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Abstract. We propose and analyze a multivariate encryption scheme
that uses odd characteristic and an embedding in its construction. This
system has a very simple core map F (X) = X2, allowing for efficient
decryption. We also discuss ways to make this decryption faster with
specific parameter choices. We give heuristic arguments along with ex-
perimental data to show that this scheme resists all known attacks.

1 Introduction

Multivariate public-key cryptosystems (MPKCs) are considered viable options
for post-quantum cryptography. This is because they are based on the problem of
solving a system of multivariate polynomial equations, a problem which seems
just as hard for a quantum computer to solve as any other computer [12,20].
There are a few MPKCs that are believed secure and practical. We propose and
analyze a new encryption scheme that is both efficient and secure.

One tool used in several systems is the “big field” idea. While the public keys
of MPKCs are polynomial maps kn → kn for some finite field k, some are con-
structed using maps over a “big field” K ∼= kn, using vector space isomorphisms
to go back and forth between the spaces. This approach is a two-edged sword in
the sense that the field structure of K can make decryption easier but can also
be utilized by attackers.

Until recently, the systems based on the “big field” idea (such as the original
MPKC C∗ proposed by Matsumoto and Imai, HFE proposed by Patarin, and
their many variants) had other commonalities. All used characteristic 2 fields,
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often k = F2, and the collection of plaintexts comprised all of K. Both of these
conventions have recently been called into question.

Odd-characteristic MPKCs have not been popular, presumably because char-
acteristic 2 is so fast and easy to implement. However, it now appears that even
characteristic has a major drawback. The field equations x2

i − xi = 0 allow
algebraic attacks to be much more successful, as will be discussed below. Re-
cent work shows that odd-characteristic systems can be much simpler than their
even-characteristic counterparts while still evading algebraic attacks [2,6].

As for using all of K, the idea of using a “projection” or embedding is not
new but has not held significant interest until recently. By using a K larger
than kn, there is hope that the field structure can still be helpful but no longer
troublesome. Our data, and that of others, suggests that this is in fact a good
idea.

The new system that we propose uses both of these ideas and comes to the
surprising conclusion that under specific circumstances, a variant of the original
Matsumoto-Imai system (which has been broken for more than 10 years) can be
viable. The main idea was also proposed by Patarin [20], but he dismissed it.
Also, at the time Patarin’s system was published, the powerful algebraic attack
tools F4 and F5 were not yet invented so he did not have to consider them.
The Square system we will describe avoids Patarin’s original attack and resists
algebraic attacks as well.

This paper is organized as follows. In Section 2, we discuss relevant back-
ground material. In Section 3 we describe the new system Square. In Section 4
we analyze the effectiveness of known attacks. In Section 5 we give our param-
eter suggestions, as well as discuss how the system can be made very fast (see
Table 1, [8]). We conclude the paper in Section 6.

Table 1. Speed of Square instances compared to other systems on a Core 2 Duo 2.4GHz

Scheme q n l PubKey PrvKey Encr Decr

Square-42 31 42 3 28.4 kB 1350 B 9.4 µs 9.6 µs

Square-51 31 51 3 49.6 kB 1944 B 13.6 µs 14.4 µs

NTRU 587 787 n/a 1.5 kB 1854 B 149.2 µs 251.5 µs

McEliece n/a n/a n/a 79.5 kB 137282 B 29.7 µs 444.1 µs

2 MPKCs and Relevant Attacks

2.1 C∗ and HFE

Among first MPKCs was an encryption scheme C∗ [16]. This system has since
been broken [17], but has inspired many new encryption and signature schemes.
One of these is HFE (Hidden Field Equations) [18], which can be seen as a
generalization of the Matsumoto-Imai idea. Attacks on either of these systems
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Fig. 1. The MI and HFE systems

or their variants could be relevant to the new system, so we will describe both
HFE and C∗ here.

Refer to Figure 1. In either system, the plaintext is a vector of length n over
k, a field of q elements where q is a power of 2. Since there is a field K of the
same size as kn, we can utilize a nonlinear core map F : K → K. In fact, the
public key is P = L2 ◦ φ ◦ F ◦ φ−1 ◦ L1, where L1 and L2 are linear maps and
φ is a vector space isomorphism K → kn. P is a collection of n polynomials
pi(x1, . . . , xn) in n variables. The decomposition, in particular L1 and L2, is the
private key.

In the case of C∗, F (X) = Xqθ+1 for an appropriate θ. In the case of HFE,
for some D

F (X) =
∑

0≤i<j<n
qi+qj≤D

aijX
qi+qj

+
∑

0≤i<n
qi≤D

biX
qi

+ c. (1)

2.2 Linearization Equations Attack

In the original attack on C∗, Patarin noticed that if Y = Xqθ+1, then XY qθ −
Xq2θ

Y = 0 [17]. This equation forces plaintext-ciphertext pairs from C∗ systems
to satisfy linearization equations

n∑

i,j=1

aijxiyj +
n∑

j=1

bjxj +
n∑

j=1

cjyj + d = 0,

where (y1, . . . , yn) = P (x1, . . . , xn). Such equations are extremely useful for an
attacker because given a ciphertext, the linearization equations yield linear equa-
tions satisfied by the plaintext. Also, linearization equations can be found easily
from the public key, so an attacker has access to them.

Diene et al showed that the space of linearization equations satisfied by a
C∗ public key has dimension at least n in most cases [4]. Furthermore Patarin
showed that for a given nonzero ciphertext, the space of linear equations satisfied
by the correspoding plaintext is at least n− gcd(n, θ) [17].

Note that in the original C∗ construction, θ = 0 cannot be chosen since X2

is a linear map when q = 2.
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2.3 Algebraic Attack

Algebraic attacks can be employed against any MPKC. Suppose that some-
one, who does not know the private key, wants to recover the plaintext from
a ciphertext (ỹ1, . . . , ỹn) ∈ kn. This attacker has access only to the public key
(p1, p2, . . . , pn) : kn → kn. The most straightforward way to attack is to solve
the system of equations

p1(x1, . . . , xn) − ỹ1 = 0
p2(x1, . . . , xn) − ỹ2 = 0

...
pn(x1, . . . , xn) − ỹn = 0.

(2)

Solving these equations directly, without the use of the internal structure of
the system, is known as the algebraic attack. Currently the most efficient al-
gebraic attacks are the Gröbner basis algorithms F4 [9] and F5 [10]. Another
algorithm called XL has also been widely discussed but F4 is seen to be more ef-
ficient [1], so we focused our energy on studying algebraic attacks via F4. Among
the best implementations of these algorithms is the F4 function of MAGMA [15],
which represents the state of the art in polynomial solving technology.

Gröbner basis attacks are very fast against the C∗ scheme, and also quite
effective against HFE as well [11].

2.4 SFlash-Style Attack

SFlash is a C∗− signature scheme. The system is constructed in the same way as
C∗, except that some number r of the public key polynomials are not published
[19]. SFlash was broken using properties of its differential. Recall that for a
function f the differential is

Df(a, x) = f(a+ x) − f(a) − f(x) + f(0).

In the case of the C∗ core map F (X) = Xqθ+1 for ξ, A, X ∈ K,

DF (ξA,X) +DF (A, ξX) = (ξ + ξqθ

)DF (A,X). (3)

This equation leads to conditions which allow us to identify which matrices
in Mn×n(k) correspond to multiplications in K. These matrices Nξ have the
property that for the C∗ public key P ,

P (Nξ(x1, . . . , xn)) = M(P (x1, . . . , xn))

for some linear map M . In other words, the Nξ mix up the public key polynomi-
als, allowing Dubois et al to complete the collection of public key polynomials
thus breaking the system [7].



256 C. Clough et al.

2.5 Kipnis-Shamir Style Attacks

The Kipnis-Shamir attack against HFE exploits the “big field” structure. It uses
the following facts, all found in [14]:

– LetFqn be thefieldof qn elements. IfG ∈ Fqn [X ] such that the q-Hamingweight
of all monomials is 2 (ie, G(X) =

∑
aijX

qi+qj

), then ∃G ∈ Mn×n(Fqn) such
that

G(X) =
(
X Xq · · · Xqn−1

)
G

⎛

⎜⎜⎜⎝

X
Xq

...
Xqn−1

⎞

⎟⎟⎟⎠ .

– If G is such a matrix for G, S is a linear map Fqn → Fqn , and F = S ◦ G,
then

F =
n∑

j=0

sjG∗j ,

where the sj are the coefficients of S and the G∗j are obtained from G via
permutations and Frobenius maps (x �→ xqj

for 0 ≤ j ≤ n− 1).
– If G is such a matrix for G, S is a linear map Fqn → Fqn , and F = G ◦ S,

then
F = WGWT ,

where W is obtained from the coefficients of S.

Kipnis and Shamir noted that in the case of HFE, by “lifting” the public key
to an extension L ∼= Fqn via some isomorphism ψ : L→ kn and considering the
quadratic part, we can find corresponding matrices whose rank must be no more
than D. Though L is not necessarily the K used to construct the public key, we
still have a decomposition P = ψ ◦S ◦F ◦T ◦ψ−1 where S and T are linear and
F is some HFE core map.

Using the facts above, Kipnis and Shamir were able to find such a decom-
position [14]. The success depends on solving the MinRank problem: Given a
collection of matrices, find a linear combination of them that has minimal rank.
In general, this problem is NP-complete [3].

3 Design of Square

Having seen what a multivariate encryption scheme is up against, we now de-
scribe a new system Square.

See Figure 2. Let k be a field of size q, where q ≡ 3 mod 4. Plaintexts will be
vectors in kn. Let K ∼= k[y]/〈g(y)〉 be a degree n + l extension of k, where l is
such that n+ l is odd. The public key will be built up from the following maps:

– ϕ : K → kn+l, the vector space isomorphism given by

an+ly
n+l−1 + · · · + a2y + a1 �→ (an+l, . . . , a1)
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K
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Fig. 2. The Square system

– F : K → K, given by F (X) = X2

– L1 : kn → kn+l, an injective affine map
– L2 : kn+l → kn+l, an invertible affine map.

From these we construct the public key

P = L2 ◦ ϕ ◦ F ◦ ϕ−1 ◦ L1.

P will be an (n+ l)-tuple of quadratic polynomials

P (x1, . . . , xn) =

⎛

⎜⎜⎜⎝

p1(x1, . . . , xn)
p2(x1, . . . , xn)

...
pn+l(x1, . . . , xn)

⎞

⎟⎟⎟⎠ .

This can be thought of as a C∗ system over odd characteristic with θ = 0 and
an embedding L1.

Encryption of a plaintext (m1, . . . ,mn) ∈ kn is obtained by computing cj =
pj(m1, . . . ,mn) for j = 1, . . . , n+ l.

Decryption of a ciphertext (c1, . . . , cn+l) = P (m1, . . . ,mn) ∈ kn+l is per-
formed as follows: first, let Y = ϕ−1 ◦ L−1

2 (c1, . . . , cn+l). Then solve X2 = Y .
By choosing q ≡ 3 mod 4 and n+ l odd, we ensure that |K| ≡ 3 mod 4. This
allows us to use the fact that

X = ±Y qn+l+1
4 . (4)

This gives two solutions. Since L1 is affine, in general only one of them will be
in the image of ϕ−1 ◦ L1. The preimage of this solution under ϕ−1 ◦ L1 will be
(m1 . . . ,mn).

This simple method to find a preimage under the core map is a major advan-
tage over traditional characteristic-2 HFE systems which require the decryptor
to solve a univariate equation of high degree (using Berlekamp’s algorithm or its
improvements). In fact, encryption and decryption are quite fast. See Table 2
for a summary of times for various choices of q and n. For all experimental data
in this paper, we used an Intel(R) Core(TM)2 2.40 GHz processor with 1.99 GB
of memory installed.
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Table 2. Encryption and decryption times, in seconds, for Square systems. 10 public
keys tested and 100 messages encrypted and decrypted per key.

q n l Average Encrypt Time Average Decrypt Time

31 20 3 0.00022 0.001527

31 32 3 0.00033 0.006781

31 34 3 0.000423 0.003651

43 20 3 0.000234 0.001783

43 34 3 0.000495 0.008135

4 Security Analysis

Let us now present our case for the security of this design. We will explain our
motivation and then dig into the specific reasons why each of the aforementioned
attacks does not work.

But first, we provide a more thorough comparison to the very similar system
proposed by Patarin [20]. His systemD∗ also uses a square core map, and Patarin
brokeD∗ himself. He did so by finding a way to recover “big field” multiplications
without having the big field. As we will see below in Section 4.4, the embedding
makes it very hard to recover the multiplicative structure of K. In particular,
Patarin’s attack on D∗ relies on the ability to find pairs of linear maps (C,D)
such that for all x1, x2 ∈ kn,

C(F (x1 + x2) − F (x1 − x2)) = F (D(x1) + x2) − F (D(x1) − x2).

When L1 is invertible, the collection of such pairs forms a vector space of di-
mension at least n (exactly n according to [20]) which is required for Patarin’s
attack. In our case, L1 is a map kn → kn+l and thus cannot be invertible.

4.1 Motivation for the Design

All of the ideas used in Square have been seen before; what makes this system
novel is that these ideas are combined in such a way that they work.

First, the use of odd characteristic was shown to be a good idea for thwarting
algebraic attacks in [6]. This seems to be because the attacker knows that a
plaintext (x1, . . . , xn) satisfies not only the public key equations (2) but also the
Fq field equations xq

i − xi = 0. When q is small, this additional information is
very useful, and feeding the field equations into MAGMA along with (2) allows
for more efficient solving. However, as discussed in [6], for larger q the field
equations do not simplify the algorithm and in fact F4 runs faster without them.

Secondly, the use of a low-degree core map was inspired by [2], where an odd-
characteristic signature scheme with low-degree core map was proposed. It was
natural to ask if this idea could be used for encryption as well. However, the
signature scheme in [2] uses a vinegar construction, which is not well-suited for
encrytion.
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This led to the third modification, that of an embedding. Such a tool has been
mentioned, but dismissed until recently when a reformulated version of the idea
showed promise [5].

Each of these modifications would be weak on their own, but we will make
the case below that combined, they are quite strong.

4.2 Linearization Equations Attack

Note that when θ = 0, the equation XY qθ −Xq2θ

Y = 0 that Patarin discovered
becomes simply XY = XY . So our system should not satisfy any linearization
equations other than the trivial one satisfied by any map. In other words, the
space of linearization equations should have dimension 0 rather than n. Since
the algebraic attack described in 2.3 detects linearization equations, the fact
that algebraic attacks are not particularly effective, as descibed below, is an
indication that this is in fact the case. To be sure, we did experiments to find
the dimension of the space of linearization equations. For each of the 2500 keys
we tested, the dimension of this space was 0.

4.3 Algebraic Attack

In order to test the system’s resistance to algebraic attacks, we performed the
following experiments: We generated a public key and used it to encrypt 50
messages. We then used MAGMA’s implementation of F4 to solve the equations
defined by the public key and ciphertext as in 2. We did this for two public keys
per choice of parameters q, n, and l. We found that the public key polynomials
behave similar to systems of the same size with random polynomials. A sampling
of our results are in Table 3.

Plotting this data reveals a clear exponential trend in both time and memory
usage as n increases. In fact, linear least-squares approximation on the log of
the data has a high correlation. See Figure 3. This trend leads us to believe that
n ≥ 33 is a good choice for a practical system.

Table 3. Average algebraic attack time in seconds and memory usage in MB. q = 31

n l sec MB

2 1 0.000 6

3 1 0.000 6

4 1 0.001 6

5 1 0.002 6

6 1 0.006 6

7 1 0.024 6

8 1 0.129 6

9 1 0.696 8

10 1 4.747 13

11 1 27.423 30

12 1 215.678 32

13 1 1330.657 325

n l sec. MB

3 2 0.000 6

4 2 0.001 6

5 2 0.001 6

6 2 0.003 6

7 2 0.008 6

8 2 0.021 6

9 2 0.165 7

10 2 0.818 9

11 2 3.137 14

12 2 17.294 30

13 2 83.516 76

14 2 431.894 262

n l sec MB

4 3 0.000 6

5 3 0.001 6

6 3 0.003 6

7 3 0.007 6

8 3 0.019 6

9 3 0.115 7

10 3 0.406 8

11 3 2.223 12

12 3 15.924 26

13 3 83.433 68

14 3 206.602 137

15 3 2218.500 632
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Fig. 3. Algebraic attack for q=31, l = 3, varying n

To inform our choice of q, we tested the effect of changing q while fixing n and
l. Our results can be found in Table 4.3 and Figure 4.3. These attacks were done
without using field equations xq

i −xi = 0 for the reasons described in Section 4.1.
From this data we see that beyond small values of q, the size of the field does
not seem to impact F4’s running time or memory usage. This was expected in
light of the results of [2] and [6], and justifies the choice of q = 31 for a practical
system. Another reason to choose q = 31 is that such a choice makes good use
of memory, in the sense that the elements of k will require 5 bits to be stored
and any larger field will require more bits to store an element.

Table 4. Algebraic attack for n = 12, l = 3 and varying q

q Average F4 Memory
Running Time Usage

3 0.011 6

7 7.082 22

11 9.092 24

19 16.502 26

23 16.308 26

31 15.973 26

43 15.685 26

47 15.618 26

4.4 SFlash-Style Attack

Our public keys are maps kn → kn+l. We have constructed the public key P by
emebedding the space of plaintexts into a larger space, but one could imagine P
as coming from a larger C∗ scheme by setting the last l components of the input
to 0. Effectively, P is the public key for a (non-embedded) C∗ scheme with all
monomials involving xn+1, . . . , or xn+l deleted.

From this point of view, it is important to study the attack on SFlash since its
purpose was to recover missing coefficients of the public key (ie, the coefficients



Square, a New Multivariate Encryption Scheme 261

Fig. 4. Algebraic attack for n = 12, l = 3 and varying q

of the deleted polynomials). Since both SFlash and Square stem from C∗, the
differential property (3) exploited by Dubois et al still holds.

While in the case of SFlash this property yields linear equations for the at-
tacker, in our case the property gives us quadratic conditions. In fact, the re-
sulting system of quadratic equations is larger than the system of public key
equations. It seemed unlikely that this attack would work. However to be sure,
we applied F4 to these systems of quadratic equations. We quickly realized that
the Gröbner basis attack finds no special properties of these systems and takes
as long as one might expect. In the “baby” case of q = 5, n = 2, l = 1, this
method generates 27 equations in 30 variables which were beyond the abilities
of our computer to solve. It stands to reason that with realistic parameters such
as q = 31, n = 34, l = 3 these equations will pose no threat.

4.5 Kipnis-Shamir Style Attacks

The attack that Kipnis and Shamir used against HFE depends on finding a
combination of matrices derived from the public key which has minimal rank. In
our case, we may use the same idea as for the SFlash-style attack and consider the
public key as a piece of a C∗ public key of n+l variables. In this setting, the rank
of the analogous combination of matrices will be 1. As in Kipnis and Shamir’s
paper [14], we could try to determine the proper combination by finding a basis
of the null space of these matrices. The difference between the two systems is that
in HFE this yields quadratic equations, while in Square the “missing” coefficients
cause the equations to be cubic. One could reduce to quadratic equations, but
not without using additional variables.

