Skip to main content

Assembly of Large Genomes from Paired Short Reads

  • Conference paper
Book cover Bioinformatics and Computational Biology (BICoB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5462))

Included in the following conference series:

Abstract

The de novo assembly of genomes from high-throughput short reads is an active area of research. Several promising methods have been recently developed, with applicability largely restricted to the smaller and less complex bacterial genomes. In this paper, we present a method for assembling large genomes from high-coverage paired short reads. Our method exploits large distributed memory and parallelism available on multiprocessor systems to handle memory-intensive phases of the algorithm, effectively allowing scaling to large genomes. We present parallel algorithms to construct a bidirected string graph that is several orders of magnitude smaller than the raw sequence data and to extract features from paired reads. We also present a heuristic method that uses these features to guide the extension of partial graph traversals corresponding to large genomic contigs. In addition, we propose a simple model for error correction and derive a lower bound on the coverage needed for its use. We present a validation of our framework with short reads from D. melanogaster and S. cervisiae synthetically generated at 300-fold coverage. Assembly of the D. melanogaster genome resulted in large contigs (50% of the genome covered by contigs larger than 102Kb), accurate to 99.9% of the bases, in under 4 hours of wall clock time on a 512-node Blue Gene/L.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennet, S.: Solexa ltd. Pharmacogenomics 5(4), 433–438 (2004)

    Article  Google Scholar 

  2. Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., Smith, G.P.: Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I.A., Belmonte, M.K., Lander, E.S., Nusbaum, C.N., Jaffe, D.B.: ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome Research 18, 810–820 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chaisson, M.J., Pevzner, P.A.: Short fragment assembly of bacterial genomes. Genome Research 18, 324–330 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dohm, J.C., Lottaz, C., Borodina, T., Himmelbauer, H.: SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Genome Research 17, 1697–1706 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Helman, D.R., Ja’Ja’, J., Bader, D.A.: A new deterministic parallel sorting algorithm with an experimental evaluation. Journal of Experimental Algorithms 3, 4 (1998)

    Article  Google Scholar 

  7. Hernandez, D., Francois, P., Farinelli, L., Osteras, M., Schrenzel, J.: De novo bacterial genome sequencing: Millions of very short reads assembled on a desktop computer. Genome Research 18, 802–809 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hossain, S., Azimi, N., Skiena, S.: Crystallizing short-read assemblies around lone Sanger reads. Bioinformatics (2009)

    Google Scholar 

  9. Idury, R.M., Waterman, M.S.: A new algorithm for DNA sequence assembly. Journal of Computational Biology 2, 291–306 (1995)

    Article  CAS  PubMed  Google Scholar 

  10. Jackson, B.G., Aluru, S.: Parallel construction of bidirected string graphs for genome assembly. In: Proceedings of the International Conference on Parallel Processsing, pp. 346–353 (2008)

    Google Scholar 

  11. Jackson, B.G., Schanble, P.S., Aluru, S.: Parallel short sequence assembly of transcriptomes. BMC Bioinformatics 10, S14 (2009)

    Article  Google Scholar 

  12. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., Salzberg, S.L.: Versatile and open software for comparing large genomes. Genome Biology 5 (2004)

    Google Scholar 

  13. Margulies, M., Egholm, M.: Genome sequencing in open microfabricated high density picoliter reactors. Nature 437(7054), 376–380 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Medvedev, P., Brudno, M.: Ab initio whole genome shotgun assembly with mated short reads. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 50–64. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21, ii79–ii85 (2005)

    Google Scholar 

  16. Ossowski1, S., Schneeberger1, K., Clark, R.M., Lanz, C., Warthmann, N., Weigel, D.: Sequencing of natural strains of arabidopsis thaliana with short reads. Genome Research (preprint) (2008)

    Google Scholar 

  17. Pandey, V., Nutter, R.C., Prediger, E.: Applied Biosystems SOLiD System: Ligation-Based Sequencing. Wiley, Chichester (2008)

    Google Scholar 

  18. Pevzner, P.A., Tang, H., Waterman, M.S.: Fragment assembly with double-barreled data. Proceedings of the National Academy of Sciences 98(17), 9748–9753 (2001)

    Article  CAS  Google Scholar 

  19. Wang, J., Wang, W., Li, R., Li, Y.: The diploid genome sequence of an Asian individual. Nature 456, 60–65 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Warren, R.L., Sutton, G.G., Jones, S.J.M., Holt, R.A.: Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23, 500–501 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Wicker, T., Narechania, A., Sabot, F., Vu, G.T.H., Graner, A., Ware, D., Stein, N.: Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics 9, 518 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Business Wire. Helicos biosciences enters molecular diagnostics collaboration with renowned research center to sequence cancer-associated genes. Genetic Engineering and Biotechnology News (2008)

    Google Scholar 

  23. Zerbino, D., Birney, E.: Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18, 821–829 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jackson, B.G., Schnable, P.S., Aluru, S. (2009). Assembly of Large Genomes from Paired Short Reads. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00727-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00726-2

  • Online ISBN: 978-3-642-00727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics