
J. Cryptol.
DOI: 10.1007/s00145-010-9085-7

Secure Hardware Implementation of Nonlinear Functions
in the Presence of Glitches

Svetla Nikova
Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC and IBBT, Kasteelpark Arenberg 10, 3001

Heverlee, Belgium
and

University of Twente, EEMCS-DIES, P.O. Box 217, 7500 AE Enschede, The Netherlands

Vincent Rijmen
Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC and IBBT, Kasteelpark Arenberg 10, 3001

Heverlee, Belgium
and

Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology,
Inffeldgasse 16a, 8010 Graz, Austria

Martin Schläffer
Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology,

Inffeldgasse 16a, 8010 Graz, Austria
martin.schlaeffer@iaik.tugraz.at

Received 1 September 2009

Abstract. Hardware implementations of cryptographic algorithms are vulnerable to
side-channel attacks. Side-channel attacks that are based on multiple measurements of
the same operation can be countered by employing masking techniques. Many protec-
tion measures depart from an idealized hardware model that is very expensive to meet
with real hardware. In particular, the presence of glitches causes many masking tech-
niques to leak information during the computation of nonlinear functions. We discuss a
recently introduced masking method which is based on secret sharing and multi-party
computation methods. The approach results in implementations that are provably re-
sistant against a wide range of attacks, while making only minimal assumptions on the
hardware. We show how to use this method to derive secure implementations of some
nonlinear building blocks for cryptographic algorithms. Finally, we provide a provable
secure implementation of the block cipher Noekeon and verify the results by means of
low-level simulations.

Key words. DPA, Masking, Glitches, Sharing, Nonlinear functions, S-box, Noekeon.

1. Introduction

Side-channel analysis exploits the information leaked during the computation of a cryp-
tographic algorithm. The most common technique is to analyze the power consump-

© International Association for Cryptologic Research 2010

mailto:martin.schlaeffer@iaik.tugraz.at

S. Nikova, V. Rijmen, and M, Schläffer

tion of a cryptographic device using differential power analysis (DPA) [17]. This side-
channel attack exploits the correlation between the instantaneous power consumption
of a device and the intermediate results of a cryptographic algorithm. A years-long se-
quence of increasingly secure designs and increasingly sophisticated attack methods
breaking again these designs suggests that the problem won’t be solved easily. There-
fore, securing hardware implementations against advanced DPA attacks is still an active
field of research.

The approach that we propose in this paper1 is based on multi-party computation
techniques, which makes it rather different from the mainstream. The most important
differences are that we use more than one mask and share the data being processed
through nonlinear operations such that each computation is independent of at least one
input share. Further, we do not use fresh randomness after one or more steps and we
make only realistic assumptions about the hardware. We provide also proofs of security
against a wide range of attacks and experimental evidence to back up our claims.

The remainder of this paper is organized as follows. In Sect. 2 we discuss some
related work both in side-channel attacks and defense strategies, and in multi-party
computation protocols and derived protection techniques. In Sect. 3 we explain how
many of the “classical” protection techniques fail when the underlying hardware is not
glitch-free. We introduce our approach in Sect. 4, define three properties sufficient for
security and prove our main theorems. In Sect. 5, we apply our method to some func-
tions that form the basis of cryptographic systems, e.g. multiplication in the extension
field GF(22m)/GF(2m), which is often used in implementations of the AES S-box. In
Sect. 6, we apply our method to the block cipher Noekeon and report on the simulations
that we made in order to verify our claims. Finally, we conclude and present topics for
further research in Sect. 7.

2. Related Work

In this section, we review popular countermeasures against DPA attacks. Subsequently,
we briefly introduce threshold cryptography and Multi-Party Computation (MPC) pro-
tocols, which form the inspiration for our approach to protect implementations against
side-channel attacks. Finally, we explain the relations between our approach and MPC
protocols, and discuss related literature.

2.1. History of Countermeasures

In order to counteract DPA attacks several different approaches have been proposed. The
general approach is to make the intermediate results of the cryptographic algorithm in-
dependent of the secret key. Circuit design approaches [36,37] try to remove the root of
the side-channel leakage by balancing the power consumption of different data values.
However, even small remaining asymmetries make a DPA possible. Another method
is to randomize the intermediate values of an algorithm by masking them. This can be
done at the algorithm level [1,5,13,25], at the gate level [15,38] or even in combination
with circuit design approaches [27].

However, recent attacks have shown that masked hardware implementations (con-
trary to software implementations [31,32]) can still be attacked using even first-order

1 Parts of this work appeared earlier in [23] and [24].

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

DPA. The problem of most masking approaches is that they were designed and proven
secure in the assumption that the output of each gate switches only once per clock cycle.
Instead, glitches [30] occur in combinational CMOS circuits and each signal switches
several times. Due to these glitches, these circuits are vulnerable to DPA attacks [19,
20]. Furthermore, the amount of information leaked cannot be easily determined from
the mathematical description of a masked function. It depends too much on the used
hardware technology and the way the circuit is actually placed on a chip. All these
approaches start from compact but rather insecure implementations. Subsequently the
designers try to solve the known security issues by adding as little hardware as possible.

A different type of approach was proposed in [23,24] and is continued in this paper.
The idea is to first start from a very secure implementation and then, make this approach
more practical by minimizing the hardware requirements while still maintaining the
security level. Secret sharing schemes and techniques from multi-party computation are
used to construct combinational logic which is completely independent of the unmasked
values. The approach holds for both FPGAs and ASICs, and the idea can also be used
in software implementations. In this approach, the implementations increase with the
number of shares and for each nonlinear part of a circuit at least three shares (or masks)
are needed. Further, constructing secure implementations of arbitrary functions using
only a small number of shares is a difficult task.

2.2. Threshold Cryptography and Multi-Party Computation

MPC protocols enable a set of players to securely evaluate an arbitrary function on
their private inputs, but some of the players could be corrupted by an adversary. Con-
sider s players, each player holding an input xi . The players want to compute a func-
tion F(x1, . . . , xs) = z in a secure manner, which informally implies two things. The
adversary cannot interrupt the computation, hence the computed value is correct. Ad-
ditionally the adversary cannot learn any information about the inputs of the honest
players, except of course what can be inferred from the function value. The results can
be easily extended to more general types of functionality e.g. computing a function
F(x1, . . . , xs) = (z1, . . . , zs). A (t + 1, s) threshold system allows s parties to do secure
computations when at least t + 1 parties are needed to recover the secret. A protocol
is called t-private if any set of size at most t cannot get from the protocol execution
any additional information then what they already have from their shares. Hence, up
to t corrupt players can be tolerated, which will learn nothing about the secret. The
following theorem illustrates the power of MPC protocols.

Theorem 1 ([4, Theorem 1]). For every function f and t < s/2 there exists a t-private
protocol.

In order to prove this result, Ben-Or et al. use Shamir’s secret sharing scheme [33].
Let αi denote n distinct non-zero elements. A secret x is shared by randomly selecting
t elements ai and defining the polynomial p(y):

p(y) = x + a1y + a2y
2 + · · · + aty

t .

Each player Pi obtains the value xi = p(αi) and the secret is equal to p(0).

S. Nikova, V. Rijmen, and M, Schläffer

Let x, y be two elements that are shared using the polynomials p(y), respectively
q(y). Then the element x + y is encoded by the polynomial (p + q)(y) = p(y) + q(y).
Hence, in order to compute the shares for x +y = p(0)+q(0), each player Pi computes
xi +yi = (p+q)(αi). In the same way, the scaling of a secret with a constant is achieved
when each player scales his share by the same constant.

Let r(y) = p(y)q(y). Then indeed x · y = r(0) as desired, but the degree of r equals
2t , if the underlying field is of large enough order. If 2t ≥ s, then we can no longer have
enough data points to recover x ·y uniquely. Ben-Or et al. then define a degree reduction
and randomization step which transforms the s shares xi · yi into shares r̃(αi), where
r̃(y) is a new random polynomial of degree t and with r̃(0) = x · y. This step requires
linear multi-party computations on each of the shares xi · yi , which are implemented
again by defining polynomials and distributing shares to each of the players.

2.3. Our Approach

We construct a secret sharing scheme to share the secret variables that have to be
processed by the circuit. Splitting each variable in s shares was previously proposed
in [8]. Chari et al. analyze extensively the case s = 2, relating the amount of infor-
mation leaking by means of side channels to the number of sequences that an attacker
needs to observe in order to mount a successful attack. However, Chari et al. do not
investigate how nonlinear operations should be implemented in such a scheme.

In this paper here, we complete this approach and propose a way to implement non-
linear functions. Namely, we divide our circuits into combinatorial blocks which are
completely independent of the secret variables. We achieve this by making sure that no
single combinatorial block acts on all shares.

Linking our approach to MPC protocols, one can say that we equate each combina-
torial block with a party. In this paper, we investigate only the case where we need the
output of all sub-circuits in order to compute the output of the circuit. This corresponds
to an (s, s) threshold system. Our situation differs from the typical MPC case, because
each input xi is used by several parties (functions). Since each two functions together
(possibly) use all inputs, we have a (1, s, s) ramp scheme.

The functions are corrupted by means of side-channel attacks. A corrupt function
still produces correct results, hence we have passive corruption. In a first-order attack,
the attacker can corrupt at most one function at a time. Theorem 1 implies that given
enough random values and enough rounds of communication, every function can be im-
plemented. Our main constraint of course, is that we have to economize on the amount
of randomness and extra operations. Thereby we can tolerate a loss in provable security
but still try to achieve the best possible security.

A similar approach is followed in [15], where the authors try to achieve perfect se-
curity against all attackers that can measure up to t wires simultaneously. Besides the
high amount of extra operations, the main drawback of the approach in [15] is that they
ignore some typical aspects of real-life hardware implementations. For instance, they do
not achieve security against an attack where the sum of all instantaneous power signals
is measured, which in reality is of course a more easily accessible side channel than the
signals on t individual wires. They also stick to the idealized hardware model without
gate delays and glitches. The follow-up paper [14] looks into active probing attacks, but
does not solve the issues that we mentioned here.

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

3. DPA Attacks on Masking

Masking is a side-channel countermeasure which tries to randomize the intermediate
values of a cryptographic algorithm [22]. Then, the (randomized) power consumption
does not correlate with the intermediate values anymore. The most common masking
scheme is Boolean or linear masking where the mask is added by an XOR operation.
However, one problem of masking is that cryptographic algorithms like AES [9] com-
bine linear and nonlinear functions. Thus, many different hardware masking schemes
and masked gates have been proposed [1,5,25,39] but all of them have been broken again
[2,13,20,41]. Even though no wire carries an unmasked value, the power consumption
correlates with the unmasked intermediate results of the algorithm.

3.1. Glitches

The problem of these hardware masking schemes is that the effect of glitches has not
been considered. Glitches have first been analyzed in [19] and a technique to model
glitches has been presented in [35]. Glitches occur because the signals of a combina-
tional circuit can switch more than once if an input changes. The amount of glitches
depends on the specific hardware technology, the implementation and on the input val-
ues of a combinational logic.

For example in the common CMOS technology, circuits consume very low amounts
of power. The power consumption caused by glitches is relatively large compared to the
power consumption caused by non-switching operation of CMOS circuits. It follows
that the total power consumption of a CMOS circuit is strongly correlated to the number
of glitches that occur.

The reason why most masking schemes can be attacked is that they combine masks
and masked values into the same combinational logic. Since they are not processed
independently, also the number of glitches and thus, the power consumption is not in-
dependent of the masks and unmasked values. It follows that the power consumption is
a function of the unmasked value. Hence, it depends on the actual hardware implemen-
tation whether a design is secure. In this case, nothing about the security can be proven
during the design process.

3.2. Glitches in a Traditionally Masked AND Gate

In this section, we study the effect of glitches in a masked AND gate. We consider a
typical implementation of a masked AND gate [38], illustrated in Fig. 1. To make the
analysis easier, we assume here that XOR gates exist as basic primitives and do not
decompose them into smaller building blocks. We show that nevertheless, the number
of glitches and thus, the power consumption depends indeed on the unmasked value.

The circuit takes 5 inputs: the two random masks mx,my , the two masked inputs
xm = mx ⊕ x, ym = my ⊕ y, and a new random value mz to mask the output z =
x AND y. The circuit outputs the output mask mz and the masked output zm, which is
computed as follows:

zm = xmym ⊕ (
myxm ⊕ (

mxym ⊕ (mxmy ⊕ mz)
))

. (1)

S. Nikova, V. Rijmen, and M, Schläffer

Fig. 1. Glitch propagation through a masked AND gate.

Table 1. Number of affected gates in the circuit of Fig. 1, when a glitch occurs in input xm.

y my ym AND XOR

0 0 0 0 0
1 0 1 1 1
1 1 0 1 2
0 1 1 2 2

Note that the order in which the XOR gates are evaluated, is not arbitrary. If the circuit
would compute at any time the sum of any of the products, then there would be a leakage
of an unmasked value. For instance, xmym ⊕ my · xm = yxm, which leaks information
about y. This is one of the reasons why the new random value mz is introduced in the
beginning and why all the products are added one by one to it.

Consider now what happens if a glitch occurs in input xm. The propagation of this
glitch will depend on the values of my and ym. The power consumption caused by the
glitch is related to the number of gates that see the glitch. It is clear from Table 1 that
the energy consumption depends on the values of my and ym. Since the mean power
consumption is different for y = 0 and y = 1, the power consumption leaks information
on the value of y. Similar results can be obtained by analyzing the effect of a glitch
in one of the other inputs, and the cases where some of the inputs arrive delayed with
respect to the other inputs [19,20]. We conclude that switching characteristics of log-
ical circuits invalidate some of the assumptions commonly made in proofs of security
against side-channel attacks.

3.3. Simulating Attacks and Gate Delays

Although it is difficult to verify whether a design or a masking scheme is secure, dif-
ferent simulation techniques have been developed to verify the security of a design. A
simple method to analyze a design is by using the assumption that there is no delay at the
inputs and inside of a combinational logic. In this case, each signal and output switches
at most once and even simple masking schemes are secure using this model. However,
in [18] it has been shown by means of computer simulations, that most masked gates can

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

be attacked if the input signals of the combinational logic arrive at different moments in
time.

In [11] a model is used where each of the n input signals of a gate can arrive at a
different time. Thus, the output can switch up to n times. Although the model does not
allow delays inside the gate it takes glitches into account. In their paper a gate is defined
to be G-equivalent, if there is no correlation between the number of output transitions
and the unmasked value. Since it is not possible to build any nonlinear gate which is G-
equivalent using standard masking, the weakened requirement of semi-G-equivalence
has been defined. Using this notation it is possible to define nonlinear masked gates
which can be used to build arbitrary circuits. However, the big disadvantage of this
method is that semi-G-equivalent circuits have routing constraints, and it still depends
on the implementation whether a circuit is secure.

Another disadvantage of the previous model is that it does not take delays inside
the gate into account. Therefore, a more detailed power consumption model is to count
all transitions which occur in a combinational logic. A common method is to use unit
delay for all gates and an even more accurate method is to derive the delay of a circuit
by back-annotated netlists [16]. In this case, different timing information for different
gates and wire lengths are considered. Most secure masking schemes can be broken by
performing attacks based on these simulations.

However, none of these methods can prove that a circuit is secure in the presence of
glitches because each method takes only special cases into account. Therefore, these
methods can only be used to attack masking schemes. In the following sections we
examine a masking scheme based on secret sharing which is provable secure in the
presence of glitches.

4. Sharing

In this section we introduce terminology, formulate requirements and prove results
about the security of our approach. Note that both sharing (higher-order masking), as
well as the uniformity requirement we give in Sect. 4.4 are not new approaches in the
quest for side-channel resistant implementations. However, the main improvement in
our approach is the noncompleteness requirement (see Sect. 4.3) for each computa-
tion and combinational logic of a hardware implementation. This requirement seems
obvious but is rather difficult to achieve in combination with the other requirements.
Nevertheless, we further show how to construct and implement basic shared Boolean
functions which fulfill all requirements.

4.1. Terminology

We denote stochastic variables by small characters x, y, . . . and samples of these vari-
ables by capitals X,Y, We denote by Pr(x = X) the probability that x takes the
value X, and often abbreviate this to Pr(x). Probability is defined as the number of
times that the variable x takes the value X, divided by the number of different values
that the input of the circuit can take.

S. Nikova, V. Rijmen, and M, Schläffer

We denote a vector of s shares xi by x = (x1, x2, . . . , xs) and split a variable x into s

additive shares xi with

x =
∑

i

xi .

We will only use (s, s) secret sharing schemes, hence all s shares are needed in order
to determine x uniquely. In a perfect (s, s) secret sharing scheme, knowledge of up to
s − 1 shares does not give any additional information on the value of x. Observe that a
traditional masking scheme corresponds to a (2,2) secret sharing scheme.

In a function f with p > 1 input variables, we will use superscripts x1, x2, . . . , xp

to differentiate the different input variables. Let Q denote the number of different
(X1,X2, . . . ,Xp) values that the input of f can take. Then Qs is the number of dif-

ferent (X
1
,X

2
, . . . ,X

p
) values that the vector of input shares can take. In this paper,

we use secret sharing schemes where

Pr
(
x1 = X

1
, . . . , xp = X

p) = Q1−s Pr

(

x1 =
s∑

i=1

X1
i , . . . , x

p =
s∑

i=1

X
p
i

)

. (2)

Hence we have

s∑

i=1

X
j
i =

s∑

i=1

Y
j
i ,∀j ⇒ Pr

(
x1 = X

1
, . . . , xp = X

p) = Pr
(
x1 = Y

1
, . . . , xp = Y

p)
.

In words, any bias present in the joint distribution of the shares (x1, . . . , xp) is only due
to a bias in the distribution of the unshared variables x1, . . . , xp .

4.2. Realization

In order to implement a vector function (z1, . . . , zq) = f(x1, . . . , xp) we need a set of
functions fi which together compute the output(s) of f. We call this a realization and get
the following property:

Property 1 (Correctness). Let (z1, . . . , zq) = f(x1, . . . , xp) be a vector function. Then
the set of functions fi (x1, . . . , xp) is a realization of f if and only if

(Z1, . . . ,Zq) = f
(
X1, . . . ,Xp

) =
s∑

i=1

fi
(
X

1
, . . . ,X

p)

for all vectors of input shares (X
1
, . . . ,X

p
) satisfying

∑s
i=1 X

j
i = Xj with 1 ≤ j ≤ p.

