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Abstract. We consider a visual secret sharing scheme with cyclic access
structure for n secret images and n shares, where two consecutive shares
decode one secret image. This secret sharing scheme can be constructed
by using Droste’s method. However the contrast of its scheme is 1/(2n).
In this paper, it is shown that for every integer n ≥ 4, there exists
no construction of such a visual secret sharing scheme having a perfect
black reconstruction and contrast at least 1/4. Also for every even integer
n ≥ 4, a new construction of such a visual sharing scheme that satisfies
a slightly weaker condition and has a contrast 1/4 is given.

1 Introduction

A visual secret sharing scheme (VSS scheme), which is also called a visual cryp-
tography scheme (VCS), was introduced by Naor and Shamir [9]. Since then, it
have been studied in many papers including [1,2,3,6]. A VSS scheme is a special
kind of secret sharing scheme in which the secret is an image comprised of black
and white pixels and encoded into n shares, where each share is usually printed
on a transparency. In k-out-of-n VSS scheme, the secret image can be obtained
only by stacking k of the shares, but we cannot get any information about the
secret image from fewer than k shares.

Droste [5] introduced the following generalized VSS scheme and gave its
construction. Let F be a family of non-empty subsets of {1, 2, . . . , n}, and
{Image(X) | X ∈ F} be a set of |F| secret images, each of which corresponds
to an element of F . Then we can construct n shares Share(1), Share(2), . . . ,
Share(n) so that for any element X ∈ F , a stack of the shares in {Share(i) | i ∈
X} recovers the secret image Image(X), and we cannot get any information
about Image(X) from a set {Share(i) | i ∈ Y } for X �⊆ Y ⊂ {1, 2, . . . , n}. The
family F is called the access structure of the VSS scheme.

If we apply this construction to a VSS scheme with cyclic access structure
given below, then each pixel is split into 2n subpixels and its contrast is 1/(2n).
Thus this VSS scheme loses a lot of contrast in reconstructed images when n is
large.
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In this paper, we first prove that for every n ≥ 4, there exists no construction
of a VSS scheme with cyclic access structure that has a perfect black reconstruc-
tion and contrast greater than or equal to 1/4. Next, for every even n ≥ 4, we
give a new construction of a VSS scheme with cyclic access structure that sat-
isfies a slightly weaker condition and has a contrast 1/4. For n = 3, we give a
similar results with contrast 1/6.

We now explain a VSS scheme with cyclic access structure and another such
a VSS scheme satisfying a slightly weaker condition. They consist of n shares
Share(1), . . . , Share(n) and n secret images Image(1), . . . , Image(n) and
posses the following properties either (a),(b),(c) or (a),(b*),(c):

(a) for every 1 ≤ i ≤ n, a stack of Share(i) and Share(i + 1) reconstructs
Image(i), where Share(n + 1) = Share(1);
(b) for every 1 ≤ k ≤ n, a set {Share(i) | 1 ≤ i ≤ n, i �= k} of n−1 shares gives
us no information about Image(k − 1) and Image(k);
(b*) for every 1 ≤ k ≤ n, a set {Share(i) | 1 ≤ i ≤ n, i �= k, k + 1} of n − 2
shares gives us no information about Image(k − 1), Image(k), Image(k + 1) ;
and
(c) this VSS scheme is perfect, that is, it has a perfect black reconstruction. So
every black pixel of a secret image is recovered into a pure black region in the
reconstructed image.

The condition (b*) says that if two consecutive shares Share(k) and Share(k+1)
are missing, then any information about three images Image(k − 1), Image(k),
Image(k + 1) cannot be obtained. It is obvious that a VSS scheme having the
property (b) satisfies (b*), and so in this sense, we say that the condition (b*) is
slightly weaker than (b). As we shall show, it is impossible to construct a VSS
scheme with cyclic access structure satisfying (a), (b), (c) and having contrast at
least 1/4 for every n ≥ 4. Keeping a high contrast 1/4, we give a new construction
of a VSS scheme with cyclic access structure satisfying (a), (b*), (c) for every
even n ≥ 4.

