Skip to main content

Computational Photography: Epsilon to Coded Photography

  • Chapter
Emerging Trends in Visual Computing (ETVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5416))

Included in the following conference series:

Abstract

Computational photography combines plentiful computing, digital sensors, modern optics, actuators, and smart lights to escape the limitations of traditional cameras, enables novel imaging applications and simplifies many computer vision tasks. However, a majority of current Computational photography methods involves taking multiple sequential photos by changing scene parameters and fusing the photos to create a richer representation. Epsilon photography is concerned with synthesizing omnipictures and proceeds by multiple capture single image paradigm (MCSI).The goal of Coded computational photography is to modify the optics, illumination or sensors at the time of capture so that the scene properties are encoded in a single (or a few) photographs. We describe several applications of coding exposure, aperture, illumination and sensing and describe emerging techniques to recover scene parameters from coded photographs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raskar, R., Tan, K., Feris, R., Yu, J., Turk, M.: Non-photorealistic Camera: Depth Edge Detection and Stylized Rendering Using a Multi-Flash Camera. In: Proc. ACM SIGGRAPH (2004)

    Google Scholar 

  2. Tumblin, J., Agrawal, A., Raskar, R.: Why I want a Gradient Camera. IEEE Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  3. Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: motion deblurring using fluttered shutter. ACM Transactions on Graphics 25(3), 795–804 (2006)

    Article  Google Scholar 

  4. Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., Tumblin, J.: Dappled Photography: Mask-Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing. In: Proc. ACM SIGGRAPH (2007)

    Google Scholar 

  5. Nayar, S.K., Narasimhan, S.G.: Assorted Pixels: Multi-Sampled Imaging With Structural Models. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 636–652. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Debevec, M.: Recovering high dynamic range radiance maps from photographs. In: Proc. ACM SIGGRAPH (1997)

    Google Scholar 

  7. Mann, P.: Being ’undigital’ with digital cameras: Extending dynamic range by combining differently exposed pictures. In: Proc. Imaging Science and Technology 46th ann. conference (1995)

    Google Scholar 

  8. Morgan, M., Matusik, P., Hughes, D.: Defocus Video Matting. ACM Transactions on Graphics 24(3) (July 2005) (Proceedings of ACM SIGGRAPH 2005)

    Google Scholar 

  9. Adelson, E.H., Wang, J.Y.A.: Single Lens Stereo with a Plenoptic Camera. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2) (February 1992)

    Google Scholar 

  10. Ren, N.: Fourier Slice Photography. In: ACM SIGGRAPH (2005)

    Google Scholar 

  11. Morimura: Imaging method for a wide dynamic range and an imaging device for a wide dynamic range. U.S. Patent 5455621 (October 1993)

    Google Scholar 

  12. Levoy, M., Hanrahan, P.: Light field rendering. In: ACM SIGGRAPH, pp. 31–42 (1996)

    Google Scholar 

  13. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The Lumigraph. In: ACM SIGGRAPH, pp. 43–54 (1996)

    Google Scholar 

  14. Dowski Jr., E.R., Cathey, W.T.: Extended depth of field through wave-front coding. Applied Optics 34(11), 1859–1866 (1995)

    Article  Google Scholar 

  15. Georgiev, T., Zheng, C., Nayar, S., Salesin, D., Curless, B., Intwala, C.: Spatio-angular Resolution Trade-Offs in Integral Photography. In: Proceedings of Eurographics Symposium on Rendering (2006)

    Google Scholar 

  16. Tumblin, J.: Slides on the Photographic Signal and Film-like Photography. In: Course 3: Computational Photography, ACM SIGGRAPH (2005), www.merl.com/people/raskar/photo/Slides/01BasicJTJuly31.ppt

  17. Light fields, http://en.wikipedia.org/wiki/Light_field

  18. Bidirectional reflectance distribution function, http://en.wikipedia.org/wiki/BRDF

  19. Synthetic Aperture Radar, http://en.wikipedia.org/wiki/Synthetic_aperture_radar

  20. Programmable Interface Controller, http://en.wikipedia.org/wiki/PIC_microcontroller

  21. Bokeh, http://en.wikipedia.org/wiki/Bokeh

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raskar, R. (2009). Computational Photography: Epsilon to Coded Photography. In: Nielsen, F. (eds) Emerging Trends in Visual Computing. ETVC 2008. Lecture Notes in Computer Science, vol 5416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00826-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00826-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00825-2

  • Online ISBN: 978-3-642-00826-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics