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Abstract. On-line/Off-line signatures are used in a particular scenario
where the signer must respond quickly once the message to be signed is
presented. The idea is to split the signing procedure into two phases: the
off-line and on-line phases. The signer can do some pre-computations in
off-line phase before he sees the message to be signed.
In most of these schemes, when signing a message m, a partial signature
of m is computed in the off-line phase. We call this part of signature
the off-line signature token of message m. In some special applications,
the off-line signature tokens might be exposed in the off-line phase. For
example, some signers might want to transmit off-line signature tokens
in the off-line phase in order to save the on-line transmission bandwidth.
Another example is in the case of on-line/off-line threshold signature
schemes, where off-line signature tokens are unavoidably exposed to all
the players in the off-line phase.
This paper discusses this exposure problem and introduces a new no-
tion: divisible on-line/off-line signatures, in which exposure of off-line
signature tokens in off-line phase is allowed. An efficient construction of
this type of signatures is also proposed. Furthermore, we show an im-
portant application of divisible on-line/off-line signatures in the area of
on-line/off-line threshold signatures.

Keywords: Signature Schemes, Divisible On-line/Off-line Signatures,
On-line/Off-line Threshold Signatures.

1 Introduction

On-line/Off-line signatures are used in a particular scenario where the signer
must respond quickly once the message to be signed is presented. This notion
was first introduced by Even, Goldreich and Micali in 1990 [12]. The idea of on-
line/off-line signatures is to split the signing procedure into two phases. The first
? An extended abstract of this paper appears in CT-RSA 2009, LNCS 5473, Springer-

Verlag, 2009.
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phase is off-line: in this phase, the signer does some preparing works before the
message to be signed is presented. The second phase is on-line: once the message
to be signed is known, the signer utilizes the result of the pre-computation and
uses a very short time to accomplish the signing procedure.

As pointed out in [12], some signature schemes such as the Fiat-Shamir [13],
Schnorr [22], El-Gamal [11] and DSS [19] signature schemes can be naturally
viewed as on-line/off-line signature schemes since the first step of these schemes
does not depend on the given message, and can thus be carried out off-line.

Up to now, there are two general paradigms to convert any signature scheme
into an on-line/off-line signature scheme. They are Even et al.’s paradigm [12]
based on one time signatures and Shamir and Tauman’s paradigm [23] based on
trapdoor hash functions. Even et al.’s concrete implementation in [12] has a very
long signature length and thus is not practical. Shamir-Tauman paradigm greatly
reduces the signature length, whilst the on-line computation is fast. In PKC08,
Catalano et al. [6] unified Even et al.’s paradigm and Shamir-Tauman paradigm,
in the sense that they both use an ordinary signature scheme and a (weak)
one time signature scheme as components4. Here the trapdoor hash function
in Shamir-Tauman paradigm is viewed as a weak one time signature scheme.
However, these two paradigms truly have different security characterizations if we
consider the partial signature exposure problem described in the next subsection.
See next subsection for more details.

Some recent works in on-line/off-line signatures have also been done in [21,
24, 25, 7, 17, 8, 4, 3]. These schemes aim at some specific goals such as improving
the efficiency [21, 3], eliminating the random oracle model assumption [17], con-
structing ID-based schemes [24], constructing threshold schemes [8, 4], avoiding
key exposure [7], or avoiding trapdoor hash primitives [25].

1.1 Divisible On-line/Off-line signatures

In most of the on-line/off-line signature schemes( [11, 19, 21, 24, 25, 7, 17, 8, 4, 3]
and some variations of [13, 22]), when signing a message m, a partial signature
of m is computed in the off-line phase. We call this part of signature the off-
line signature token of message m. Although the signature generation is broken
into two stages, the transmission of a signature is at one time, i.e., the whole
signature of a message is transmitted to the recipient at the end of the on-line
phase, while nothing is transmitted in the off-line phase.

A question thus naturally arises: can the off-line signature token be transmit-
ted to the recipient off-line? An equivalent question is: is the signature scheme
still secure if the adversary is allowed to query the signing oracle with a message
depending on this message’s off-line signature token? Addressing this question
is meaningful because in some special applications, the off-line signature tokens
might be exposed in the off-line phase. For example, some signers might want to

4 Here the “weak” means the signature scheme is unforgeable only against generic
chosen message attack [16].
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transmit off-line signature tokens in the off-line phase in order to save the on-
line transmission bandwidth. Another example is in the case of on-line/off-line
threshold signature schemes [8, 4], where off-line signature tokens are unavoid-
ably exposed to all the players in the off-line phase.

Unfortunately, most on-line/off-line signature schemes can not be proven to
be secure if their off-line signature tokens are exposed in the off-line signing
phase.5 In this paper, we introduce a new notion called divisible on-line/off-
line signatures, in which exposure of off-line signature tokens in off-line singing
phase is allowed. To exemplify this new notion, we give in appendices some on-
line/off-line signature schemes extracted from existing literatures, which satisfy
the new property of divisibility. This paper also presents an efficient construction
satisfying the new requirement.
An informal description. Let OS be an on-line/off-line signature scheme.
When signing a message m submitted by a requester (or generated randomly),
the signer uses the signing algorithm of OS to obtain a signature, say Σ. Infor-
mally, we say scheme OS is divisible if: i) Σ can be separated into two parts Σoff

and Σon, where Σoff is computed before the message m is known by the signer.
ii) Before the signer knows the message, he can send Σoff to the recipient first. In
other word, the message requested to be signed in the attack game can depend
on the first part of the signature. A formal definition is presented in Section 3.

An on-line/off-line signature scheme is trivially divisible if its Σoff is null.
For this reason we restrict to non-trivial divisibility in this paper. In the rest of
this paper, the word divisible/divisibility usually means a non-trivial case.
Existing Schemes with divisibility. Some existing on-line/off-line signature
schemes are listed in Table 1 to show whether they can be proven divisible. We
can see that some schemes are divisible such as Scheme Schnorr-OS and Even et
al.’s scheme. However, most schemes like Shamir and Tauman’s general paradigm
can not be proven to have this property, at least using currently known methods.

It is worthwhile noting that Even et al.’s paradigm, which uses an one time
signature scheme as a component, is divisible; whereas Shamir and Tauman’s
general paradigm cannot be proven divisible because it only uses a weak one
time signature scheme.

Remark 1. We argue that El-Gamal signature scheme cannot be proven divisible
using the technique in [11]. In short, the simulated hash oracle H(·) in security
proof should not set the value of H(m‖Σoff) to a value pre-determined in off-
line phase, because that could lead to a hash collision if another m′‖Σoff is also
requested to the hash oracle before Σoff is used.

Motivations. Considering the exposure problem might be interesting by itself.
Besides, there are two main reasons to consider the divisibility of an on-line/off-
line signature scheme:

1. To save the on-line bandwidth. If an on-line/off-line scheme is divisible, the
signer can send the off-line part of the signature in the off-line phase instead of

5 However at present we also cannot present a substantial attack against these schemes
when exposure problem exists.



4

Schemes Divisible? Note

Fiat-Shamir [13] No
El-Gamal [11] No

DSS [19] No
Boneh-Boyen [3] No

Shamir and Tauman’s
paradigm (general) [23] No

Some specific constructions can be
proven divisible. See Appendix A,B.

Xu et al.’s scheme [24] No
It seems divisible. However a
deeper analysis shows it is not.

Chen et al.’s scheme [7] No
Even et al.’s scheme [12] Yes It has a long signature length.

CMTW-OS Yes
See Appendix A. It is extracted
from [8].

BCG-OS Yes
See Appendix B. It is extracted
from [4].

Schnorr-OS Yes
It’s a variant of Schnorr signature
scheme [22]. See Appendix C.

Table 1. Some on-line/off-line signature schemes. The second column shows whether
they can be proved to be divisible using existing methods.

in the on-line phase. This reduces the on-line bandwidth of the communication
channel.

Remark 2. For example, the signer can pre-compute a series of off-line signa-
ture tokens and sends these tokens when the communication channel is not
busy. Alternatively, the signer may store these off-line tokens in the form of
a DVD/CD and send the disk to the recipient directly since these off-line
tokens do not depend on the messages to be later signed. At the same time,
to ensure the one-to-one correspondence of the off-line tokens with the on-line
ones, we can append a digital label to each off-line/on-line signature token.
Note that doing this does not much increase the on-line signature length. For
example, labels of 15 bit each can distinguish more than 32,000 signature
tokens whereas each on-line signature token is at least 160 bits up to date.
Furthermore, the index in the labels can be reused while the unused off-line
signature tokens are exhausted.

2. To construct on-line/off-line threshold signatures. An on-line/off-line thresh-
old signature (OT S) scheme [8, 4] is a threshold signature scheme [9, 10]
which can be partitioned into off-line and on-line phases. There are two main
approaches to prove the unforgeability of a threshold signature scheme: the di-
rect reduction approach (e.g., the part of reduction to the one-more-discrete-
log assumption of Theorem 2 in [8], and the part of reduction to the dis-
crete log assumption of Theorem 1 in [4]) and the simulation approach(e.g.,
[15, 20, 14]). In the direct reduction approach, the security of a threshold
signature scheme is directly reduced to the hardness of an underlying hard
problem such as the factoring problem or the discrete log problem. In the
simulation approach, the security of a threshold signature scheme is reduced
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to the unforgeability of its underlying signature scheme (This reduction ap-
proach is called simulation, and the property which guarantees the success
of simulation is called the simulatability of a threshold signature scheme). In
essence, the two approaches are the same, in the sense that the security is
reduced to the hardness of an underlying hard problem in the end. However,
if the underlying signature scheme is known to be unforgeable, the simulation
approach will simplify the proof.
In Section 5 we prove that if an OT S scheme is simulatable from a divisible
on-line/off-line signature scheme DOS, then the unforgeability of OT S can
be reduced to that of DOS. This provides a theoretical basis for securely
constructing an OT S scheme through the simulation approach.

Related work. The notion of divisible on-line/off-line signatures is first ex-
plicitly given in this paper, but the original idea goes back to [8, 4]. When
proving the unforgeability of an on-line/off-line threshold signature scheme, the
authors noticed that the off-line simulation of the scheme should not depend on
the message to be signed. From [8, 4], we extract two on-line/off-line signature
schemes(CMTW-OS and BCG-OS, see Appendix A,B), which can be proven di-
visible using the same proof techniques in [8, 4]. Besides, some existing schemes
can also be proven divisible. They include Even et al.’s paradigm [12] and Scheme
Schnorr-OS (a variant of Schnorr signature scheme, see Appendix C). Even et
al.’s work has already contained a proof for their scheme’s divisibility. By a new
proof given in Appendix C, Scheme Schnorr-OS can also be proven divisible.

Scheme CMTW-OS and BCG-OS are both based on Shamir and Tauman’s
hash-sign-switch paradigm [23], which utilizes trapdoor hash functions. But
Shamir-Tauman paradigm itself cannot be proven divisible. However, as in CMTW-
OS and BCG-OS, if the specific trapdoor hash functions used can be viewed as a
fully secure one time signature scheme, Shamir-Tauman paradigm can be unified
again into Even et al.’s general paradigm, in the sense that these two paradigms
both uses an one time signature scheme as a component and thus can be proven
divisible.

1.2 Our Contribution

In this paper, we first explicitly give and exemplify the notion of divisible on-
line/off-line signatures. Furthermore, without resorting to the random oracle
model, we present an efficient divisible scheme, which is based on Boneh and
Boyen(BB)’s signature scheme [3]. Compared to divisible schemes extracted from
[8, 4], it does not rely on another signature scheme’s security and is more efficient.
Finally, an application to on-line/off-line threshold signatures is presented. We
show that based on a divisible on-line/off-line signature scheme, an on-line/off-
line threshold signature scheme can be proven unforgeable if it is simulatable.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we give some prelim-
inaries. Section 3 gives the security model of divisible on-line/off-line signatures.



6

Section 4 presents an efficient construction whose security is proven in the stan-
dard model. An important application to on-line/off-line threshold signature
schemes is introduced in Section 5. Section 6 concludes the paper with some
discussions.

2 Preliminaries

2.1 Notations and Definitions

We denote by N the set of natural numbers, and by Z the set of integers. If
k ∈ N, we denote by 1k the concatenation of k ones and by {0, 1}k the set of
bitstrings of bitlength k. By {0, 1}∗, we denote the set of bitstrings of arbitrary
bitlength. “PPT” is an abbreviation for “probabilistic polynomial-time” and “‖”
represents the concatenation operation.

If S is a set, then the notation x
R← S denotes that x is selected randomly

from the set S. Similarly, x ∈R S denotes x is a random element of S. If A is
an algorithm, by A(·) we denote that A receives only one input. If A receives
two inputs we write A(·, ·) and so on. If A(·) is a probabilistic algorithm, y ←
AO1,O2,...(x1, x2, . . . ) means that on input x1, x2, . . . and with access to oracles
O1,O2, . . . , A’s output is y. When a oracle O is written as O(x1, .., xt, ·, ..), we
denote that the oracle’s first t inputs are implicitly given by previously executed
algorithms and the other inputs should be explicitly given by the algorithm
which queries the oracle. If p(·, ·, . . . ) is a predicate, the notation Pr[p(x, y, . . . ) :
x

R← S; y R← T ; . . . ] denotes the probability that p(x, y, . . . ) will be true after the
ordered execution of the algorithms x

R← S, y
R← T, . . . , etc.

Definition 1 (Negligible Function). A function ε : N→ R is negligible if for
all c > 0, ε(k) < 1/kc for all sufficiently large k.

Definition 2 (Discrete Logarithm Assumption). Let p ∈ {0, 1}k be a prime.
Let G be a group of order p and let g ∈ G be a generator of G. Solving the dis-
crete logarithm problem in G is to compute x, given h = gx ∈ G where x is
randomly selected in Zp. The discrete logarithm assumption in G states that the
discrete logarithm problem is hard to solve, i.e., for any PPT algorithm A, the
following probability is negligible in k.

ε(k) = Pr[A(descr(G), g, h) = x : x
R← Zp;h ← gx]

where descr(G) is a description of G which contains the value of p and other
group parameters.

Definition 3 (One-More-Discrete-Log Assumption [1]). Let p ∈ {0, 1}k

be a prime. Let G be a group of order p and let g ∈ G be a generator of G.
Define DLg(·) as a oracle which on input h ∈ G, returns dlgh ∈ Zp (the discrete
logarithm of h to the base of g).
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Solving the n-DL problem is to compute x1, x2, . . . , xn+1, with access to the
oracle DLg(·) at most n times, given h1 = gx1 , . . . , hn+1 = gxn+1 ∈ G where
xi(i = 1, . . . , n + 1) are randomly selected in Zp. The one-more-discrete-log as-
sumption in G states that n-DL problem is hard to solve for any n ∈ N, i.e., for
any n ∈ N and any PPT algorithm A with access to oracle DLg(·) at most n
times, the following probability is negligible in k.

ε(k) = Pr

[
ADLg(·)(descr(G), g, h1, . . . , hn+1) = (x1, . . . , xn+1) :
x1

R← Zp, . . . , xn+1
R← Zp;h1 ← gx1 , . . . , hn+1 ← gxn+1

]

where descr(G) is a description of G which contains the value of p and other
group parameters.

Definition 4 (Bilinear Paring). Let G,GT be two multiplicative cyclic group
of prime order p. A bilinear pairing on (G,GT ) is a function e : G × G → GT

which has the following properties:

1. Bilinear: e(ua, vb) = e(u, v)ab, for all u, v ∈ G and a, b ∈ Z.
2. Non-degenerate: e(u, v) 6= 1 for some u, v ∈ G. Here 1 denotes the identity

element in GT .
3. Computable: paring e(u, v) can be efficiently computed for all u, v ∈ G.

A group G satisfying above definition is called a bilinear group.

For generality, one can set e : G1 × G2 → GT where G1 6= G2. An efficiently
computable isomorphism ψ : G2 → G1 can convert this general case to the
simple case where G1 = G2.

Definition 5 (SDH Assumption [3]). Let G be a group of prime order p
where p ∈ {0, 1}k. Let g be a generator of G and let x be a random element in
Z∗p. Suppose q ∈ N is polynomial bounded in the security parameter k. Solving
the q-SDH problem in G is to find a pair (c, g1/(x+c)) where c ∈ Zp\{−x}, given
a (q + 1)-tuple (g, gx, g(x2), . . . , g(xq)). The q-SDH assumption in group G states
that the q-SDH problem in G is hard to solve, i.e., for any PPT algorithm A,
the following probability is negligible in k.

ε(k) = Pr[A(g, gx, g(x2), . . . , g(xq)) = (c, g1/(x+c)) : x
R← Z∗p]

The SDH assumption in group G states that q-SDH problem is hard to solve for
any polynomial bounded q ∈ N.

The following lemma states that given a q-SDH problem instance (g, gx, . . . , g(xq)),
we can construct a new 1-SDH problem instance (h, hx) with q − 1 known solu-
tions (ci, si = h1/(x+ci)) where any new solution reveals a solution to the original
problem instance. Using the same technique in Lemma 9 of [3], this lemma can
be easily proved.

Lemma 1. There exists a PPT algorithm Γ which satisfies:
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– Its inputs are:
1. descr(G). A description of a group G with prime order p.
2. (g, gx, . . . , g(xq)). A q-SDH problem instance in Group G where q ∈ N.
3. c1, . . . , cq−1 ∈ Zp\{−x}.

– It outputs a PPT algorithm ∆ and a tuple (h, u, s1, . . . , sq−1) ∈ (G\{1})q+1

which satisfy:
1. u = hx.
2. si = h1/(x+ci), i.e., (ci, si) (1 ≤ i ≤ q − 1) are solutions of the 1-SDH

problem instance (h, hx).
3. By using Algorithm ∆, any new solution (c∗, s∗) 6= (ci, si) for the 1-SDH

problem instance (h, hx) reveals a solution to the original instance,i.e., on
inputs (c∗, s∗) ∈ (Zp\{−x}) × (G\{1}) where (c∗, s∗) 6= (ci, si) for all i ∈
{1, . . . , q − 1} and s∗ = h1/(x+c∗), ∆ can output a pair (c, g1/(x+c)) ∈
(Zp\{−x})× (G\{1}) in polynomial time.

3 Security Model

We give the security model of divisible online/offline signatures and some security
notions.

3.1 Syntax

A divisible online/offline signature scheme (DOS) is a tuple of algorithms (KeyGen,
Signoff ,Signon,Ver).

– (pk, sk) ← KeyGen(1k). The Key generation algorithm, a PPT algorithm
which on input a security parameter k ∈ N, outputs a public/private key
pair (pk, sk).

– (Σoff
i , Sti) ← Signoff(sk). The i-th (i ∈ N) execution of the off-line signing

algorithm, a PPT algorithm which on input a private key, outputs a (public)
off-line signature token Σoff

i and a (secret) state information Sti. The state
information is kept secret and will be passed to the i-th execution of the on-line
signing algorithm.

– Σon
i ← Signon(sk, Sti,mi). The i-th (i ∈ N) execution of the on-line signing

algorithm, a PPT algorithm which on input sk, a state information Sti and a
message mi, outputs an on-line signature token Σon

i . The signature for mi is
defined as Σi = (Σoff

i , Σon
i ).

– 0/1 ← Ver(pk, m,Σ). The verification algorithm, a PPT algorithm which on
input the public key pk, a message m and a signature Σ, outputs 0 or 1 for
reject or accept respectively.

Completeness: It is required that if (Σoff, St) ← Signoff(sk) and Σon ←
Signon(sk, St, m), then Ver(pk, m,Σ) = 1 for all (pk, sk) generated by KeyGen(1k).

Remark 3. Signoff and Signon can be viewed as sub-algorithms of a complete
signing algorithm. For simplicity, we use the notation (Σoff, Σon) ← (Signoff ,
Signon)(sk, m) to denote such a complete signing process: (Σoff, St) ← Signoff(sk)
and Σon ← Signon(sk, St, m).
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3.2 Security Notion

In the following, we define a security notion for a divisible on-line/off-line signa-
ture scheme, which is an extension of the standard security definition for ordinary
signature schemes [16].

EU-CMA: For a divisible on-line/off-line signature scheme DOS, existential
unforgeability against adaptive chosen message attacks (EU-CMA) is defined in
the following game. This game is carried out between a challenger and an adver-
sary A. The adversary A is allowed to make queries to an off-line signing oracle
Signoff(sk) and an on-line signing oracle Signon(sk, St, ·) defined in Section 3.1.
We assume that if A makes the i-th on-line signature query then it has already
made the i-th off-line signature query. This requirement is reasonable since the
signer always executes his i-th off-line signature signing before his i-th on-line
signing. If in the random oracle model, A is also allowed to make queries to a
hash oracle h(·) which on input a message in {0, 1}∗, outputs a hash value of
this message. The attack game is as follows:

1. The challenger runs KeyGen on input 1k to get (pk, sk). pk is sent to A.

2. On input (1k, pk),A is allowed to query the oracles Signoff(sk), Signon(sk, St, ·)
(and h(·) if in the random oracle model) polynomial times. The i-th state in-
formation Sti of Signon, which is kept secret from the adversary, is passed
from the i-th execution of Signoff(sk).

3. A outputs a pair (m,Σ).

The adversary wins the game if the message m has never been queried to the on-
line signing oracle Signon(sk, St, ·) and Ver(pk, m,Σ) = 1 holds. Let AdvA,DOS
be the advantage of the adversary A in breaking the signature scheme, i.e.,

AdvA,DOS = Pr
[

Ver(pk, m,Σ) = 1 : (pk, sk) ← KeyGen(1k);
(m,Σ) ← ASignoff(sk),Signon(sk,St,·),η(·)

]

where

η(·) =

{
null (in the standard model)
h(·) (in the random oracle model)

and A has never requested the signature of m from the on-line signing oracle.
The probability is taken over the internal coin tosses of the algorithms KeyGen,
Signoff , Signon and A.
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In detail, if A makes qoff off-line signing queries and qon on-line singing
queries, AdvA,DOS is defined as:

AdvA,DOS = Pr




Ver(pk, m,Σ) = 1 and m 6= mi for all i ∈ {1, . . . , qon} :

(pk, sk) ← KeyGen(1k);

(Σoff
1 , St1) ← Signoff(sk);

· · · · · · · · · · · ·
(Σoff

qoff
, Stqoff) ← Signoff(sk);

m1 ← Aη(pk, Σoff
1 , . . . , Σoff

qoff
);

Σon
1 ← Signon(sk, St1,m1);

· · · · · · · · · · · ·
mqon ← Aη(pk, Σoff

1 , Σon
1 ,m1, . . . , Σ

off
qon

, Σoff
qon+1, . . . , Σ

off
qoff

);
Σon

qon
← Signon(sk, Stqon ,mqon);

(m,Σ) ← Aη(pk, Σoff
1 , Σon

1 ,m1, . . . , Σ
off
qon

, Σon
qon

,mqon , . . . , Σ
off
qoff

)




Definition 6. An adversary A (t, qoff, qon, ε)-breaks a divisible online/offline
signature scheme DOS (in the standard model) if A runs in time at most t,
makes at most qoff queries to the off-line signing oracle, at most qon queries to
the on-line signing oracle, and AdvA,DOS is at least ε.

An adversary A (t, qoff, qon, qh, ε)-breaks a divisible online/offline signature
scheme DOS in the random oracle model if A runs in time at most t, makes at
most qoff queries to the off-line signing oracle, at most qon queries to the on-line
signing oracle, at most qh queries to the hash oracle, and AdvA,DOS is at least
ε.

A divisible on-line/off-line signature scheme DOS is EU-CMA secure if for
every PPT adversary A, AdvA,DOS is negligible.

Difference to the standard definition. The security definition of an ordinary
on-line/off-line signature scheme is in the framework of the standard EU-CMA
definition [16], where the adversary is only allowed to query the oracle Sign(sk, ·)
(and a hash oracle if in the random oracle). In other word, in the attack game
of an ordinary scheme, the off-line signature token is returned to the adversary
only after the message to be signed is submitted, whereas in the game for a
divisible scheme, the adversary obtains the off-line signature token of a message
before he submits this message.

Thus, the unforgeability defined above is stronger than the unforgeability
defined as usual for ordinary on-line/off-line signatures. Note, however, that
the unforgeability defined as usual is enough for the applications where off-line
signature tokens are not exposed in the off-line signing phase.
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4 A Divisible On-line/Off-line Signature Scheme Based
on The SDH Assumption

In this section, we propose an efficient divisible on-line/off-line signature scheme
whose security is proven in the standard model. This scheme is based on Boneh
and Boyen(BB)’s signature scheme [3].

4.1 Construction

Let G be a bilinear group of prime order p, where p’s bit-length depends on
the security parameter. Assume the message space is Zp. Note that using a
collision resistant hash function H : {0, 1}∗ → Zp, one can extend the message
domain to {0, 1}∗. The new divisible on-line/off-line signature scheme is defined
as SDH-OS = (KeyGen,Signoff,Signon,Ver), where

– KeyGen. Pick a random generator g ∈ G. Choose random x, y, z ∈R Z∗p, and
compute X = gx ∈ G\{1}, Y = gy ∈ G\{1} and Z = gz ∈ G\{1}. Also
compute v = e(g, g) ∈ GT \{1}. The public key is (g, X, Y, Z, v). The private
key is (x, y, z).

– Signoff. (The i-th run). Choose a random θ ∈ Zp\{−x}. Compute σ = g
1

(x+θ)

where 1
(x+θ) is the inverse of (x + θ) in Z∗p. Store the state information θ.

Output the off-line signature token σ.
– Signon. (The i-th run, on a message m). Retrieve from the memory the i-th

state information θ. Compute r, w ∈ Zp such that:

m + yr + zw = θ.

(This can be done by first selecting a random r ∈ Zp, and computing w =
(θ −m− yr)z−1 mod p.) Output the on-line signature token (r, w).

– Ver. Given a message m ∈ Zp and a signature (σ, r, w), verify that whether
e(σ,XgmY rZw) = v.

Remark 4. To reduce the on-line signing cost, we can move the selection of r
and computing y · r to the off-line phase. Thus, the on-line signing requires only
1 modular multiplication in Zp.

Completeness: Note that

e(σ,XgmY rZw) = e(g1/(x+θ), gx+m+yr+zw)

= e(g1/(x+θ), gx+θ)
= e(g, g) = v

Thus the proposed scheme satisfies the property of completeness.
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4.2 Security

Theorem 1. The divisible on-line/off-line signature scheme SDH-OS is EU-
CMA secure, provided that the SDH assumption holds in Group G.

Proof. We prove this theorem by contradiction. Assume there exists an algorithm
A which (t, qoff, q−1, ε) breaks the unforgeability of SDH-OS in the game defined
in Section 3. Then we construct an algorithm B which breaks the q-SDH problem
in polynomial time with a non-negligible probability ε′ ≥ ε

3 − q−1
p .

Without loss of generality, we assume that A makes qoff off-line signing
queries, and makes q − 1 on-line signing queries on messages {mi}i∈{1,...,q−1}
where q − 1 ≤ qoff. Let {(σi, ri, wi)}i∈{1,...,q−1} be the q − 1 full signatures re-
turned by the signing oracle. At the end of A’s attack game, A outputs a valid
forgery (σ∗, r∗, w∗) on a new message m∗ with probability at least ε. We can see
one of the following cases, which cover all types of successful attacks of A, must
hold with probability at least ε/3:

Case 1: hm∗Y r∗Zw∗ 6= hmiY riZwi for all i ∈ {1, . . . , q − 1}.
Case 2: hm∗Y r∗Zw∗ = hmiY riZwi for some i ∈ {1, . . . , q − 1}, and r∗ 6= ri.
Case 3: hm∗Y r∗Zw∗ = hmiY riZwi for some i ∈ {1, . . . , q − 1}, and r∗ = ri, but

w∗ 6= wi.

Let G be a group of prime order p. Let g be a generator of G. Algorithm B is
given a q-SDH problem instance (g, gτ , g(τ2), . . . , g(τq)). To solve this problem
instance, B selects a list of elements c1, . . . , cq−1 ∈R Zp. We may assume ci +
τ 6= 0 for all i ∈ {1, . . . , q − 1}, or else B has already obtained τ and thus
the q-SDH problem is solved. Next, B feeds Algorithm Γ in Lemma 1 with
inputs descr(G), (g, gτ , g(τ2), . . . , g(τq)), (c1, . . . , cq−1) to get an algorithm ∆ and
(h, u, s1, . . . , sq−1) ∈ (G\{1})q+1. Note that as described in Lemma 1, u = hτ

and si = h1/(τ+ci). Algorithm B computes v = e(h, h) and proceeds for each
above case respectively as follows.

[CASE 1.]
Setup: Algorithm B selects y, z ∈R Z∗p and sends to A a public key (h,X, Y, Z, v)

where X is set to u, Y is set to hy, and Z is set to hz.
Simulating the Signing Oracle (Off-line): Upon the i-th query, if 1 ≤ i ≤

q−1, B returns σi = si as the i-th off-line signature token; else if q ≤ i ≤ qoff,
B just returns a random element in G\{1}.

Simulating the Signing Oracle (On-line): Upon the i-th(1 ≤ i ≤ q − 1)
query input mi, B selects ri ∈R Zp, sets wi = (ci − mi − yri)z−1 mod p,
and outputs (ri, wi) as the i-th online signature token. It can be verified that
(σi, ri, wi) is a valid signature on the message mi.

Output: The simulated off-line/on-line singing oracles are identical to the real
ones for A. If Algorithm A outputs a valid forgery (m∗, σ∗, r∗, w∗) satisfying
the condition in Case 1, then we get a new solution (c∗, σ∗) for the 1-SDH
problem instance (h, hτ ) where c∗

def= m∗ + yr∗ + zw∗. This is because from
the verification equation we can get σ∗ = h1/(τ+c∗) and from hm∗Y r∗Zw∗ 6=
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hmiY riZwi for all i we can get c∗ 6= ci for all i. From Lemma 1, the original
q-SDH problem instance can be solved in polynomial time by Algorithm ∆.
Therefore if Case 1 occurs with probability at least ε/3, B can successfully
solve the original q-SDH problem instance with the same probability.

[CASE 2.]
Setup: Algorithm B selects x, z ∈R Z∗p and sends to A a public key (h,X, Y, Z, v)

where X is set to hx, Y is set to u, and Z is set to hz.
Simulating the Signing Oracle (Off-line): Upon the i-th query, if 1 ≤ i ≤

q−1, B selects ri ∈R Z∗p, and returns σi = (si)
1
ri as the i-th off-line signature

token; else if q ≤ i ≤ qoff, B just returns a random element in G\{1}.
Simulating the Signing Oracle (On-line): Upon the i-th(1 ≤ i ≤ q − 1)

query input mi, B sets wi = (ciri−x−mi)z−1 mod p, and outputs (ri, wi)
as the i-th online signature token. It can be verified that (σi, ri, wi) is a valid
signature on the message mi.

Output: From A’s view, the simulated oracles are indistinguishable to the real
ones for A. In particular, the only difference is that in the simulation ri

is uniformly distributed in Z∗p whereas in the real world ri is uniformly
distributed in Zp. Thus for one signature the statistical difference is 1/p and
for the whole game the difference is at most (q−1)/p. If Algorithm A outputs
a valid forgery (m∗, σ∗, r∗, w∗) satisfying the condition in Case 2, then for
some i, hm∗Y r∗Zw∗ = hmiY riZwi and r∗ 6= ri hold. Algorithm B can check
to find this i and get τ = dlhu = dlhY = [(wi−w∗)z+(mi−m∗)] ·(r∗−ri)−1

mod p. Therefore if Case 2 occurs with probability at least ε/3 in the real
world, B can successfully solve the original q-SDH problem instance with
probability at least ε/3− (q − 1)/p.

[CASE 3.]
Setup: Algorithm B selects x, y ∈R Z∗p and sends to A a public key (h,X, Y, Z, v)

where X is set to hx, Y is set to hy, and Z is set to u.
Simulating the Signing Oracle (Off-line): Upon the i-th query, if 1 ≤ i ≤

q−1, B selects wi ∈R Z∗p, and returns σi = (si)
1

wi as the i-th off-line signature
token; else if q ≤ i ≤ qoff, B just returns a random element in G\{1}.

Simulating the Signing Oracle (On-line): Upon the i-th(1 ≤ i ≤ q − 1)
query input mi, B sets ri = (ciwi−x−mi)y−1 mod p, and outputs (ri, wi)
as the i-th online signature token. It can be verified that (σi, ri, wi) is a valid
signature on the message mi.

Output: The argument is similar to that of Case 2. Finally Algorithm B can
get τ = dlhu = dlhZ = [(ri−r∗)y+(mi−m∗)] ·(w∗−wi)−1 mod p for some
i with probability at least ε/3 − (q − 1)/p, where (m∗, σ∗, r∗, w∗) is a valid
forgery output by A satisfying hm∗Y r∗Zw∗ = hmiY riZwi and w∗ 6= wi.

To sum up, there exists an algorithm B, which can break the original q-SDH
problem instance with probability at least ε/3− (q − 1)/p, in polynomial time.
This contradicts the q-SDH assumption and thus the theorem is proved. ¥

The purpose of introducing ′z′. Introducing an additional trapdoor z to
the BB’s original scheme enables the off-line signing oracle to generate the off-
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line signature token without knowing the message. Here f(m, r,w) def= hmY rZw

plays a role of “double-trapdoor hash function” in the scheme. Boneh and Boyen
mentioned in [3] that the exposure of the off-line tokens (and the unused state
informations) causes no harm if these tokens will not subsequently used to create
signatures. However we note that for a divisible on-line/off-line signature scheme,
an exposed (and unused) token also should can be used.

4.3 Comparison and Discussion

We compare our new scheme SDH-OS with some known divisible on-line/off-line
signature schemes in Table 2. To achieve the same security level, we assume the
parameter p in our new scheme and Schemes CMTW-OS, BCG-OS and Schnorr-
OS are all k-bit long. When using an elliptic curves with k = 160, our scheme
has the same security level with a 1024-bit key RSA signature [3]. In this case,
our scheme has a 160-bit off-line signature length and a 320-bit on-line signature
length. In comparison, we omit additions in the signing algorithm.

To our knowledge, the most efficient divisible on-line/off-line signature scheme
is Scheme Schnorr-OS. However, its security proof is based on the random oracle
model(ROM). Our scheme preserves all advantages of BB’s original scheme: its
security is proven in the standard model; its overall computational cost of sign-
ing is only one scalar exponentiation in the group G (i.e., roughly k squarings
and k/2 multiplications6 in G), which is comparable to Scheme Schnorr-OS and
is superior to other schemes whose security is proved in the standard model. Our
new scheme’s on-line signing requires only 1 modular multiplication in Zp. This
is very efficient and comparable to other three schemes.

5 An Application to On-line/Off-line Threshold
Signatures

Gennaro et al. [15] has proved that if a threshold signature scheme is simulat-
able, then its unforgeability can be reduced to the unforgeability of its underlying
signature scheme. This provides a way to simplify the security proof of a thresh-
old signature scheme. However, this result cannot be applied to on-line/off-line
threshold signature schemes. Here we provide an extended result in Theorem 2
for on-line/off-line threshold signature schemes. This theorem essentially states
that a sufficient condition for the security reduction of an on-line/off-line thresh-
old signature scheme is that the simulatability is “divisible”.

5.1 On-line/Off-line Threshold Signature Schemes

A threshold scheme [9, 10] is a distributed protocol which can tolerate a certain
number of faults. These faults, which may be communication failures or malicious
6 Suppose gi are in some group G, ei are all k-bit random values and t is small com-

pared to k. By using a variant of the “square-and-multiply” method for exponenti-
ation(Algorithm 14.88, [18]), computing ge1

1 ge2
2 . . . get

t requires roughly k squarings
and (1− 1

2t )k multiplications in G.
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Schemes Signoff Signon
Ver

Signature Size
Off-line/
On-line

Assumptions

New Scheme
k sq. in G

k
2

mult. in G
1 mult.
in Zp

k sq. in G
7
8
k mult. in G
1 pairing

k bits / 2k bits q-SDH

CMTW-OS
(Appendix A)

k sq. in G
3
4
k mult. in G
1 stand. sig

1 mult.
in Zp

k sq. in G
3
4
k mult. in G
1 stand. ver

1 stand.sig /
k bits

Sig,
one-more-
discrete-log

BCG-OS
(Appendix B)

k sq. in G
7
8
k mult. in G
1 stand. sig

1 mult.
in Zp

k sq. in G
7
8
k mult. in G
1 stand. ver

1 stand.sig /
2k bits

Sig,
discrete log

Schnorr-OS
(Appendix C)

k sq. in G
k
2

mult. in G
1 mult.
in Zp

k sq. in G
3
4
k mult. in G k bits/ k bits

ROM,
one-more-
discrete-log

Table 2. Comparisons amongst divisible on-line/off-line signature schemes. The word
“stand.” refers to operations or signature length of the underlying standard signature
scheme. “Sig” in the assumption column means the security also depends on the se-
curity of the underlying standard signature scheme. Abbreviations used are: “sq.” for
squaring, and “mult.” for multiplication.

faults, are modeled as an adversary which controls players to halt or divert from
the protocol. In a formal definition[15], the ability of fault tolerance is called
robustness of a protocol.

Definition 7 (On-line/Off-line Threshold Signatures). Let P = {P1, P2,
. . . , Pn} be a set of n players. An on-line/off-line threshold signature scheme
(OT S) is a tuple of algorithms (T-KeyGen,T-Signoff ,T-Signon,Ver).

– (pk, sk, sk1, . . . , skn) ← T-KeyGen(1k). The threshold key generation algo-
rithm. It is a distributed PPT algorithm which on input a security parameter
k ∈ N, outputs a public/secret key pair (pk, sk) and key shares skj(j = 1, .., n)
of sk where sk is known to nobody and skj is only known to Pj ∈ P.

– (Σoff
i , sti,1, . . . , sti,n) ← T-Signoff(sk1, . . . , skn). The i-th execution of the off-

line signing algorithm. It is a distributed PPT algorithm which on input the
secret key shares skj(j = 1, .., n), outputs a secret state information sti,j for
each player Pj and an off-line signature token Σoff

i , which is known to all
players.

– Σon
i ← T-Signon(sk1, . . . , skn, sti,1, . . . , sti,n,mi). The i-th execution of the

on-line signing algorithm. It is a distributed PPT algorithm which on input
skj , sti,j of Pj and a message mi, outputs an on-line signature token Σon

i .
Here the sti,j of Pj is passed from the i-th execution of Algorithm T-Signoff .
The signature for mi is defined as Σi = (Σoff

i , Σon
i ).

– 0/1 ← Ver(pk, m,Σ). The verification algorithm. It is a PPT algorithm which
on input the public key pk, a message m and a signature Σ, outputs 0 or 1
for reject or accept respectively.

Remark 5. T-Signoff and T-Signon can be viewed as sub-algorithms of a complete
signing algorithm. For simplicity, we use the notation (Σoff, Σon) ← (T-Signoff ,
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T-Signon)(sk1, . . . , skn,m) to denote such a complete signing process: (Σoff, st1,
. . . , stn) ← Signoff(sk1, . . . , skn) and Σon ← Signon(sk1, . . . , skn, st1, . . . , stn,m).

The Adversary. We assume that an adversary can corrupt up to t of the n
players in the group. After a player is corrupted, all his incoming and outgo-
ing messages, together with his private state information, are monitored by the
adversary. All the information that the adversary sees in a protocol is called
the view of the adversary in that protocol. In addition to eavesdropping adver-
saries, an adversary can also be halting or malicious [14], which means that the
adversary may cause a corrupted player to halt or divert from the protocol. Ad-
versaries can also be categorized as static or adaptive [5], based on whether the
adversary chooses his victims before the attack begins or during it.
Robustness. Robustness of Scheme OT S means that the scheme will compute
a correct output even in the presence of halting or malicious faults. Namely,
even the inputs of corrupted players to the algorithm T-KeyGen, T-Signoff and
T-Signon are absent or wrong, a robust scheme OT S can still be successfully
executed. Robustness is important for a threshold scheme, however we only focus
on another important security notion called unforgeability, which is described as
follows.
EU-CMA. For an on-line/off-line threshold scheme OT S, existential unforge-
ability against adaptive chosen message attacks(EU-CMA) is defined in the fol-
lowing game. The adversary A, who corrupts up to t players, is allowed to make
queries to an off-line signing oracle T-Signoff(sk1, . . . , skn) and an on-line signing
oracle T-Signon(sk1, . . . , skn, st1, . . . , stn, ·) defined above. We assume that if A
makes the i-th on-line signature query then it has already made the i-th off-line
signature query. Let B be the set of currently corrupted players. The attack game
is as follows:

1. All players run T-KeyGen on input 1k to get (pk, sk, sk1, . . . , skn). Let ViewT-KeyGen
A

be A’s view in this phase, which includes pk, {skj |Pj ∈ B} and other infor-
mation such as all internal coins of players in B.

2. A is allowed to arouse T-Signoff(sk1, . . . , skn) and T-Signon(sk1, . . . , skn, st1,
. . . , stn, ·) polynomial times. In an execution of Algorithm T-Signon, Pj ’s se-
cret state information stj is automatically passed from the same round execu-
tion of T-Signoff , and the query message may depend on A’s previous obtained
views, i.e., the s-th message selected to query T-Signon can depend on all i-th
off-line/on-line signing view for i = 1, . . . , s− 1, the s-th off-line signing view
and the key generation view ViewT-KeyGen

A . At the end of this phase, A gets
different messages signed.

3. A outputs a forgery (m,Σ).

The adversary wins the game if the message m has never been queried to
the oracle T-Signon(sk1, . . . , skn, st1, . . . , stn, ·) and Ver(pk, m,Σ) = 1 holds. Let
AdvA,OT S be the advantage of the adversary A in breaking the signature scheme
OT S, i.e.,
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AdvA,OT S = Pr
[

Ver(pk, m,Σ) = 1 : (pk, sk, sk1, . . . , skn) ← T-KeyGen(1k);
(m,Σ) ← AT-Signoff(sk1,...,skn),T-Signon(sk1,...,skn,st1,...,stn,·)

]

where A has never requested m to the on-line signing oracle and the proba-
bility is taken over the internal coin tosses of the algorithm T-KeyGen, T-Signoff ,
T-Signon and A.

Definition 8 (EU-CMA). A scheme OT S is EU-CMA secure if for every
PPT adversary A, AdvA,OT S is negligible.