We now explain the contrast of a VSS scheme with perfect black reconstruc-
tion. Consider such a VSS scheme in which each pixel of secret images is split into
m subpixels in a share. We say that such a perfect VSS scheme has a contrast
δ if for every white pixel of secret images, at least δm subpixels of the corre-
sponding pixel in the reconstructed images are white, and for a certain white
pixel of a secret image, exactly δm subpixels of the corresponding pixel in the
reconstructed images are white.

This paper is organized as follows: In Sect. 2, a construction of cyclic VSS
scheme that satisfies (a), (b), (c) is given where n = 3. In Sect. 3, it is proved
that for every n ≥ 4, non-existence of the VSS scheme that satisfies (a),(b),(c)
and has contrast greater than or equal to 1/4. In Sect. 4, for every even n ≥ 4, a
construction of the VSS scheme satisfying (a), (b*), (c) and having contrast 1/4
is proposed. In appendix A, it is proved that for n = 3 non-existence of the VSS
scheme satisfying (a), (b), (c) and having contrast greater than 1/6. In appendix
B, an example of the VSS scheme for n = 6 and with contrast 1/4 is shown.
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Other results on VSS scheme with many secret images can be found in [6],
[10] and etc.

2 Preliminaries and a VSS Scheme with Cyclic Access
Structure for n = 3

We first introduce some notations and definitions used throughout this paper.
Consider a VSS scheme with cyclic access structure consisting of n secret images
Image(1), . . . , Image(n) and n shares Share(1), . . . , Share(n). All the secret
images are comprised of black and white pixels. Each pixel of secret images is
split into m subpixels in a share.

Hereafter we consider any fixed pixel x of secret images, and denote its color
in Image(i) by img(i) = imgx(i), and by S(i) = Sx(i) the set of subpixels of
Share(i) corresponding to the pixel x. Then the pixel x corresponds to the m×n
subpixels S(1) ∪ S(2) ∪ · · · ∪ S(n). These m × n subpixels can be expressed by
a m × n (0, 1)-matrix B = [bij ], where bij = 1 if the i-th subpixel of S(j) is
black, otherwise bij = 0. Namely, the j-th column vector of B corresponds to
S(j), and we also use S(j) to denote the j-th column vector of B. The matrix
B is called a basis matrix of the VSS scheme, which is the transposed matrix of
usually used basis matrix. For convenience, this matrix is used in this paper. A
2 × 2 (0, 1)-matrix

M(i) =
[
mi1 mi3

mi2 mi4

]

is randomly chosen from the two matrices of the following (1) if the pixel of a
secret image is black, and otherwise it is randomly chosen from (2).

{[
1 0
0 1

]
,

[
0 1
1 0

] }
, (1)

{[
0 0
1 1

]
,

[
1 1
0 0

] }
. (2)

A VSS scheme with cyclic access structure for three secret images and three
shares is presented as Fig. 1.

Fig. 1. The secret images and the shares correspond to the edges and the vertices,
respectively.
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We adopt the Droste’s method. Each pixel is split into six subpixels, and the
6 × 3 (0, 1)-matrix B = [bij ] is defined as follows:

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

m11 m13 1
m12 m14 1
1 m21 m23

1 m22 m24

m33 1 m31

m34 1 m32

⎤
⎥⎥⎥⎥⎥⎥⎦

= [S(1), S(2), S(3)],

which contains M(1), M(2) and M(3) as submatrices.
Consider any fixed pixel x of images. If img(1) is black, then M(1) is chosen

from (1), and so perfect black region is reconstructed by S(1) and S(2), otherwise
M(1) is chosen from (2), and thus one common subpixels of S(1) and S(2) are
white, and hence a white region is reconstructed. For other images, the colors are
reconstructed in the same way by using M(2) and M(3). The security condition
(b) is proved in [5].

We will prove in the appendix that it is impossible to construct a cyclic VSS
scheme satisfying (a), (b), (c) and having contrast greater than 1/6.

3 Non-existence of the VSS with Contrast at Least 1/4

In this section we shall show that if n ≥ 4, then the contrast of a VSS scheme
with cyclic access structure for n images satisfying the conditions (a), (b), (c) is
less than 1/4. Namely, we prove the following theorem.

Theorem 1. Let n ≥ 4 be an integer. Then there exists no construction of a
VSS scheme with cyclic access structure for n secret images that satisfies (a),
(b), (c) and has contrast greater than or equal to 1/4.