4.3. Noncompleteness

The next property is important to prove the security of a realization of a function. We
denote the reduced vector (x

j

1 , . . . , x
j

i−1, x
j

i+1, . . . , x
j
s) by x

j
i .

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

Property 2 (Noncompleteness). Every function is independent of at least one share
of the input variable x and consequently, independent of at least one share of each
component. Without loss of generality, we require that zi is independent of x

j
i ,∀j :

z1 = f1
(
x1

1, x
2
1, . . . , x

p

1

)

z2 = f2
(
x1

2, x
2
2, . . . , x

p

2

)

. . .

zs = fs
(
x1

s , x
2
s , . . . , x

p
s

)

When constructing a realization for a vector function fj , we need to ensure that Prop-
erty 2 is satisfied for each component of the output. As we have defined in Property 2,
each output share with index i needs to be independent of all input shares with the same
index i.

4.4. Uniformity

The following property will turn out to be useful in Sect. 4.8, where we introduce
pipelined implementations.

Property 3 (Uniformity). A realization of (z1, . . . , zq) = f(x1, . . . , xp) is uniform, if
the distribution of the shares of the output satisfies

Pr
(
z1 = Z

1
, . . . , zq = Z

p) = Q1−s Pr

(

z1 =
s∑

i=1

Z1
i , . . . , z

q =
s∑

i=1

Z
q
i

)

(3)

provided that the distribution of the shares of the input satisfies (2).

If the function f is invertible, then Property 3 is satisfied by invertible realizations. In

an invertible realization of f, every vector (Z
1
, . . . ,Z

q
) is reached for exactly one input

vector (X
1
, . . . ,X

p
). This condition is stricter than the requirement that every output

tuple (Z1, . . . ,Zq) is reached for exactly one input tuple (X1, . . . ,Xp).

4.5. Implementing Linear Transformations

Consider a linear transformation (z1, . . . , zq) = �(x1, . . . , xp). The easiest way to im-
plement a linear transformation securely is to process the s shares independently. In-
deed, if

(
z1
i , . . . , z

q
i

) = �
(
x1
i+1, . . . , x

p

i+1

)
, 1 ≤ i < s,

(
z1
s , . . . , z

q
s

) = �
(
x1, . . . , x

p

1

)
,

S. Nikova, V. Rijmen, and M, Schläffer

then by definition of a linear transformation, we have

(
z1, . . . , zq

) =
s∑

i=1

(
z1
i , . . . , z

q
i

) =
s∑

i=1

�
(
x1
i , . . . , x

p
i

)

= �

(
s∑

i=1

(
x1
i , . . . , x

p
i

)
)

= �
(
x1, . . . , xp

)
.

Such an implementation of a linear transformation does not leak information that can be
used in a side-channel attack, even if glitches are taken into account [19,20]. A typical
property of this implementation is that each output share z

j
i depends only on one input

share of each variable.

4.6. Implementing Nonlinear Transformations of Low Degree

We will construct circuits for nonlinear transformations having a similar property as
the secure circuits for linear transformations. Intuitively, it is clear that if a share z

j
i

does not depend on input shares x1
i , x2

i , . . . then z
j
i cannot be correlated to x1, x2,

Neither will the computation of z
j
i leak information about the value of x1, x2, This

is formalized in the following theorem.

Theorem 2. In a realization satisfying Property 1 and Property 2, if the distribution
of the shares of the inputs satisfies (2), then each of the output shares z

j
i is statistically

independent of the input variables xj and the output variables zj . Furthermore, the
same holds for all intermediate results that are computed during the computation of
the output shares and for physical quantities, like power consumption, electro-magnetic
radiation etc., which are a function of these intermediate results.

Proof. Without loss of generality, we give the proof for output variable z1. Let
ϕ(x1

1, . . . , x
p

1) denote an arbitrary function of the p × (s − 1) input shares x
j
i with

1 ≤ j ≤ p and 2 ≤ i ≤ s. For instance, ϕ can be z1
1, an intermediate result needed to

compute z1
1, the power consumed by the combinatorial circuit that computes z1

1, . . .

Pr(ϕ = �) =
∑

X
1
,...,X

p

ϕ(X
1
1,...,X

p
1)=�

Pr
(
x1 = X

1
, . . . , xp = X

p)

=
∑

X
1
1,...,X

p
1

ϕ(X
1
1,...,X

p
1)=�

∑

X1
1,...,X

p
1

Pr
(
x1 = X

1
, . . . , xp = X

p)
.

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

Since Xj = ∑
i X

j
i , we can change variables and replace X1

1, . . . ,X
p

1 by X1, . . . ,Xp .
Furthermore we use (2) and obtain:

Pr(ϕ = �) =
∑

X
1
1,...,X

p
1

ϕ(X
1
1,...,X

p
1)=�

Q1−s
∑

X1,...,Xp

Pr
(
x1 = X1, . . . , xp = Xp

)

︸ ︷︷ ︸
=1

.

Next, we compute

Pr
(
ϕ = � | x1 = X1, . . . , xp = Xp

)

=
∑

X
1
,...,X

p

ϕ(X
1
1,...,X

p
1)=�

Pr
(
x1 = X1, . . . , xp = Xp | x1 = X1, . . . , xp = Xp

)

=
∑

X
1
1,...,X

p
1

ϕ(X
1
1,...,X

p
1)=�

∑

X1
1,...,X

p
1

Pr
(
x1 = X

1
, . . . , xp = X

p | x1 = X1, . . . , xp = Xp
)

︸ ︷︷ ︸
A

.

The terms in the sum A are non-zero for exactly one combination of X1
1, . . . ,X

p

1 , which
satisfies

Xj =
s∑

i=1

X
j
i .

It follows from (2) that in this case Pr(x1 = X
1
, . . . , xp = X

p | x1 = X1, . . . , xp =
Xp) = Q1−s . We conclude that ϕ and (x1, . . . , xp) are statistically independent. �

In other words, a circuit of a realization satisfying the requirements of Theorem 2
leaks no information on the variables that are processed.

Corollary 1. If a realization satisfies Property 1 and Property 2, and if the distribution
of the shares of the inputs satisfies (2), then the expected value of the power consumption
of a circuit implementing the realization is independent of x1, . . . , xp and z1, . . . , zq ,
even in the presence of glitches or the delayed arrival of some inputs.

Proof. Since the proof of Theorem 2 makes no assumption on the behavior of the
circuit and/or the presence of glitches, the theorem holds for each sub-circuit computing
one of the y

j
i , also in the case of delayed inputs or glitches. Furthermore, the mean

power consumption of the whole circuit is the sum of the mean power consumptions of
the sub-circuits and expectation is a linear operation. �

4.7. Implementing Arbitrary Functions

Property 1 and Property 2 impose a lower bound on the number of shares s.

S. Nikova, V. Rijmen, and M, Schläffer

Theorem 3. The minimum number of shares required to implement a product of D

variables with a realization satisfying Property 2 and 1 is given by

s ≥ 1 + D.

Proof. Multiplying D factors with s shares each can be done in the following way.
Collect in the first output share all terms that do not contain the first share of any of
the inputs. Collect in the second output share all terms that contain the first share of
any of the inputs, but not the second share of any of the inputs. Continuing in this way,
collect in output share i all the terms containing input shares 1,2, . . . and i − 1, but not
input share i. Finally, collect in output share s the terms containing the terms with input
shares 1,2, . . . and s − 1 but not input share s. Only if s − 1 ≥ D, there are no terms
left after step s. �

It follows that we need at least three shares in order to implement a nonlinear function.
The construction used in the proof of Theorem 3 can also be used to implement more
general monomials. For instance, the monomial x3y can be implemented as a product
of four variables. Because not all variables are independent, it might be that there exist
other solutions with a lower number of shares. Hence, we have the following corollary.

Corollary 2. The maximum number of shares required to implement a function f of u

variables over GF(2m), equals 1 + 2mu.

Proof. Since ∀x ∈ GF(2m) : x2m = x, it is always possible to describe f as a multi-
variate polynomial of degree at most 2mu. For instance, we can use the Lagrange in-
terpolation formula. We construct the functions fi for each separate monomial of f by
applying the same method as in the proof of Theorem 3. Summing up the functions for
each monomial, we obtain the functions for f. �

Theorem 3 shows that implementing more complicated functions typically leads to
an increase in the number of shares required, as well as an increase in the number of
gates required. This should not come as a big surprise, because introducing resistance
against power attacks always comes at a price. For instance, in [27], the authors re-
port an increase in area with a factor 5, for a decrease in performance with factor 0.6.
The software solution proposed in [32] doubles the code size, multiplies the RAM re-
quirements with a factor of 20 and decreases the performance with a factor 50. Other
proposals add more complexity for the same security level. Nevertheless, for functions
with large numbers of inputs, it is better to adopt pipelining.

4.8. Pipelining

Pipelining is often used to speed up hardware implementations. In order to allow large
clock frequencies, combinatorial logic circuits should not be too deep. Pipelining is
an implementation technique where a logical circuit with l levels is divided into two
circuits with l/2 levels, separated by a register, which stores the intermediate result of
the first stage until the active phase of the next clock cycle. As an example, the AES
implementation of [42] uses a pipeline with two stages to implement the S-boxes.

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

Dividing a combinatorial circuit into separate pipelining stages, can also reduce the
number of shares and the number of gates required for an implementation that has to
be protected against side-channel attacks in the presence of glitches. By definition, a
register is insensible to glitches. The registers storing the intermediate results at the end
of stage bound the propagation of glitches and delays. When considered individually,
each of the pipeline stages represents a mathematical function that is less complex than
the full circuit: the nonlinear degree will be lower and/or the number of monomials that
needs to be summed. This will typically reduced the required number of shares and
gates.

We now prove a result about the security of a pipelined implementation. Consider a
pipelined realization consisting of r combinatorial layers and r registers, i.e. one register
for the output shares and r − 1 for the intermediate shares. The function that computes
share y

j
i,t at the output of pipeline stage t is denoted by fi,j,t . The power consumption

in the circuit that implements this function is denoted by Pi,j,t .

As before, we assume that the distribution of the shares of the inputs satisfies (2).
Note that condition (2) needs now to be fulfilled at the input of each pipeline stage.
Since the input of the next pipeline stage is formed by the output of the previous pipeline
stage, we can achieve this goal by demanding that the functions fi,j,t satisfy additionally
Property 3, next to Property 1 and Property 2. We can then prove the following.

Theorem 4. Under the conditions described above, no linear combination of the
power consumptions Pi,j,t is statistically correlated to any of the input variables xj

nor to any of the output variables yj .

Proof. We prove that for any choice of the linear coefficients ci,j,t the covariance

cov

(∑

i,j,t

ci,j,tPi,j,t , y
1
)

= 0.

The proof can easily be extended to other output variables and to input variables. We
start with the definition of the covariance:

cov

(∑

i,j,t

ci,j,tPi,j,t , y
1
)

= E

[
y1

∑

i,j,t

ci,j,tPi,j,t

]
− E

[
y1]E

[∑

i,j,t

ci,j,tPi,j,t

]

=
∑

i,j,t

ci,j,t

(
E
[
y1Pi,j,t

] − E
[
y1]E[Pi,j,t]

)
.

Each of the fi,j,t satisfies Property 1 and Property 2. Their inputs satisfy (2). Hence we
can apply Corollary 1 to derive that E[y1Pi,j,t] = E[y1]E[Pi,j,t]. �

4.9. Summary: What do we Achieve?

In a circuit implementing a realization satisfying the conditions of Theorem 2, each
intermediate result of the computation is statistically independent of the input and the
output variables. This is a strong result. However, the required number of shares and the

S. Nikova, V. Rijmen, and M, Schläffer

typical number of gates required to implement such a circuit increases with the degree
of the function that is to be implemented.

If we adopt the pipelining approach, then Property 2 is fulfilled only within each stage
of the pipeline, instead of the whole realization. Hence the conditions of Theorem 2 are
not fulfilled. If each of the pipeline stages satisfies the three properties, then Theorem 4
applies. The theorem implies that we achieve security against attacks that are based on
correlating a secret variable or a variable derived from secret variables to the expected
values of the power consumption or any other side-channel of a device or parts of a
device. A foremost example of a variable derived from a secret variable is the hypothet-
ical power consumption of a device computed by adopting a certain leakage model and
a guess for some bits of the secret key [21]. We also achieve security against attacks
that perform linear operations (addition, subtraction, scaling) on the side-channels be-
fore computing averages. To summarize, Theorem 4 implies first-order resistance of a
shared implementation.

Alas, Theorem 4 does not cover every physical effect of a hardware implementation,
nor every attack based on side-channel information. Remember that in order to prove
Corollary 1, we need to make an assumption on the hardware, namely that the power
consumption of each shared sub-circuit is indeed independent of the other sub-circuits.
Hence, we have to make sure that for instance cross-coupling effects between different
sub-circuits are negligible. However, this is at least a much easier requirement then
for instance equal wire lengths, since we could place the sub-circuits separately on the
chip. Further, Theorem 4 does not cover resistance against attacks using any nonlinear
combination of shares or analyzing higher-order moments of the distribution of the
power consumption. However, in practice these higher-order attacks are more difficult
to perform due to the presence of noise, which is illustrated by the experimental results
in Sect. 6. Further, the resistance of an implementation against higher-order attacks can
be strengthened by using sharing in combination with other counter measures.

5. Implementing Nonlinear Functions Using Three Shares

Recall that Theorem 3 implies, that for any nonlinear function at least three shares are
needed to fulfill Property 2. In this section we analyze which basic nonlinear func-
tions can be shared using only three shares and present a method to construct them,
such that all three properties are fulfilled. Finally, we show how the multiplication in
the extension field GF(22m)/GF(2m) (and in particular in GF(4)) can be successfully
shared using three shares. This tower field approach is often used in implementations
of the AES S-box [7]. Replacing the multiplication in GF(4) by a shared multiplication
(which fulfills all three properties) does not immediately give pipelining stages which
fulfill Property 3 as well. In general, the output distribution of combined functions is
not uniform anymore. However, this could be solved by using additional random inputs
at each pipelining stage.

Before we show how to find shared functions, we introduce a simplified notation
which is used in the following sections. We will denote the n components of the input
x by (a, b, . . .) and the m components of the output z by (e, f, . . .). We define the
vectorial Boolean function of z = f(x) by

(e, f, . . .) = f(a, b, . . .) (4)

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

and its m Boolean component functions fj (x) of f(x) as follows:

e = f1(x) = f1(a, b, . . .),

f = f2(x) = f2(a, b, . . .).
(5)

To construct a shared implementation of the function f, each element of the input x and
of the result z is divided into s shares. To divide the function f, we need to split each
component function fj into s shared functions with

e = e1 + · · · + es = f1
(
(a1 + · · · + as), (b1 + · · · + bs), . . .

)
,

f = f1 + · · · + fs = f2
(
(a1 + · · · + as), (b1 + · · · + bs), . . .

)
.

(6)

For example Property 2 requires the shares ei , fi , . . . to be independent of ai , bi , . . .

ei = f1
i (ai, bi, . . .),

fi = f2
i (ai, bi, . . .).

5.1. Constructing Nonlinear Shared Functions

In this section, we start investigating how to construct realizations that successfully
“share” a given function. Here, to successfully share implies that the resulting real-
ization of a nonlinear function satisfies all three Properties 1, 2 and 3. Note that the
following steps can simply be generalized to more shares as well.

We construct nonlinear shared functions by splitting the shared function, such that
only Property 1 and 2 are fulfilled first. This is always possible for any function of
algebraic degree two (see Corollary 2). If we continue with the notation of Sect. 4.3
(function fj is independent of all shares with index j), terms of degree two can only be
placed in the share with the missing index. For example, the term a1b2 can only be a
part of function (or share) f3 since f1 has to be independent of a1 and f2 of b2. However,
all linear terms and quadratic terms with equal index i can be placed in one of the two
shared functions fj with i �= j .

Usually, Property 3 is not fulfilled after this step. To change the output share distri-
bution we can add other terms to the noncomplete shared functions. These correction
terms must not violate the first two properties but can be used to fulfill Property 3.
Hence, only a special set of correction terms can be added to the individual shares. To
maintain Property 1, it is only possible to add the same term to an even number of differ-
ent shares. This ensures that the correction terms cancel out after adding the shares. To
retain Property 2, we can only add terms which are independent of at least two shares.
Therefore, only linear terms and terms with equal index i can be used as correction
terms.

Usually, this step is difficult to fulfill for arbitrary functions with a high algebraic
degree. Two approaches can be used to simplify this step. In the first approach, we split
the functions into subsequent parts with lower algebraic degree and then, try to ensure
all requirements for these sub-functions first. Note that Property 3 is easier to fulfill if
the resulting sub-functions are permutations (also see Sect. 6). The second approach
is to add additional random inputs to the (sub-)functions. If we just remask the output

S. Nikova, V. Rijmen, and M, Schläffer

of the shared functions using fresh masks, we can always ensure Property 3. However,
in our approach we try to minimize these additional masks and for simple Boolean
functions, we do not need to remask at all.

5.2. Sharing Nonlinear Functions with Two Inputs

We first start with the most simple nonlinear Boolean functions and provide the follow-
ing Theorem:

Theorem 5. No nonlinear gate or Boolean function with two inputs and one output
can be shared using three shares.

Proof. All nonlinear Boolean functions with two inputs and one output can be de-
fined in algebraic normal form (ANF) by the following eight functions with parameters
k0, k1, k2 ∈ {0,1} and index i = k0 · 4 + k1 · 2 + k2:

fi(a, b) = k0 + k1a + k2b + ab. (7)

To share these nonlinear Boolean functions using three shares, we first split the inputs
a and b into three shares and get the following functions:

e1 + e2 + e3 = fi(a1 + a2 + a3, b1 + b2 + b3)

= k0 + k1(a1 + a2 + a3) + k2(b1 + b2 + b3)

+ (a1 + a2 + a3) · (b1 + b2 + b3)

= k0 + k1(a1 + a2 + a3) + k2(b1 + b2 + b3)

+ a1b1 + a1b2 + a1b3 + a2b1 + a2b2 + a2b3 + a3b1 + a3b2 + a3b3.

Then, terms with different indices are placed into the share with the missing index and
the share for all other terms can be chosen freely.

To satisfy Property 3, the shared-output distribution of (e1, e2, e3) needs to be uni-
form for each unshared input value (a, b). In other words, each possible shared out-
put value has to occur equally likely. The input of the unshared functions can take
the four values (a, b) ∈ {00,01,10,11}. In the case of the shared multiplication with
f (a, b) = ab, we get for the input (a, b) = 00 the output e = e1 + e2 + e3 = 0 and
the distribution of its shared output values (e1, e2, e3) ∈ {000,011,101,110} has to be
uniform.

For each of the eight nonlinear functions all possible correction terms are the con-
stant term, the six linear terms a1, a2, a3, b1, b2, b3 and the three quadratic terms
a1b1, a2b2, a3b3. Due to the small number of correction terms we can evaluate all pos-
sibilities and prove that no combinations leads to a uniform shared representation. It
follows that a shared nonlinear function with two inputs, one output and three shares
does not exist. �

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

5.3. Sharing Nonlinear Functions with Three Inputs

The result of the previous section leads to the question if there are any nonlinear func-
tions that can be shared using three shares. To answer this question we look at the class
of nonlinear Boolean functions with three inputs and one output bit:

fi(a, b, c) = k0 + k1a + k2b + k3c + k4ab + k5ac + k6bc + k7abc (8)

with k0, . . . , k7 ∈ {0,1}. It follows from Theorem 3 that a Boolean function of algebraic
degree 3 can never be shared using three shares. Therefore, we always require k7 = 0.
To get a nonlinear function at least one of the coefficients with degree two (k4, k5, k6)
needs to be non-zero and we get 112 nonlinear functions. To share these 112 functions,
we split each input and output into three shares and get:

e1 + e2 + e3 = fi(a1 + a2 + a3, b1 + b2 + b3, c1 + c2 + c3)

= k0 + k1(a1 + a2 + a3) + k2(b1 + b2 + b3) + k3(c1 + c2 + c3)

+ k4(a1b1 + a1b2 + a1b3 + a2b1 + a2b2 + a2b3 + a3b1 + a3b2 + a3b3)

+ k5(a1c1 + a1c2 + a1c3 + a2c1 + a2c2 + a2c3 + a3c1 + a3c2 + a3c3)

+ k6(b1c1 + b1c2 + b1c3 + b2c1 + b2c2 + b2c3 + b3c1 + b3c2 + b3c3).

These functions can be shared using the same method as in the previous section but we
can now use the following 22 correction terms:

linear: 1, a1, a2, a3, b1, b2, b3, c1, c2, c3

degree 2: a1b1, a2b2, a3b3, a1c1, a2c2, a3c3, b1c1, b2c2, b3c3

degree 3: a1b1c1, a2b2c2, a3b3c3

By adding at least three correction terms, many uniform shared functions for all of the
112 nonlinear functions can be found.

5.4. Shared Multiplication in GF(22m)/GF(2m)

In this section we show that the multiplication in GF(22m)/GF(2m) and in particular
GF(4) can be successfully shared using three shares. We have implemented the multipli-
cation using normal bases, i.e. for GF(22m)/GF(2m) the bases is defined by an element
v of GF(22m).

– Let {v, v2m} be a normal basis of GF(22m) over GF(2m).
– Define q = TrGF(22m)/GF(2m)(v) = v + v2m

, so q ∈ GF(2m)∗ and

– g = q−1NormGF(22m)/GF(2m)(v) = q−1v2m+1 = q−1v2 + v, i.e. g ∈ GF(2m)∗.

Then any element x from GF(22m) can be described by a tuple (a, b) such that
x = av + bv2m

. Let (a, b) and (c, d) be the coordinates of two elements of GF(22m).
Therefore coordinates of the product are given by the following formula:

(e, f) = (a, b) × (c, d) ⇔
{

e = (a + b)(c + d)g + qac,

f = (a + b)(c + d)g + qbd.
(9)

S. Nikova, V. Rijmen, and M, Schläffer

In the following, we will illustrate the sharing for the case m = 1, i.e. the multiplica-
tion in GF(4), in more detail. Formula (9) can be simplified since both constants g and
q are equal to 1. Further, we use the normal basis {v = 01, v2 = 10}.

(e, f) = (a, b) × (c, d) ⇔
{

e = (a + b)(c + d) + ac,

f = (a + b)(c + d) + bd.
(10)

To construct a shared multiplication, each of the four inputs a, b, c, and d and the results
e and f are divided into three shares:

(e1 + e2 + e3)

= (a1 + a2 + a3)(c1 + c2 + c3)

+(
(a1 + a2 + a3) + (b1 + b2 + b3)

)(
(c1 + c2 + c3) + (d1 + d2 + d3)

)
,

(f1 + f2 + f3)

= (b1 + b2 + b3)(d1 + d2 + d3)

+ (
(a1 + a2 + a3) + (b1 + b2 + b3)

)(
(c1 + c2 + c3) + (d1 + d2 + d3)

)
.

After expanding the multiplication formulas, each term of the two component functions
is placed into one of the three output shares. Since the multiplication consists only of
quadratic terms it is always possible to fulfill Property 2:

e1 = a2d2 + a2d3 + a3d2 f1 = a2c2 + a2c3 + a3c2

+ b2c2 + b2c3 + b3c2 + a2d2 + a2d3 + a3d2

+ b2d2 + b2d3 + b3d2, + b2c2 + b2c3 + b3c2,

e2 = a1d3 + a3d1 + a3d3 f2 = a1c3 + a3c1 + a3c3

+ b1c3 + b3c1 + b3c3 + a1d3 + a3d1 + a3d3

+ b1d3 + b3d1 + b3d3, + b1c3 + b3c1 + b3c3,

e3 = a1d1 + a1d2 + a2d1 f3 = a1c1 + a1c2 + a2c1

+ b1c1 + b1c2 + b2c1 + a1d1 + a1d2 + a2d1

+ b1d1 + b1d2 + b2d1, + b1c1 + b1c2 + b2c1.

To fulfill Property 3 we need a uniform output share distribution for each of the
16 unshared input values (a, b, c, d). For example, the input (a, b, c, d) = 0111 re-
sults in the output (e, f) = 01. The shared result is uniform, if each possible value of
(e1, e2, e3, f1, f2, f3) with e1 + e2 + e3 = 0 and f1 +f2 +f3 = 1 occurs equally likely.
We have 24 unshared and 212 shared input values and, hence, we get 212−4 = 28 values
for each unshared output (e, f). Since two bits of the shares (e1, e2, e3, f1, f2, f3) have
already been determined, each of the remaining 24 shares has to occur 28−4 = 24 times.

The input of the shared multiplication are the 12 variables ai , bi , ci and di with
i ∈ {1,2,3}. When searching for uniform functions, we can add only correction terms
which have the same index i in all of its elements. We get one constant, four linear and

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

six quadratic terms, four terms of degree 3 and one term (aibicidi) of degree 4. This
gives 16 possible correction terms for each shared component function of e and f . The
search space of finding a uniform representation can be reduced by allowing for only a
limited number of correction terms. Further, ei and fi are rotation symmetric and each
Boolean shared function needs to be balanced. Using at most six linear or quadratic
correction terms, we have found thousands of uniform realizations of the multiplication
in GF(4) using three shares. Hence, a hardware designer has still lots of freedom to
choose an efficient implementation. We give one example for correction terms here:

e′
1 = a3 + b2c2 + b3c3 + a2c2,

f ′
1 = c3 + d3 + a2c2 + a3c3 + b2d2 + b3d3,

e′
2 = a1 + a3 + d1 + b1c1 + b3c3 + a1d1,

f ′
2 = c3 + d1 + d3 + a3c3 + b1d1 + b3d3,

e′
3 = a1 + d1 + b1c1 + b2c2 + a2c2 + a1d1,

f ′
3 = d1 + a2c2 + b1d1 + b2d2.

6. Secure Implementation of Noekeon

In the previous section we have analyzed which nonlinear function can be successfully
shared such that all required properties are fulfilled. It turns out to be quite difficult to
find a realization for more complex functions such as the AES. Especially Property 3
is difficult to achieve if no new randomness is added to the shares. However, the block
ciphers Noekeon [10] and Present [6] have been designed for compact hardware im-
plementations and consist of less complex nonlinear functions. Therefore, it is easier to
find a realization for these block ciphers which is shown in this section for Noekeon and
in [28] for Present.

In the following, we show a realization for the S-box of the Noekeon block cipher
using three shares. We have implemented this shared function and simulate the power
consumption based on back-annotated netlists, which takes data dependent glitches and
timing delays into account. Then, we analyze the side-channel resistance of sharing by
attacking this shared S-box and confirm its security against first-order attacks. Addi-
tionally, we analyze the higher-order resistance of the shared Noekeon S-box at the end
of this section.

6.1. Noekeon

Noekeon is a block cipher with a block and key length of 128 bits, which has been de-
signed to counter implementation attacks. It is an iterated cipher consisting of 16 iden-
tical rounds. In each round five simple round transformations are applied. The cipher is
completely linear except for the nonlinear S-box Gamma. The linear parts can be pro-
tected against first-order DPA using one mask (two shares), whereas for the nonlinear
part this is not possible.

S. Nikova, V. Rijmen, and M, Schläffer

Table 2. The substitution table of the 4-bit S-box Gamma of the block cipher Noekeon.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 7 A 2 C 4 8 F 0 5 9 1 E 3 D B 6

The nonlinear 4-bit S-box Gamma is defined by Table 2 and consists of two equal
nonlinear layers NL(x), separated by a linear layer L(x):

S(x) = NL
(
L

(
NL(x)

))
. (11)

The nonlinear layer (e, f, g,h) = NL(a, b, c, d), which consists of only one AND, one
NOR and two XOR operations, and the linear layer (i, j, k, l) = L(a, b, c, d) are defined
by:

e = a + (b ∧ c) = a + bc, i = d,

f = b + ¬(c ∨ d) = 1 + b + c + d + cd, j = b,

g = c, k = a + b + c + d,

h = d, l = a.

Due to this simple structure of the S-box, it is relatively easy to find a realization using
three shares, which we show in the following subsection.

6.2. Sharing the Noekeon S-box Using Three Shares

Since the algebraic degree of this function is 3, the whole function cannot be shared
using three shares. However, if we split Gamma into two layers with algebraic degree
two, we can share it using three shares again. We split Gamma after the linear layer
and combine the first nonlinear layer with the linear layer to get y = L(NL(x)) and
z = NL(y). This results in less complex formulas and we get for the ANF of the resulting
eight Boolean component functions (i, j, k, l) = L(NL(a, b, c, d)) and (e, f, g,h) =
NL(i, j, k, l):

i = d, e = i + jk,

j = 1 + b + c + d + cd, f = 1 + j + k + l + kl,

k = 1 + a + b + bc + cd, g = k,

l = a + bc, h = l.

To share these functions we need to share the four inputs and outputs of each layer and
get 24 shared Boolean functions. To construct these functions, we have placed the terms
depending on their index into the regarding output share. This results in uniform shared
functions for both layers of Gamma. The formulas for the two layers of the shared
Noekeon S-box using three shares are shown in Appendix A.

We have implemented both the protected and the unprotected Noekeon S-box using
a 0.35 µm standard cell library [3]. A schematic of the shared Noekeon S-box is shown
in Fig. 2. In a straightforward implementation using just the ANF of the functions, the

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

Fig. 2. A schematic of the shared Noekeon S-box using three shares.

protected S-box is approximately 3.5 times larger than the unprotected S-box (188 gate
equivalents compared to 54 gate equivalents). Since there is room for further improve-
ments and the linear parts of the Noekeon cipher can be implemented using two shares
only, the relative increase in size of the implementation for the whole cipher will be
smaller. This shows that shared implementations can already compete with other hard-
ware countermeasures.

6.3. Side-Channel Attacks Based on Simulated Power Consumptions

To analyze the side-channel resistance of secure implementations, it is common to sim-
ulate the instantaneous power consumption of a device under attack. This is the first step
to verify the effectiveness of a countermeasure. A quite accurate model is to determine
the power consumption using the transition count model and a back-annotated netlist to
derive the timing delays [16]. The simulated power consumption L(t) is computed by
counting the transitions at each point in time for an appropriate time quantization. The
resulting power traces cover the dynamic switching characteristics of CMOS circuits
which usually leak most information about the processed data. Note that this model
takes data dependent glitches and timing delays into account and the simulated device
leaks the Hamming distance (HD) between the previously and newly computed values.

In order to study the side-channel resistance of the shared S-box of Noekeon we have
simulated the power consumption of the synthesized circuit using the transition count
model with the timing delays of the used standard cell library. Usually, the resulting
power traces depend on a secret key and a side-channel attack is applied to recover this
key. We have implemented a shared Noekeon S-box with key addition at its input of the
form z = S(k ⊕ d), where k is the secret key, d the known input data and z the output of
the S-box. The shared Noekeon S-box takes as its input x1 = k ⊕ m1, x2 = d ⊕ m2, and
x3 = m1 ⊕ m2, with m1 and m2 two independent random masks. The simulated power
consumption at time t is denoted by L(t) and examples of simulated power traces for the
secret key k = 11 are given in Fig. 3. Note that in each clock cycle, glitches occur since
many signals switch their state more than once until the output of the combinational
logic is settled.

S. Nikova, V. Rijmen, and M, Schläffer

Fig. 3. A single (left) and 100 (right) simulated power traces for key k = 11 with a time quantization of 16
for each clock cycle. The two clock cycles of the computation (first layer: time 0-1, second layer: time 1-2)
and the cycle for storing the result in the output register (time 2-3) are clearly visible.

6.4. Correlation Attack

In this section, we analyze the first-order resistance of the shared Noekeon S-box. We
use a correlation attack to detect linear and first-order dependencies between the hypo-
thetical and simulated power consumption. Hence, according to Theorem 4 a successful
correlation attack on the shared Noekeon S-box should not be possible.

In a correlation attack, we try to correlate the simulated power consumption L(t)

with the hypothetical power consumption H(k) derived from the different key guesses
k and an appropriate power model. If the simulated device leaks the Hamming distance
(HD), also the hypothetical power consumption H(k) is based on the Hamming dis-
tance between the previously and newly computed hypothetical values. If the correct
key guess results in a correlation value that can be statistically distinguished from the
correlation values obtained using the wrong key guesses, then we declare the attack to
be successful.

We have computed the correlation between the simulated power consumption L(t)

and the hypothetical power consumption for the first Hy(k) = HD(y′, y′′) and second
layer Hz(k) = HD(z′, z′′) of the Noekeon S-box (y′, z′: previous values; y′′, z′′: new
values). Figure 4 shows the results for the unprotected (unshared) S-box. The correct
key guess results in a much larger correlation between L(t) and H(k) for each layer.
The results of the shared Noekeon S-box are shown in Fig. 5. There is no point in time
where the correlation between L(t) and H(k) for the correct key guess is distinguishable
from the correlation for the wrong key guesses. These results show that there is no
linear relation between the number of transitions and the unshared values. This confirms
Theorem 4 in practice and that a constant mean power consumption can be achieved
using the proposed sharing approach.

6.5. Mutual Information Analysis (MIA)

In the previous section we have verified that the mean power consumption is indepen-
dent of the unshared values. Hence, we have shown that the sharing scheme resists first-
order attacks using simulated power traces. In this section we perform a higher-order

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

Fig. 4. Simulated correlation attack on the unshared Noekeon S-box (black: correct key), with a time quan-
tization of 8 for each clock cycle which gives the best result.

attack or more specific, we analyze higher-order moments of the probability distribution
functions of the unshared values. Note that we do not claim provable security against
higher-order attacks in the case of the shared Noekeon S-box using three shares. Only
the mean value (the first-order moment) is provably independent of the unshared values.
Note that in Boolean masking, the distribution using three shares is not independent of
the unshared value. For example, a 1-bit value 0 is shared by {000,011,110,101} and
a 1-bit value 1 by {001,010,100,111} which clearly shows that the distributions or
higher-order moments are not independent of the unshared values.

Hence, Boolean sharing (or masking) schemes are usually not resistant against
higher-order attacks. If the power consumption of more shares are combined, the prob-
ability distribution functions of each unshared value can be distinguished by analyzing
their higher-order moments [26,34]. To analyze higher-order dependencies of proba-
bility distribution functions, mutual information analysis (MIA) has been proposed in
[12]. Indeed, mutual information analysis can lead to better side-channel attacks if the
measured statistical leakage L(t) is related to the hypothesis H(k) in a nonlinear way
[29,40]. However, using more shares the resistance of Boolean masking increases if the
noise increases as well [8,34].

S. Nikova, V. Rijmen, and M, Schläffer

Fig. 5. Simulated correlation attack on the shared Noekeon S-box (black: correct key), with a time quanti-
zation of 16 for each clock cycle which gives the best result.

In the following, we first give a brief introduction to mutual information analysis.
The mutual information of two random variables x and y can be defined using the
(conditional) entropy of these two variables. The entropy H(x) of a random variable x

is a measure of the amount of information one can obtain from an observation of x. The
entropy is defined as

H(x) = −
∑

X∈x

Pr(x = X) · log2
(
Pr(x = X)

)
.

To determine the mutual information, we also need to compute the conditional entropy.
The Conditional Entropy specifies the entropy of a random variable x, given a random
variable y which has been obtained from some related experiment and is defined as
follows:

H(x|y) =
∑

Y∈y

Pr(y = Y) · H(x|y = Y).

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

Fig. 6. Mutual information analysis on the shared Noeken S-box (black: correct key). In the first cycle only
the combinational logics and in the third cycle only the registers are attacked.

Using these two definitions, the Mutual Information gives the amount of information
that the given random variable y reveals about x and is defined as follows:

I(x;y) = H(x) − H(x|y).

We apply a mutual information analysis to the same simulated power consumption
L(t) as in the correlation attack. Again, the hypothetical power consumption is the Ham-
ming distance (HD) of the unshared values again and we get Hy = HD(y′, y′′) for the
first, and Hz = HD(z′, z′′) for the second layer. Then, we evaluate I(Hy(k);L(t)) and
I(Hz(k);L(t)) for all key guesses, which gives the mutual information between the hy-
pothetical and simulated power consumption. We have determined the probability dis-
tribution functions (pdf) of H(k) and L(t) using the histogram method with 256 bins.
For more details on computing the mutual information we refer to [29]. For a success-
ful attack, the mutual information using the correct key guess should be statistically
distinguishable from the mutual information using the wrong key guesses.

Figure 6 and Fig. 7 show the result of the mutual information analysis for the first
and second layer of the shared Noekeon S-box at different points in time. In this attack
we have used the total transition count for each clock cycle. Note that the results of the
attacks do not change if a higher time quantization or more traces are used. We have
attacked the three peaks of Fig. 3 at clock cycle 1, 2 and 3: Fig. 6(a) shows the first
cycle (time 0-1), where only the combinational logic of the first layer is computed, and
Fig. 6(b) shows the third cycle (time 2-3), where the output of the shared S-box is stored
in the output registers without subsequent combinational logic. The mutual information
analysis shows that an attack on merely the combinational logic (first cycle, Fig. 6(a))
is not feasible due to the high algorithmic noise of the combinational logic itself. The
correct key can only be recovered in the third cycle, where only the result of the second
layer is stored in the output register (Fig. 6(b)). In this case the register transitions are
measured and attacked without any noise.

S. Nikova, V. Rijmen, and M, Schläffer

Fig. 7. Mutual information analysis on the shared Noeken S-box (black: correct key). In the second cycle,
the computation of the combinational logic overlaps storing the previous results in the registers.

6.6. Protections against Mutual Information Analysis

Even though an attack is feasible in the third cycle, sharing is secure in the first-order
setting i.e. if only the power consumption of one combinational logic or the mean of the
total power consumption is analyzed. However, mutual information analysis exploits
higher-order moments of the probability distribution function as well as the combina-
tion of all three shares. Note that higher-order countermeasures such as sharing are more
powerful in the presence of noise. Additionally, the measurement of higher-order mo-
ments is also more sensitive to noise. Note that in practice, the transitions of the registers
are overlapped by the algorithmic noise of the subsequent combinational logic which
makes a higher-order comparison of probability distribution functions more difficult.

We confirm this behavior by performing a mutual information analysis on the second
cycle (time 1-2), where the results of the previous computation are stored in the registers
and the combinational logic of the second layer is computed. The results show that an
attack is indeed not possible if the transitions of the registers are overlapped by the
transitions of the subsequent combinational logic (second cycle, Fig. 7(a) and Fig. 7(b)).
Hence, already the algorithmic noise make a mutual information analysis infeasible for
shared implementations. In practice, the noise level will be even higher and it seems
to be difficult that a shared implementation can be attacked in practice using mutual
information analysis.

7. Conclusion

In this paper we have proposed a method to construct implementations of cryptographic
functions that are secure against a large class of side-channel attacks, making only mini-
mal assumptions on the underlying hardware. In particular, our method works also when
the hardware technology is not glitch-free.

The approach is based on multi-party computation protocols. It also takes into ac-
count that in order to be used in practice, the overhead caused by protection measures
should be kept under control. We have defined three properties that are sufficient to

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

make an implementation resistant against attacks that work by computing the correla-
tion between the average power consumption of the device and the hypothetical power
consumption using a known (guessed) key.

We have analyzed which basic nonlinear functions can be securely implemented us-
ing the minimum of three shares and presented a method to construct shared Boolean
functions. We have implemented the block cipher Noekeon using only three shares by
introducing pipelining stages separated by latches or registers. Finally, we have pre-
sented the first verification of this implementation method based on computer simula-
tions.

We see several possibilities to extend our work. Firstly, it might be possible to ex-
tend our approach in order to achieve provable resistance against a wider range of at-
tacks, e.g. by using more shares and/or fresh randomness after a number of steps. An
alternative approach would be to introduce some assumptions on the hardware and the
signal-to-noise ratio of its side-channels. For instance, in theory very powerful mutual
information attack turns out to be very sensitive toward noise. Combining our approach
with the addition of fresh randomness or some extra noise to the hardware circuit seems
to result in a very strong protection (also see [28]).

Secondly, one might want to provide resistance also against fault attacks. In a fault
attack, the attacker causes an error during the execution of the cryptographic functions
in order to defeat some of the protection mechanisms. In some sense, a fault attack
compares to an ordinary side-channel attack like a chosen-plaintext attack compares to a
known-plaintext attack. We imagine that techniques from threshold cryptography could
help to make a circuit recover automatically from errors, without leaking information.

A third line of future work is to securely implement more complex nonlinear func-
tions, such as the AES S-boxes, which is still a mathematically challenging task. How-
ever, the construction of complex Boolean functions according to Theorem 4 can be
simplified by using additional, fresh random input masks at each register level.

Acknowledgements

We thank Thomas Popp and Marcel Medwed for many useful discussions. This work
has been supported in part by the IAP Programme P6/26 (BCRYPT) of the Belgian
State (Belgian Science Policy), by the Research Fund K.U.Leuven and by the European
Commission under contract ICT-2007-216646 (ECRYPT II). We also thank Thomas
Popp and Marcel Medwed for many useful discussions.

Appendix A. Formulas for the Noekeon S-box Using Three Shares

The formulas in ANF of the shared Noekeon S-box or nonlinear function Gamma using
three shares. The first step combines the first nonlinear layer with the linear layer:

S. Nikova, V. Rijmen, and M, Schläffer

i1 = d2,

i2 = d3,

i3 = d1,

j1 = 1 + b2 + c2 + d2 + c2d2 + c3d2 + c2d3,

j2 = b3 + c3 + d3 + c3d1 + c1d3 + c3d3,

j3 = b1 + c1 + d1 + c1d1 + c2d1 + c1d2,

k1 = 1 + a2 + b2 + b2c2 + b3c2 + b2c3 + c2d2 + c3d2 + c2d3,

k2 = a3 + b3 + b3c1 + b1c3 + b3c3 + c3d1 + c1d3 + c3d3,

k3 = a1 + b1 + b1c1 + b2c1 + b1c2 + c1d1 + c2d1 + c1d2,

l1 = a2 + b2c2 + b3c2 + b2c3,

l2 = a3 + b3c1 + b1c3 + b3c3,

l3 = a1 + b1c1 + b2c1 + b1c2.

The second step consists only of the second nonlinear layer:

e1 = i2 + j2k2 + j3k2 + j2k3,

e2 = i3 + j3k1 + j1k3 + j3k3,

e3 = i1 + j1k1 + j2k1 + j1k2,

f1 = 1 + j2 + k2 + l2 + k2l2 + k3l2 + k2l3,

f2 = j3 + k3 + l3 + k3l1 + k1l3 + k3l3,

f3 = j1 + k1 + l1 + k1l1 + k2l1 + k1l2,

g1 = k2,

g2 = k3,

g3 = k1,

h1 = l2,

h2 = l3,

h3 = l1.

References

[1] M.L. Akkar, C. Giraud, An implementation of DES and AES, secure against some attacks, in CHES,
ed. by Çetin Kaya Koç, D. Naccache, C. Paar. LNCS, vol. 2162 (Springer, Berlin, 2001), pp. 309–318

[2] M.L. Akkar, R. Bevan, L. Goubin, Two power analysis attacks against one-mask methods, in FSE, ed.
by B.K. Roy, W. Meier. LNCS, vol. 3017 (Springer, Berlin, 2004), pp. 332–347

Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches

[3] Austria Microsystems: Standard Cell Library 0.35 µm CMOS (C35), http://asic.austriamicrosystems.
com/databooks/c35/databook_c35_33

[4] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract), in STOC (ACM, New York, 1988), pp. 1–10

[5] J. Blömer, J. Guajardo, V. Krummel, Provably secure masking of AES, in Selected Areas in Cryptogra-
phy, ed. by H. Handschuh, M.A. Hasan. LNCS, vol. 3357 (Springer, Berlin, 2004), pp. 69–83

[6] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin, C. Vikkel-
soe, PRESENT: An ultra-lightweight block cipher, in CHES, ed. by P. Paillier, I. Verbauwhede. LNCS,
vol. 4727 (Springer, Berlin, 2007), pp. 450–466

[7] D. Canright, A very compact S-box for AES, in CHES, ed. by J.R. Rao, B. Sunar. LNCS, vol. 3659
(Springer, Berlin, 2005), pp. 441–455

[8] S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi, Towards sound approaches to counteract power-analysis at-
tacks, in CRYPTO, ed. by M.J. Wiener. LNCS, vol. 1666 (Springer, Berlin, 1999), pp. 398–412

[9] J. Daemen, V. Rijmen, AES proposal: Rijndael. Submitted as an AES Candidate Algorithm (2000),
http://www.nist.gov/aes

[10] J. Daemen, M. Peeters, G.V. Assche, V. Rijmen, Nessie proposal: NOEKEON. Submitted as an NESSIE
Candidate Algorithm (2000), http://www.cryptonessie.org

[11] W. Fischer, B.M. Gammel, Masking at gate level in the presence of glitches, in CHES, ed. by J.R. Rao,
B. Sunar. LNCS, vol. 3659 (Springer, Berlin, 2005), pp. 187–200

[12] B. Gierlichs, L. Batina, P. Tuyls, B. Preneel, Mutual information analysis, in CHES, ed. by E. Oswald,
P. Rohatgi. LNCS, vol. 5154 (Springer, Berlin, 2008), pp. 426–442

[13] J.D. Golic, C. Tymen, Multiplicative masking and power analysis of AES, in CHES, ed. by B.S. Kaliski
Jr., Çetin Kaya Koç, C. Paar. LNCS, vol. 2523 (Springer, Berlin, 2002), pp. 198–212

[14] Y. Ishai, M. Prabhakaran, A. Sahai, D. Wagner, Private circuits II: Keeping secrets in tamperable circuits,
in EUROCRYPT, ed. by S. Vaudenay. LNCS, vol. 4004 (Springer, Berlin, 2006), pp. 308–327

[15] Y. Ishai, A. Sahai, D. Wagner, Private circuits: Securing hardware against probing attacks, in CRYPTO,
ed. by D. Boneh. LNCS, vol. 2729 (Springer, Berlin, 2003), pp. 463–481

[16] M. Kirschbaum, T. Popp, Evaluation of power estimation methods based on logic simulations, in Aus-
trochip, ed. by K.C. Posch, J. Wolkerstorfer (Verlag der Technischen Universität Graz, Graz, 2007), pp.
45–51

[17] P.C. Kocher, J. Jaffe, B. Jun, Differential power analysis, in CRYPTO, ed. by M.J. Wiener. LNCS, vol.
1666 (Springer, Berlin, 1999), pp. 388–397

[18] S. Mangard, K. Schramm, Pinpointing the side-channel leakage of masked AES hardware implementa-
tions, in CHES, ed. by L. Goubin, M. Matsui. LNCS, vol. 4249 (Springer, Berlin, 2006), pp. 76–90

[19] S. Mangard, T. Popp, B.M. Gammel, Side-channel leakage of masked CMOS gates, in CT-RSA, ed. by
A. Menezes. LNCS, vol. 3376 (Springer, Berlin, 2005), pp. 351–365

[20] S. Mangard, N. Pramstaller, E. Oswald, Successfully attacking masked AES hardware implementations,
in CHES, ed. by J.R. Rao, B. Sunar. LNCS, vol. 3659 (Springer, Berlin, 2005), pp. 157–171

[21] S. Mangard, E. Oswald, T. Popp, Power Analysis Attacks—Revealing the Secrets of Smart Cards
(Springer, Berlin, 2007), http://www.dpabook.org

[22] T.S. Messerges, Securing the AES finalists against power analysis attacks, in FSE, ed. by B. Schneier.
LNCS, vol. 1978 (Springer, Berlin, 2000), pp. 150–164

[23] S. Nikova, C. Rechberger, V. Rijmen, Threshold implementations against side-channel attacks and
glitches, in ICICS, ed. by P. Ning, S. Qing, N. Li. LNCS, vol. 4307 (Springer, Berlin, 2006), pp. 529–
545

[24] S. Nikova, V. Rijmen, M. Schläffer, Secure hardware implementation of non-linear functions in the
presence of glitches, in ICISC, ed. by P.J. Lee, J.H. Cheon. LNCS, vol. 5461 (Springer, Berlin, 2008),
pp. 218–234

[25] E. Oswald, S. Mangard, N. Pramstaller, V. Rijmen, A side-channel analysis resistant description of the
AES S-box, in FSE, ed. by H. Gilbert, H. Handschuh, LNCS, vol. 3557 (Springer, Berlin, 2005), pp.
413–423

[26] F.J. Pautot, Some formal solutions in side-channel cryptanalysis—an introduction. Cryptology ePrint
Archive, Report 2008/508 (2008), http://eprint.iacr.org/

[27] T. Popp, S. Mangard, Masked dual-rail pre-charge logic: DPA-resistance without routing constraints, in
CHES, ed. by J.R. Rao, B. Sunar. LNCS, vol. 3659 (Springer, Berlin, 2005), pp. 172–186

http://asic.austriamicrosystems.com/databooks/c35/databook_c35_33
http://asic.austriamicrosystems.com/databooks/c35/databook_c35_33
http://www.nist.gov/aes
http://www.cryptonessie.org
http://www.dpabook.org
http://eprint.iacr.org/

S. Nikova, V. Rijmen, and M, Schläffer

[28] A. Poschmann, A. Moradi, K. Khoo, C.W. Lim, H. Wang, S. Ling, Side-channel resistant crypto for less
than 2,300 GE. J. Cryptol. Special Issues on Hardware and Security (2010). doi:10.1007/s00145-010-
9086-6

[29] E. Prouff, M. Rivain, Theoretical and practical aspects of mutual information based side channel analy-
sis, in ACNS, ed. by M. Abdalla, D. Pointcheval, P.A. Fouque, D. Vergnaud. LNCS, vol. 5536 (2009),
pp. 499–518

[30] J.M. Rabaey, Digital Integrated Circuits: A Design Perspective (Prentice-Hall, Upper Saddle River,
1996)

[31] M. Rivain, E. Dottax, E. Prouff, Block ciphers implementations provably secure against second order
side channel analysis, in FSE, ed. by K. Nyberg. LNCS, vol. 5086 (Springer, Berlin, 2008), pp. 127–143

[32] K. Schramm, C. Paar, Higher order masking of the AES, in CT-RSA, ed. by D. Pointcheval. LNCS, vol.
3860 (Springer, Berlin, 2006), pp. 208–225

[33] A. Shamir, How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[34] F.X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed, M. Kasper, S. Mangard, The

world is not enough: Another look on second-order DPA. Cryptology ePrint Archive, Report 2010/180
(2010), http://eprint.iacr.org/

[35] D. Suzuki, M. Saeki, T. Ichikawa, DPA leakage models for CMOS logic circuits, in CHES, ed. by J.R.
Rao, B. Sunar. LNCS, vol. 3659 (Springer, Berlin, 2005), pp. 366–382

[36] K. Tiri, I. Verbauwhede, Securing encryption algorithms against DPA at the logic level: Next genera-
tion smart card technology, in CHES, ed. by C.D. Walter, Çetin Kaya Koç, C. Paar. LNCS, vol. 2779
(Springer, Berlin, 2003), pp. 125–136

[37] K. Tiri, I. Verbauwhede, A logic level design methodology for a secure DPA resistant ASIC or FPGA
implementation, in DATE (IEEE Computer Society, Los Alamitos, 2004), pp. 246–251

[38] E. Trichina, T. Korkishko, K.H. Lee, Small size, low power, side channel-immune AES coprocessor:
Design and synthesis results, in AES Conference, ed. by H. Dobbertin, V. Rijmen, A. Sowa. LNCS, vol.
3373 (Springer, Berlin, 2004), pp. 113–127

[39] E. Trichina, D.D. Seta, L. Germani, Simplified adaptive multiplicative masking for AES, in CHES, ed.
by B.S. Kaliski Jr., Çetin Kaya Koç, C. Paar. LNCS, vol. 2523 (Springer, Berlin, 2002), pp. 187–197

[40] N. Veyrat-Charvillon, F.X. Standaert, Mutual information analysis: How, when and why? in CHES, ed.
by C. Clavier, K. Gaj. LNCS, vol. 5747 (Springer, Berlin, 2009), pp. 429–443

[41] J. Waddle, D. Wagner, Towards efficient second-order power analysis, in CHES, ed. by M. Joye, J.J.
Quisquater. LNCS, vol. 3156 (Springer, Berlin, 2004), pp. 1–15

[42] J. Wolkerstorfer, E. Oswald, M. Lamberger, An ASIC implementation of the AES SBoxes, in CT-RSA,
ed. by B. Preneel. LNCS, vol. 2271 (Springer, Berlin, 2002), pp. 67–78

http://dx.doi.org/10.1007/s00145-010-9086-6
http://dx.doi.org/10.1007/s00145-010-9086-6
http://eprint.iacr.org/

	Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches
	Abstract
	Introduction
	Related Work
	History of Countermeasures
	Threshold Cryptography and Multi-Party Computation
	Our Approach

	DPA Attacks on Masking
	Glitches
	Glitches in a Traditionally Masked AND Gate
	Simulating Attacks and Gate Delays

	Sharing
	Terminology
	Realization
	Noncompleteness
	Uniformity
	Implementing Linear Transformations
	Implementing Nonlinear Transformations of Low Degree
	Implementing Arbitrary Functions
	Pipelining
	Summary: What do we Achieve?

	Implementing Nonlinear Functions Using Three Shares
	Constructing Nonlinear Shared Functions
	Sharing Nonlinear Functions with Two Inputs
	Sharing Nonlinear Functions with Three Inputs
	Shared Multiplication in GF(22m)/GF(2m)

	Secure Implementation of Noekeon
	Noekeon
	Sharing the Noekeon S-box Using Three Shares
	Side-Channel Attacks Based on Simulated Power Consumptions
	Correlation Attack
	Mutual Information Analysis (MIA)
	Protections against Mutual Information Analysis

	Conclusion
	Acknowledgements
	Appendix A. Formulas for the Noekeon S-box Using Three Shares
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