5.2 The Simulation Theorem

Intuitively, the simulatability of a threshold scheme means that an adversary
gains nothing useful except the public output while executing the algorithms in
the scheme. This property enables the security reduction from the unforgeability
of the threshold signature scheme to the unforgeability of its underlying signature
scheme[14, 15]. However for an on-line/off-line threshold signature scheme, the
definition of simulatability should be adapted to the situation where partial
signature exposure problem exists.

Definition 9 (Simulatability). An on-line/off-line threshold signature scheme
OT S = (T-KeyGen,T-Signoff ,T-Signon,Ver) is simulatable from a divisible on-
line/off-line signature scheme DOS = (KeyGen,Signoff ,Signon,VerDOS) if the
following properties hold for any PPT adversary A against OT S:

1. Consistent distribution.
• The key pair (pk, sk) generated by T-KeyGen(1k) has the same distribution

as the pair generated by KeyGen(1k).
• The signature (Σoff, Σon) generated by (T-Signoff ,T-Signon)(sk1, . . . , skn,m)

has the same distribution as the signature generated by (Signoff ,Signon)(sk, m)
where skj(j = 1, . . . , n) are secret shares of sk.

• Ver is the same as VerDOS .
2. The algorithm T-KeyGen is simulatable. That is, there exists a PPT simulator

SIM-T-KeyGen that, on input the public key pk generated by an execution of
KeyGen, simulates A’s view ViewT-KeyGen

A in executing Algorithm T-KeyGen
which generates pk as public key.

3. The threshold signing algorithm is simulatable.
Let (Σoff, Σon) ← (T-Signoff ,T-Signon)(sk1, . . . , skn,m) be an execution of
DOS’s signing algorithm.
• T-Signoff is simulatable. That is, there exists a PPT simulator SIM-T-Signoff

that, on input the public key pk, the off-line signature Σoff and the tran-
script of the execution of SIM-T-KeyGen (in particular the private informa-
tion that is given to A), simulates A’s off-line singing view ViewT-Signoff

A in
executing Algorithm T-Signoff which generates Σoff as the off-line signature
token.
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• T-Signon is simulatable. That is, there exists a PPT simulator SIM-T-Signon

that, on input m,Σon and the transcript of the executions of SIM-Key and
SIM-T-Signoff , simulates A’s on-line singing view ViewT-Signon

A in executing
Algorithm T-Signon which generates Σon as the on-line signature token on
the message m.

Theorem 2. An on-line/off-line threshold signature scheme OT S is EU-CMA
secure, provided that it is simulatable from a divisible on-line/off-line signature
scheme DOS which is EU-CMA secure.

Proof. (sketch). We prove this theorem by contradiction. Assume under the con-
ditions of the theorem there exists an algorithm A which breaks the EU-CMA
of OT S in polynomial time with non-negligible probability, then we construct
an algorithm F which breaks the EU-CMA of DOS.

Let DOS = (KeyGen, Signoff ,Signon,Ver) and OT S = (T-KeyGen,T-Signoff ,
T-Signon,Ver). To break the EU-CMA of DOS, F works as follows.
Setup: Suppose F ’s challenger runs KeyGen to get a public/private key pair

(pk, sk) of DOS and pk is sent to F . By the precondition, OT S is sim-
ulatable, so there exists a simulator SIM = (SIM-T-KeyGen,SIM-T-Signoff ,
SIM-T-Signon) which can simulate OT S’s key generation process and singing
process for any adversaries. F starts SIM-T-KeyGen with input pk to simulate
A’s view in Algorithm T-KeyGen.

Simulating the signing oracles for A:

• When A arouses T-Signoff , F first queries the oracle Signoff , to get an off-
line signature token Σoff. Next, F runs SIM-T-Signoff with input Σoff and
the transcript of the execution of SIM-T-KeyGen to simulate the off-line
singing view of A.

• When A arouses T-Signon to sign a message m, F submits the query
m to the oracle Signon, to get an on-line signature token Σon. Then, F
runs SIM-T-Signon with input m,Σon and previous execution transcript to
simulate A’s off-line signing view.

Output: The simulated view of A is indistinguishable from the real one. With
non-negligible probability, A outputs a valid forgery (m,Σ) for OT S. F
returns (m,Σ), which is also a valid forgery for DOS, and thus the theorem
is proved. ¥

Difference to the previous simulation theorem. The signing simulator for
the on-line/off-line threshold signature scheme is divided into two sub-algorithms
(SIM-T-Signoff ,SIM-T-Signon). This enables the simulator to generate an off-line
signing view for A before the message m is known. However, the simulator for
an ordinary threshold signing protocol cannot do this until the message and
its signature Σ = (Σoff, Σon) are both presented. Thus, in the revised simula-
tion theorem, the “divisibility” of the signing simulation enables the security
reduction from the unforgeability of OT S to the unforgeability of its underlying
signature scheme DOS.
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Theorem 2 also provides an approach to construct on-line/off-line threshold
signatures: given a divisible on-line/off-line signature scheme DOS, we construct
a scheme OT S, which is a threshold realization of DOS. If OT S is simulatable
in the sense of Definition 9, then OT S is an EU-CMA secure on-line/off-line
threshold signature scheme.

6 Conclusion and Discussions

We propose a new notion called divisible on-line/off-line signatures, in which
off-line signature tokens can be sent to others before the messages to be signed
are seen. We also propose an efficient construction, and prove its security under
the new definition without resorting to the random oracle model. Furthermore,
an application of the new notion to the on-line/off-line threshold signatures
is presented. It is shown that a sufficient condition for the security reduction
of an on-line/off-line threshold signature scheme is that it is simulatable from
a divisible on-line/off-line signature scheme. Below we end with some further
discussions.

1. The gap between the security models of an ordinary on-line/off-line signature
scheme and a divisible one. It seems unlikely that Shamir-Tauman’s gen-
eral paradigm or BB’s original scheme can be proven divisible, whilst these
schemes are secure in a common sense. So Intuition tells us there exists a gap
between the ordinary security model and the new one. However we cannot
present a substantial attack against these schemes under the new model to
illustrate this gap. This leaves us an open problem to find this potential gap.

2. More shorter on-line signature length. The main drawback of our divisible
scheme is that the on-line signature length is 2 log2 p, which is twice the
length of Scheme CMTW-OS or Schnorr-OS. Thus, it remains an unsolved
problem to find a divisible scheme whose security is proven in the standard
model and whose performance is comparable to Scheme Schnorr-OS.
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In appendices, we give elliptic curve analogues of existing divisible on-line/off-
line signature schemes in order to fairly compare them with our proposed scheme.
Suppose E is an elliptic curve over a finite field F. Let g be a point in E with
prime order p and let G be a group generated by g.

A. Crutchfield et al.’s Divisible On-line/Off-line Scheme
CMTW-OS

The on-line/off-line signature scheme CMTW-OS is extracted from [8]. In
[8], the authors construct an on-line/off-line threshold signature scheme which
is a threshold realization of this underlying scheme. Let S = (G,S,V) be an
ordinary signature scheme. The on-line/off-line signature scheme CMTW-OS =
(KeyGen,Signoff , Signon,Ver), where

– KeyGen. Choose x ∈R Zp, and let h = gx. Run the key generation algorithm
of S to obtain (pk, sk) which is public/private key pair for S. The public key
of OS is (E, p, g, h, pk), and the private key is (x, sk).