Proof. Assume that there exists a construction of a VSS scheme with cyclic
access structure for n images which satisfies (a), (b), (c) and whose contrast is
greater than or equal to 1/4. We consider a fixed pixel x of images, and use the
same notation as in the previous section. Namely, we write img(i) for the color
of x in Image(i), and S(i) for the set of subpixels of Share(i) corresponding to
x. Suppose that each pixel is split into m subpixels. Let Wi, Bi ⊆ {1, 2, · · · , m}
denote the indices of white subpixels and black subpixels of S(i), respectively,
as follows (Fig. 2):

Wi = {k | the k-th subpixel of S(i) is white},
Bi = {k | the k-th subpixel of S(i) is black}.

Put |Wi| = wi and |Bi| = bi. Then m = wi + bi for every i.
Let λ denote the minimum number of |Wi ∩Wi+1| such that img(i) is white

and 1 ≤ i ≤ n. Since the contrast is greater than or equal to 1/4, we have
λ/m ≥ 1/4, and thus

m ≤ 4λ. (3)
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S(1) S(2) S(2) S(3)

Fig. 2. The sets S(1), S(2), S(3) of pixels.

First consider the case that n is even. Without loss of generality, we may
assume that w1 is maximum among all w1, w3, . . . , wn−1 with odd suffixes. Take
a triple (S1(1), S1(2), S1(3)) so that |W1 ∩ W3| is maximum among all triples
(S(1), S(2), S(3)). Let t = |W1∩W3| for the (S1(1), S1(2), S1(3)) (Fig. 2 (i), (iv)).
Assume w3−t < λ. If img(2) is white, then |W2∩W3| ≥ λ and so W1∩W2∩W3 �=
∅. Since our VSS scheme is perfect, this implies that S1(1) and S1(2) must decode
a white pixel. Namely, from (S1(1), S1(3)), we can obtain the information that
(img(1), img(2)) = (black, white) never occurs. This contradicts the security
condition (b). Hence w3 − t ≥ λ. By the choice of w1, we obtain

w1 ≥ w3 ≥ λ + t. (4)

Consider a triple (S2(1), S2(2), S2(3)) decoding (img(1), img(2)) = (white,
white) (Fig. 2 (i), (iii), (iv)). Then for these S2(i), it follows that |W1 ∩W2| ≥ λ
and |W2 ∩ W3| ≥ λ, and so

|W2| ≥ 2λ − |W1 ∩ W3| ≥ 2λ − t (5)

by the maximality of t. By considering a triple (S3(1), S3(2), S3(3)) decoding
(img(1), img(2)) = (black, black) (Fig. 2 (i),(ii),(iv)), we have W2 ⊆ B1 ∩ B3

since the VSS scheme is perfect. Therefore it follows from Fig. 2 (iv), (4), (5)
and the maximality of t that

m = |S3(3)| ≥ |W1 ∩ B3| + |B1 ∩ B3| + |W3|
≥ |W1 ∩ B3| + |W2| + |W3|
≥ (w1 − t) + (2λ − t) + (λ + t)
≥ λ + 2λ − t + λ + t = 4λ.

This inequality together with (3) implies m = 4λ, |W1 ∩ B3| = w1 − t = λ,
|B1 ∩ B3| = |W2| = 2λ − t and |W3| = λ + t. Hence the following equality (6)



6

and statement (7) hold.

w1 = w3 = λ + t, w2 = 2λ − t. (6)

If (img(1), img(2)) = (black, black) then

|W1 ∩ W3| = t and B1 ∩ B3 = W2. (7)

Notice that if the contrast is greater than 1/4, then m > 4λ in (3), and so we
derive a contradiction. Namely, hereafter we consider the case that the contrast
is exactly 1/4.

By applying the same argument to (S(3), S(4), S(5)), we obtain

w3 = w5 = λ + t′, w4 = 2λ − t′, (8)

where t′ is the maximum value of |W3 ∩ W5|. Hence it follows from (6) and (8)
that t = t′ and

w1 = w3 = w5 = λ + t, w2 = w4 = 2λ − t.

