aligned with the reference genome, we ob-
tain reads with leading and trailing gaps, where the first character after the gaps is the
starting position of the read with respect to the reference genome. The information for
these alignments are stored in hashtables that are further used for processing in reorder-
ing the reads for alignment.

2 Hierarchical Progressive Alignment

Generally multiple sequence alignment (MSA) procedures are either based on iterative
methods or employ progressive techniques. Although, progressive techniques relative
to iterative techniques are more efficient, they are not suitable when the sequences are
relatively diverse or the number of sequences is very large. Considering the fact that the
pyroreads are highly similar, we develop a hierarchical progressive alignment procedure
that is also computationally efficient for large number of reads.

Progressive alignment techniques develop final MSA by combining pair-wise align-
ments beginning with the most similar pair and progressing to the most distantly related.
All progressive alignment methods require two stages: a first stage in which the rela-
tionships between the sequences are represented as a tree, called a guide tree, and a
second step in which MSA is built by adding the sequences sequentially to the grow-
ing MSA according to the guide tree. In the following, we describe the low complexity
components of pyro-align.

2.1 Reordering Reads

The method followed by most of the progressive multiple alignment algorithms is that a
quick similarity measure is computed that is based on k-mer counting [4] or some other
heuristic mechanism. These pair-wise similarity measures (distances) are tabulated in a
matrix form and a tree is constructed from this distance matrix using UPGMA or neigh-
boring joining. The progressive alignment is thus built, following the branching order
of the tree, giving a multiple alignment. These steps require O(N2) time each, where
N is the number of reads. To reduce this complexity, we exploit the fact that the reads
are coming from the same reference or nearly the same reference. This in turn implies
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that the reads starting from the same or near same ’starting’ point with respect to the
reference genome are likely to be similar to each other. Therefore, we already have the
ordering information or the ’guide tree’ from the first step of the algorithm. Our guide
tree, or the order in which sequences will be aligned in the progressive alignment is
from the starting position of the reads from the first stage. Of course the decomposition
of the reads (the subtree of the profiles that we built) doesn’t render the reads in the
same order as in traditional progressive alignment, but nevertheless the order is more or
less the same when the profiles of these reads are aligned.

Let there be N number of reads R = R1, R2, · · · , RN generated from pyrosequenc-
ing technique, from the reference genome of length Lg . Also, let the length of each
read denoted by L(R)p. After executing semi-global alignment using the algorithm dis-
cussed in the previous section, let each read be presented by Rpq , where the pth read
has q leading gaps and Lg − q − L(R)p trailing gaps. Then the reordering algorithm
would reorder the reads such that after the reads are reordered using the information
from the leading gaps, the read Rpq comes in ordering ’before’ Rp(q+1), ∀ p, q ∈ Lg .

To execute the reordering in an efficient manner, we employ hashtables that speed
up the search process. We create two hashtables: hashtable1 uses fasta sequence tag
as the hash key and stores the corresponding starting position of the read; hashtable2

stores the read names (fasta sequence tag) and the dna sequence it is associated with.
Using these tables, the reads are reordered in the database in linear time.

2.2 Pair-wise and Profile-Profile Alignments

The ordering of the reads determined in the preceding step is now used to conduct the
progressive alignment. Traditional progressive alignment requires that the sequences
most similar to each other are aligned first. Thereafter, sequences are added one by one
to the multiple alignments determined according to some similarity metric. This sequen-
tial addition of sequences for progressive alignment is not suitable for large number of
sequences. In order to devise a low complexity system, we design a hierarchical pro-
gressive alignment procedure that is based on domain decomposition [1], as described
below and depicted in Figure 2.

First of all, pair-wise local alignment using standard Needle-Wunsch is executed
on each overlapping pair of reads (the ordering is still the same as discussed in the
previous section). After this stage, the reads are aligned in pairs such that we have N/2
pairs of aligned reads. These N/2 pairs of reads are then used for profile alignments as
discussed below.

Profile-profile alignments are used to re-align two or more existing alignments(in
our case the pairs of aligned reads). It is useful for two reasons; one being that the
user may want to add sequences gradually, and second being that the user may want to
keep one high quality profile fixed and keep on adding sequences aligned to that fixed
profile [17].

We take advantage of both of these properties in our domain decomposition.
In this stage of the algorithm, the N/2 pairs of aligned reads have to be combined to

get a multiple alignment. We have shown in [21] that the decomposition of the profiles
gives a fair amount of time advantages even on a single processor. Therefore a hierar-
chical model similar to [1] is implemented (see Fig. 2). The model requires that instead
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Fig. 2. Hierchical profile-profile alignments for pyro-align is shown

of combining the profiles in a sequential manner (one by one), a binary tree is built such
that the profiles to be aligned are the leafs of the tree.

Fig. 3. Two profiles(X and Y) are aligned under the columns constrains, producing profile Z

In order to apply pair-wise alignment functions to profiles, a scoring function must
be defined, similar to the substitution methods defined for pair-wise alignments. One of
the most commonly used profile functions is the sequence-weighted sum of substitution
matrix scores for each pair of amino acid letters. Let i and j be the amino acid, pi

the background probability of i, pij the joint probability of i and j aligned to each
other, Sij the substitution matrix being used, fx

i the observed frequency of i in column
x of the first profile, xG the observed frequency of gaps in that column. The same
attributes are assumed for the profile y. Profile sum of pairs (PSP) is the function used
in Clustalw [17], Mafft [23] and Muscle [19] to maximize Sum of Pairs(SP) score,
which in turn maximizes the alignment score such that the columns in the profiles are
preserved, as depicted in Fig. 3.The PSP score can be defined as in [24] and [19]:
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Sij = log(pij/pipj) (1)

PSP xy =
∑

i

∑
j

fx
i fy

j log(pij/pipj) (2)

Fig. 4. The final Alignment of the reads

For our purposes, we will take advantage of PSP functions based on 200 PAM ma-
trix [25] and the 240 PAM VTML matrix [26]. Some multiple alignment methods im-
plement different scoring functions such as Log expectation (LE) functions, but for our
purposes PSP scoring suffices. Profile functions have evolved to be quite complex and
good discussion on these can be found at [19] and [27]. We use the profile functions
from the clustalw system. The final alignment from the pyro-align algorithm can be
seen in Fig. 4. Different steps of the proposed pyro-align Algorithm are outlined below.

Input: Reads generated from pyrosequencing procedure and Reference Genome
Output: A Multiple Alignment of Reads is returned
//Calculate overlapping of each of the reads with respect to the reference Genome
for (i = 1;i ≤ N ;i + +) do

Overlapped-Reads← Semi-Global-Alignment(Ri,Genome) ;
end
Reordered-Reads← Reordering(Overlapped-Reads) ;
//Pairwise alignment using standard Needle-Wunsch is exectued, for pairs of
ordered reads ;
Pair-wise-aligned← Needle-Wunsch(Reordered-Reads) ;
//Profile-profile alignment is obtained using Sample-align-D strategy
Final-Alignment←Profile-Profile-alignment(Pair-wise-aligned) ;
return Final-Alignment ;

Algorithm 1: Steps of the Proposed Multiple Sequence Alignment pyro-align
Algorithm
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3 Performance Analysis

As discussed earlier in the paper, the exact solution for multiple alignment is not feasible
and heuristics are employed. Most of these heuristics perform well in practice but there
is generally no theoretical justification possible for these heuristics [9]. For pyro-align
it can be shown that the semi-global alignment of the reads with the reference genome
is analogous to center star alignment. The center star alignment is shown to give results
within 2-approx of the optimal alignment [9] in worst case and same can be expected
from the semi-global alignment of reads with reference genome. The accuracy of the
later stages is confirmed by rigorous quality assessment procedure described in the
section below.

3.1 Experimental Setup and Quality Assessment

The performance evaluation of the algorithm has been carried on a single desktop sys-
tem 2x QuadCore Intel 5355 2.66 GHz, 2x4 MB Cache and 16GB of RAM. The oper-
ating system on the desktop is RedHat Linux with kernel 2.6.18-92.1.13.el5. The soft-
ware uses libraries from Biojava [7] and is built using java version ”1.6.0” Java(TM)
SE Runtime Environment,IBM J9 VM.

To investigate the quality of the alignment produced by the algorithm we used Read-
sim simulator [11] to generate the reads. The quality assessment of multiple alignment
is generally carried out using benchmarks such Prefab [18] or BaliBase [6]. However,
these benchmarks are not designed to access the quality of the aligned reads produced
from pyrosequencing, and there are no benchmarks available specifically for these
reads. Therefore, a system has to be developed to access the quality of the aligned
reads. The experimental setup for the quality assessment of the alignment procedure is
shown in the Fig. 5 and is explained below.

Our quality assessment have two objectives: (1)to assess the quality of the align-
ment produced by pyro-align with respect to the original genome (2) ensure that the
system must be able to handle reads from multiple haplotype for alignment.

To achieve these objectives, we setup the quality assessment system as shown Fig. 5.
We used a HIV pol gene virus with length of 1970bp as the wildtype for the experi-
ments. The wildtype is then used to produce 4 sets of genomes, randomly mutated at
different rate; The four sets of genomes are Dist-003, Dist-005, Dist-007 and Dist-010,
with mutations of 3%, 5%,7% and 10%, respectively. Now using the mutated genomes,
2000 and 5000 reads from the Readsim were generated using standard ReadSim param-
eters with forward orientation.

The generated reads from these mutated genomes were then aligned with the wild-
type.This procedure is adopted because generally scientists only have a wildtype of the
microbial genomes available and therefore it depicts a more practical scenario.

After the alignment, a majority consensus of the reads is obtained. A distance based
similarity is then calculated of the consensus obtained from the aligned reads with the
original genome from which the reads were generated.The results of the alignment ob-
tained and the accuracy of the consensus thus obtained are shown in Fig. 6 and Fig. 7
for 2000 and 5000 reads respectively.
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Fig. 5. The experimental setup for the quality assessment of the multiple alignment program

We compare the accuracy of the algorithm with two different methods. First being
the simple pair-wise alignment of the reads with the reference genome. Secondly, we
compare it with a sequential gap propagation method, used in recent pyrosequencing
systems [12]. Simply put, gap propagation method builds multiple alignment from pair-
wise alignments by sequentially ’propagating’ the gaps from each pairwise alignment
to all the reads in the system. Propagation of gaps is accomplished for every position
where at least one read has an inserted base. A gap is inserted in the reference genome
and, consequently, in all reads that overlap the genome at that position. The complexity
of the procedure is of the order of O(N2).

The accuracy of the consensus obtained using just the pairwise alignment is less
than 55% and that obtained from the pyro-align is always greater than 96%.An even
better alignment quality is achieved for greater number of reads, because more number
of reads provide a better coverage for a genome of given length. The accuracy of the
gap propagation procedure, is comparable to pyro-align for small mutations, but as the
mutations increase the accuracy of gap propagation based method decreases.

To illustrate that the alignment system also works with a ’mixture’ of reads from
different haplotype, we use the mutated reads from Dist-003, Dist-005 and Dist-007
to generate a new set of reads. The new set contains equal number of reads from the
mutated sets e.g. 2000 reads from each mutated genome for the results shown. The reads
are then aligned by the pyro-align algorithm using wildtype as the reference genome.
The results of alignment for this mixture set are shown in Fig. 8 for Dist-003/Dist-005
and Dist-005/Dist-007 mixtures. It must be noted here that we don’t have a ’ground
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Fig. 6. The quality of the alignment using pairwise, pyro-Align and ’propagation’ methods for
2000 reads

truth’ genome in these cases and hence no genome is available to compare the consensus
obtained from the alignment.

However, we do know the mutation rates for the genomes from which the mixture
sets were generated. Therefore, if an optimal alignment of these reads is obtained, the
’mutation’ in the consensus should not be greater than the combined mutations of the
genomes. For example consider the case of Dist-003/Dist-005 mixture. We know the
mutation rates for the genomes from which the reads generated were 3% and 5% with
respect to the wildtype. Therefore, for accurate alignment, the consensus of the align-
ment should not vary more than 8%, in the worst case, when compared to the wildtype.
Same would be true for the other cases considered according to the mutation rates of
the genomes. As can be seen that the results of the alignment compared with the wild-
type are well within the expected limits. The accuracy of the pairwise alignment of
the reads with the reference genome(in this case the wildtype), and that obtained using
propagation method is also shown for comparison.

4 Complexity Analysis

In this section we briefly outline the complexity of the proposed pyro-align algorithm.
Recall the pyro-align algorithm consists of these major steps: semi-global alignment,
reordering, pair-wise alignment, and profile-profile alignment.

We assume that the number of reads is N with the average length of the read equal
to LR. Let’s further assume that the length of the reference genome is equal to Lg .
Then, the complexity of the semi-global alignment (overlapping alignment) is equal to
O(NLRLg). The clustering of the reads can be done in O(NLg) and the reordering
using hashtables can be achieved in O(N), making the total for this stage equal to
O(NLg +N). The pairwise alignment of the reads is shown to be achieved in O(NL2

R)
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and the profile-profile alignment can be achieved in O(NlogN × L2
g). This makes the

total complexity equal to O(NLRLg + NLg + N + NL2
R + NlogN × L2

g). This is
asymptotically equal to O(NlogN × L2

g + NL2
R).The advantage of low complexity

of pyro-align was further evident by our experimentation. We were able to align 2000
reads of average length 250bp from a genome of length 1970bp in about 12 minutes
compared to 6 hours of computation using more traditional multiple alignment systems
such as Clustalw.

5 Conclusion
The short reads from the pyrosequencing method are rendered useless if they are not
multiple aligned for magnitude of important applications, such as haplotype reconstruc-
tion and error elimination. We have presented an efficient hierarchical procedure to
multiple align large number of short reads from the pyrosequencing procedure.

We demonstrated that simple-pair-wise alignment is not feasible in the case of py-
roreads. We also showed that the proposed method is much faster than traditional time
consuming multiple alignment methods such as Clustalw or Tcoffee. We also presented
the quality assessment results and compared those with the results obtained by simple
pair-wise alignment procedure and ’propagation’ methods.
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