– Signoff . (The i-th run). Choose r,m ∈R Zp, and compute u = grhm. Use the
signing algorithm of S to obtain σ = Ssk(u). Store the state information r,m.
The off-line signature token is σ.

– Signon. (The i-th run, on a message m′ ∈ Zp). Retrieve m, r from the memory.
Compute r′ = r + (m−m′)x mod p. The on-line signature token is r′.

– Ver. (On a message-signature pair (m′, Σ) where Σ = (σ, r′)). Verify that
whether Vpk(gr′hm′

, σ) = 1.

Theorem 3. The scheme CMTW-OS is a divisible on-line/off-line signature
scheme which is EU-CMA secure, provided that the underlying signature scheme
S is existentially unforgeable against generic chosen message attacks and the
one-more-discrete-log assumption holds in G.

The proof of this theorem is omitted. Please refer to Theorem 2 of [8] for
details. 7

7 The proof in [8] reduces the security of the on-line/off-line scheme CMTW-OS to
the one-more-discrete-log assumption, or the collision resistance of a trapdoor hash
function, or the unforgeability of S. A small modification of this proof can simply
reduce the security to the one-more-discrete-log assumption or the unforgeability of
S.
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B. Bresson et al.’s Divisible On-line/Off-line Scheme
BCG-OS

The on-line/off-line signature scheme BCG-OS is extracted from [4]. In [4],
the authors construct an on-line/off-line threshold signature scheme which is
a threshold realization of this underlying scheme. Let S = (G,S,V) be an
ordinary signature scheme. The on-line/off-line signature scheme BCG-OS =
(KeyGen,Signoff ,Signon, Ver), where

– KeyGen. Choose x, y ∈R Z∗p, and let h1 = gx, h2 = gy. Run the key generation
algorithm of S to obtain (pk, sk) which is public/private key pair for S. The
public key is (E, p, g, h1, h2, pk), and the private key is (x, y, sk).

– Signoff . (The i-th run). Choose r, s, m ∈R Zp, and compute u = gmhr
1h

s
2. Use

the signing algorithm of S to obtain σ = Ssk(u). Store the state information
r, s, m. The off-line signature token is σ.

– Signon. (The i-th run, on a message m′). Retrieve r, s, m from the memory.
Choose r′ ∈R Zp and compute s′ = s+ y−1[(m−m′)+ (r− r′)x] mod p. The
on-line signature token is (r′, s′).

– Ver. (On a message-signature pair (m′, Σ) where Σ = (σ, r′, s′)). Verify that
whether Vpk(gm′

hr′
1 hs′

2 , σ) = 1.

Remark 6. To reduce the on-line signing cost, we can move the selection of r′

and computing (r−r′) ·x to the off-line phase. Thus, the on-line signing requires
only 1 modular multiplication in Zp.

Theorem 4. The scheme BCG-OS is a divisible on-line/off-line signature scheme
which is EU-CMA secure, provided that the underlying signature scheme S is ex-
istentially unforgeable against generic chosen message attacks and the discrete
logarithm assumption holds in G.

The proof of this theorem is also omitted. Please refer to Theorem 1 of [4]
for details.

C. Proving the Schnorr Signature Scheme [22] is Divisible

A variant of the Schnorr signature scheme can be naturally viewed as a divisi-
ble on-line/off-line signature scheme: Schnorr-OS = (KeyGen,Signoff ,Signon,Ver).

– KeyGen. Choose x ∈R Zp, and let h = gx. Let H be a hash function: H :
{0, 1}∗ → Zp. The public key is (E, p, g, h, H), and the private key is x.

– Signoff . (The i-th run). Choose r ∈R Zp, and compute u = gr. Store the state
information r. The off-line signature token is u.

– Signon. (The i-th run, on a message m). Retrieve r from the memory. Set
c = H(m‖u) and compute s = r − cx mod p. The on-line signature token is
s.

– Ver. (On a message-signature pair (Σ, m) where Σ = (u, s). Verify that
whether gshH(m‖u) = u.
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Remark 7. The signature token is defined as (u, s) ∈ G × Zp instead of (c, s) ∈
Zp × Zp. This is to decrease the on-line signature length because the value of c
can’t be computed in the off-line phase.

Theorem 5. The scheme Schnorr-OS is a divisible on-line/off-line signature
scheme which is EU-CMA secure in the random oracle model, provided that the
one-more-discrete-log assumption holds in G.

Proof. Assume there exists an Algorithm A which (t, qoff, qon, qh, ε) breaks the
unforgeability of Schnorr-OS in the random-oracle based game defined in Sec-
tion 3. Then we construct an Algorithm B which breaks the qon-DL problem in
polynomial time with probability ε′ ≥ ( ε

qh
− 1

p )2.
Let g be a point in E with prime order p. Let G be a group generated by

g. Algorithm B is given a qon-DL problem instance (descr(G), g, v1, . . . , vqon+1)
where descr(G) = (E, p). To find all the values of dlgvi, Algorithm B works as
follows:
Setup: Algorithm B sets h = vqon+1 and gives to A the public key (E, p, g, h, H)

where H is modeled as a random oracle defined in the following.
Simulating the hash oracle: Maintain a H-list of pairs, which is initialized to

empty. Upon a query input M ∈ {0, 1}∗, returns a random value c ∈ Zp if
M is not in the H-list. Then add (M, c) to the H-list.

Simulating the signing oracle (off-line): Upon the i-th query, return vi as
the off-line signature token.

Simulating the signing oracle (on-line): Upon the i-th query input mi,
Algorithm B makes query mi‖vi to the hash oracle to obtain an answer, say
ci. Next, Algorithm B makes query vih

−ci to the oracle DLg(·) to obtain
wi = dlg(vih

−ci) and returns wi as the answer for the query mi. B makes
at most qon queries to the oracle DLg(·) since A makes at most qon on-line
signing queries.

Rewinding: At the beginning of the game, Algorithm B randomly selects a value
d ∈ qh. Upon the d-th hash query, the simulated hash oracle returns a random
value c ∈ Zp as usual. If A successfully outputs a valid signature forgery on
a message, Algorithm B then resets A to the step where A has just sent
the d-th hash query. This time, the simulated hash oracle again randomly
selects a value, say c′, and returns it as the answer. Next, B continues the
game which runs the second instance of A, which has the same inputs and
internal coins with the first instance.

Output: Parse the d-th hash query as m‖t where t ∈ Zp. Algorithm B success-
fully ends the game if the following events occur:

1) The first instance ofA successfully outputs a valid signature forgery (t, s1)
for the message m where s1 is some value in Zp, and

2) The second instance of A successfully outputs a valid signature forgery
(t, s2) for the message m where s2 is some value in Zp, and

3) c 6= c′.

If the above events occur, we can conclude that gs1hc = gs2hc′ = t and
c 6= c′. Thus, B can output the solution of the qon-DL problem as follows:
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dlg(vqon+1) = dlg(h) = (s1 − s2)(c′ − c)−1 mod p.
dlg(vi) = wi + cidlg(vqon+1) mod p for i from 1 to qon.
Let’s estimate the probability that B successfully ends the game. By a stan-

dard argument similar to the reset lemma of [2], we get that B succeeds with
probability at least ( ε

qh
− 1

p )2. Thus, B successfully breaks qon-DL problem in
polynomial time with non-negligible probability. This contradicts the one-more-
discrete-log assumption and thus the theorem is proved. ¥