By repeating the above argument for (S(j), S(j + 1), S(j + 2)), where j =
5, . . . , n − 1, we have

w1 = w3 = · · · = wn−1 = λ + t, (9)
w2 = w4 = · · · = wn = 2λ − t. (10)

Let s = |W2 ∩ W4| be the maximum value among all triples (S(2), S(3),
S(4)). Then by the same argument as above, we obtain

w2 = w4 = · · · = wn = λ + s, (11)
w1 = w3 = · · · = wn−1 = 2λ − s. (12)

Moreover, it follows from (7) and the symmetry of t and s that if (img(2),
img(3)) = (black, black) then

|W2 ∩ W4| = s and B2 ∩ B4 = W3. (13)

Therefore it follows from (9), (10), (11) and (12) that for every integer 1 ≤ i ≤
n/2,

λ = s + t, w2i−1 = λ + t, w2i = λ + s.

By m = 4λ = 4(s + t) and the symmetry of s and t, we may assume that
t ≥ 1. Consider a sequence (S(1), S(2), S(3), S(4)) decoding (img(1), img(2),
img(3)) = (white, black, black) (Fig. 3). If |W1 ∩ W3| �= t, then by (7) we can
get the information from S(1) and S(3) without S(2) that (img(1), img(2)) =
(black, black) does not occur. This contradicts the condition (b). Hence

|W1 ∩ W3| = t. (14)
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S(1) S(4)S(3)S(2)

Fig. 3. (S(1), S(2), S(3), S(4)) for (img(1), img(2), img(3))=(white, black, black).

Since |W1∩W2| ≥ λ, W2∩W3 = ∅, (14) and |W1| = λ+t, we have |W1∩W2| = λ
(Fig. 3 (ii)). By (13), we have B2 ∩ B4 = W3 and |W2 ∩ W4| = s. Hence

|W1 ∩ W4| = |W1 ∩ W2 ∩ W4| ≤ |W2 ∩ W4| = s. (15)

Next consider a sequence (S(1), S(2), S(3), S(4)) decoding (img(1), img(2),
img(3)) = (black, black, black) (Fig. 4). Then |W1 ∩W3| = t and B1 ∩B3 = W2

by (7). Hence the structure of (S(1), S(2), S(3)) is determined as Fig. 4. Since

S(1) S(4)S(3)S(2)

Fig. 4. (S(1), S(2), S(3), S(4)) for (img(1), img(2), img(3)) = (black, black, black).

t ≥ 1 and B2 ∩ B4 = W3 by (13), we obtain

|W1 ∩ W4| = λ = s + t > s. (16)

Therefore by (15) and (16), we can get the information from (S(1), S(4)) that
if |W1 ∩ W4| = λ, then (img(1), img(2), img(3)) = (white, black, black) does
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not occur. This contradicts the security condition. Hence the proof is complete
in this case.

Suppose that n is odd. By the same argument as (9) and (10), we can show
that the following holds.

λ + t = w1 = w3 = . . . = wn (17)
= w2 = w4 = . . . = wn−1 = 2λ − t. (18)

By applying the same argument as above, we can derive a contradiction. Con-
sequently the theorem is proved.

4 A New Construction of VSS Scheme with Cyclic
Access Structure for Even n ≥ 4

In this section, for every even integer n ≥ 4, a new construction of VSS scheme
with cyclic access structure for n images that satisfies (a), (b*) and (c) is given.
It has contrast 1/4, and every pixel of the images is split into four subpixels in
each share.

Let n = 2r ≥ 4. Hereafter, for any fixed pixel x of images, we consider the
colors img(1), · · · , img(n) and the sets S(1), · · · , S(n) of subpixels corresponding
to x. For every 1 ≤ i ≤ r, let A(i) and B(i) denote two column vectors consisting
of four entries. For convenience, let A(r + 1) = A(1) and B(r + 1) = B(1). Then
by these A(i) and B(i), S(i)’s are randomly determined in one of the following
two ways (Fig. 5).

(S(1), S(2), · · · , S(n)) =
{

(A(1), B(1), A(2), B(2), · · · , A(r), B(r)) or,
(B(r), A(1), B(1), A(2), · · · , A(r)).

For every 1 ≤ i ≤ r, the four row vectors of [A(i)A(i + 1)] consist of

[0 0], [0 1], [1 0], [1 1]. (19)

Namely, [A(i)A(i + 1)] is obtained from the following matrix by a permutation
on the four row vectors:

⎡
⎢⎢⎣

0 0
0 1
1 0
1 1

⎤
⎥⎥⎦ .

On the other hand, B(i) is a column vector consisting of one 0 entry and three
1’s entries, and is determined by the colors of two consecutive colors (img(2i −
1), img(2i)) or (img(2i), img(2i + 1)) according to the decision of S(i)’s.

Example Assume that n = 2r = 6 and (S(1), · · · , S(6)) = (A(1), B(1), A(2),
B(2), A(3), B(3)). Then we first determine three column vectors A(1), A(2), A(3)
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img(1)

img(4)

img(2)

img(6)

img(5)

img(3)

A(2)

B(1)

A(3)

A(1)

B(2)

B(3)

Fig. 5. The graph representing a VSS scheme with cyclic access structure for 6 images.

so that every [A(i)A(i + 1)] consisting of four row vectors of (19). For example,
the following three column vectors satisfy this condition.

[A(1)A(2)A(3)] =

⎡
⎢⎢⎣

0 0 1
0 1 0
1 1 1
1 0 0

⎤
⎥⎥⎦ .

Assume that (img(1), img(2), · · · , img(6)) are (white, black, black, black,
black, white). Then B(1) is determined by a pair (white, black) of colors so that
the second row vector [0, 1] of [A(1), A(2)] works in the reconstruction of img(1)
and img(2). Namely,

B(1) =

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ and [A(1)B(1)A(2)] =

⎡
⎢⎢⎣

0 1 0
0 0 1
1 1 1
1 1 0

⎤
⎥⎥⎦

Similarly, B(2) and B(3) are determined to reconstruct (black, black) and (black,
white) by [A(2), B(2), A(3)] and [A(3), B(3), A(1)], respectively.
Hence

[A(1)B(1)A(2)B(2)A(3)B(3)] =

⎡
⎢⎢⎣

0 1 0 1 1 0
0 0 1 1 0 1
1 1 1 0 1 1
1 1 0 1 0 1

⎤
⎥⎥⎦ ,

and thus the desired colors are reconstructed.

We now prove that a similar construction is always possible for every even
integer n ≥ 4. In order to do so, we need the next lemma.

Lemma 1. Let r ≥ 2 be an integer. Then a sequence (X1, X2, · · · , Xr) of r
column vectors having the following properties can be constructed.
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(i) Each X(i) consists of two 0 entries and two 1 entries.
(ii) For every 1 ≤ i ≤ r, [X(i)X(i + 1)] consist of

[0 0], [0 1], [1 0], [1 1].

(iii) For any integer 1 ≤ k ≤ r, we cannot guess X(k) from the set {X(i) | 1 ≤
i ≤ r, i �= k} of r − 1 vectors.

Proof. We first take X(1) as

X(1) =

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦ .

If r = 2, then X(2) is determined as one of the following four vectors :

X(2) =

⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦ , where {a, b} = {c, d} = {0, 1}.

Assume r ≥ 3. If X(j), j ≥ 1, is given, then X(j + 1) is obtained from X(j)
by independently and randomly replacing

[
0
0

]
and

[
1
1

]
by

[
0
1

]
or

[
1
0

]
.

Thus there exist four distinct X(j + 1). By this method, we can obtain X(1),
X(2), · · · , X(r − 1). The last vector X(r) is randomly determined as follows
depending on both X(r − 1) and X(1). By symmetry, we may assume that
X(r − 1) is one of the following vectors

X(r − 1) =

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
1
0

⎤
⎥⎥⎦ or

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦ .

Then determine

X(r) =

⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

a
b
a
b

⎤
⎥⎥⎦ or

⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦ , respectively,

where {a, b} = {c, d} = {0, 1}. Finally permute all the entries of all X(i) simul-
taneously by any permutation on {1, 2, 3, 4}.



11

We now prove the condition (iii). For any integer 1 ≤ k ≤ r, consider the set
{X(i) | 1 ≤ i ≤ r, i �= k}. Without loss of generality, we may assume that

X(k − 1) =

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦ and

X(k + 1) =

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
1
0

⎤
⎥⎥⎦ or

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦ .

Then

X(k) =

⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

a
b
a
b

⎤
⎥⎥⎦ or

⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦ , respectively,

where {a, b} = {c, d} = {0, 1}. Hence we cannot guess X(k) from {X(i) | 1 ≤
i ≤ r, i �= k}.

We are now ready to give a construction of the whole sequence. By Lemma 1,
first take a random sequence (A(1), A(2), . . . , A(r)). Then each B(i) is cho-
sen from the following four vectors so that (A(i), B(i), A(i + 1)) reconstructs
(img(2i − 1), img(2i)) or (img(2i), img(2i + 1)) according to the decision of
S(i)’s. Namely, we apply the same procedure in the case of n = 6.⎡

⎢⎢⎣
0
1
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦ .

We now discuss the security. Assume that (A(1), B(1), A(2), . . . , B(r)) =
(S(1), S(2), . . . , S(n)). It is easy to see that if B(i) is missing, then we cannot
get any information about img(2i − 1) and img(2i). So we shall next show
that if two consecutive shares A(k), B(k) or B(k), A(k + 1) are missing, then
we cannot get any information about the three secret images (Image(2k − 2),
img(2k−1), img(2k)) or (img(2k−1),img(2k), img(2k +1)). By symmetry, we
may assume that A(k) and B(k) are missing. It is clear that no information about
(img(2k − 1), img(2k)) leaks because of a missing of B(k). By the statement
(iii) of Lemma 1, we cannot guess A(k) from {A(i) | 1 ≤ i ≤ r, i �= k}, which
implies no information about img(2k−2)) leaks. Consequently, the construction
of VSS scheme with cycle access structure for even number images is secure in
the sense (b*).

We conclude the paper with the following problem.

Problem For every odd integer n ≥ 5, can we construct a VSS scheme with
cyclic access structure for n images that satisfies (a), (b*), (c) and has contrast
1/4?
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A Appendix A : Non-existence of the VSS Scheme with
Contrast Greater than 1/6 where n = 3

We now prove that for the VSS of three secret images, the contrast 1/6 is best
possible. Consider any construction of a perfect VSS scheme with cyclic ac-
cess structure for three shares and three secret images. We shall use the same
notations as in Section 3. Assume that S(i) consists of m subpixels, namely,
each pixel is split into m subpixels, where m ≥ 2. Let us define two subsets
Wi, Bi ⊆ {1, 2, · · · , m} as in Section 3. Put |Wi| = wi and |Bi| = bi. Then
m = wi + bi for every i ∈ {1, 2, 3}. Let λ denote the minimum number of
|Wi ∩ Wi+1| such that img(i) is white and 1 ≤ i ≤ 3.

By considering the colors (img(1), img(2), img(3)) = (black, black, black),
we have that Wi and Wj are disjoint for i �= j, that is, S(i) and S(j) have no
white subpixels in common (Fig. 6 (i),(ii),(iv)). Thus

m = |S(i)| ≥ |W1| + |W2| + |W3|. (20)

Similarly, by considering the colors (img(1), img(2), img(3)) = (white, white,
black), we have that |W1 ∩ W2| ≥ λ, |W2 ∩ W3| ≥ λ and W3 ∩ W1 = ∅ (Fig. 6
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Fig. 6. Wi and Bi denote the indices of white and black subpixels of S(i), respectively.

(i),(iii),(iv)). Hence |W2| ≥ 2λ. By considering other similar colors, we can obtain
that |W1| ≥ 2λ and |W3| ≥ 2λ. Therefore it follows from (20) that m = |S(i)| ≥
6λ , which implies that λ/m ≤ 1/6. Hence the contrast of a VSS scheme for
three images satisfying the conditions (a), (b), (c) is less than or equal to 1/6.

A Appendix B : An example of cyclic VSS scheme where
n = 6

An example of VSS scheme with cyclic access structure for six shares and six
secret images are shown below. Here we encode secret images of 100×100 pixels.
Two shares Share(i) and Share(i + 1) recover Image(i), where Share(1) =
Share(7).

Fig. 7. The secret image Image(2).
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Fig. 8. A reconstructed image Image(1)

Fig. 9. A reconstructed image Image(2)