The HFE attackers claimed that the MinRank problem could be solved in the
specific circumstances of HFE [14]. Since that time, doubt has been cast over
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the original efficiency claims [13]. We tested this attack in the Square case and
found that even with the “baby” case of q = 5, n = 2, l = 1, the system that
arises from this attack involves 18 cubic equations in 14 variables and solving it
exceeded the memory of our computer. We also tried using 2×2 minors as a way
to generate equations from the rank condition, but this yields quartic equations
with a savings of only 2 variables. This method also exceeded the memory of
our computer with q = 5, n = 2, l = 1. Considering this, it is not plausible that
such an attack would be dangerous for realistic parameter choices.

5 Parameter Suggestions and Implementations

Based on the security analysis above, an Square system with the following pa-
rameter choices will be viable:

Square-34
– q = 31
– n = 34
– l = 3
– Average encryption time: 0.000423 seconds
– Average decryption time: 0.003651 seconds
– Public key size: 15 KB
– Best known attack: > 280 computations.

A system with these parameters will be secure and have relatively fast decryption
using the power forumla mentioned in Section 3. Of course, these numbers are
very conservative. If we are concerned for speed and not so much for portability,
there are ways to get the implementation much faster.

Square Roots. Since we are always dealing with a pre-determined field, pre-
computation is not a problem. If (field size) − 1 = 2a × (odd number o),
taking square roots is always possible via raising to the power of o−1

2 using
a pre-computed table with 2a elements (the Tonelli-Shanks method [21]).

Consider the case n = 51, l = 3. Since n+ l = 54 is even, during decryp-

tion we cannot use the formula X = ±Y qn+l+1
4 as in the Square-34 case.

However, via raising to a power of 1
128 (3154−65), we see that square roots in

1 (mod 4) and 3 (mod 4) field sizes does not differ much, since the number
of “total multiplications” does not increase much (at most 1.5× in all our
experiments).

Choice of Field. We should choose a field with a “good” irreducible polyno-
mial. For example, for k = F31, only certain (xh − α) can be irreducible
which makes things very fast. Values of h above 34 that is of interest to us
here are 45 and 54. and in fact F3145 ∼= k[x]/(x45−3), F3154 ∼= k[x]/(x54−3).
Which in and of itself is very simple. But there is a further trick as in the
following:
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Tower Fields. Tower fields are very common in MPKCs of characteristic two.
Here we may use also this trick and use

F3115 ∼= k[t]/(t15 − 3), F3145 ∼= F3115 [x]/(x3 − t); or
F3118 ∼= k[t]/(t18 − 3), F3154 ∼= F3118 [x]/(x3 − t).

Other Techniques. We should delay modulo operations by checking for num-
ber sizes appropriately and do not do a modulo-q for as long as we can help
it. We should also write the relevant routines in assembly.

Usually the multiplication in an extension of this size would be unwieldy, but due
to the tricks mentioned above, “big field” operations have a low computational
cost. Our tests show that we can achieve a hundred-fold speed increase.

Hence, we propose alternate parameter choices which can be made even faster
than the Square described above as in Tab. 1.

6 Conclusion

In this paper we analyzed a new multivariate encryption scheme that has great
promise. In a sense, Square continues the bloodline of the original C∗ scheme
but our arguments and results above suggest that our system avoids the pitfalls
of its predecessors. We showed, via experimental data when possible, that at-
tacks against similar systems are not effective against a reasonably-sized Square
system.

We gave parameter choices for a secure system Square-34. We also proposed
larger but even more efficient implementations Square-45 and Square-54. Part of
our future work will be optimizations of Square systems with other parameters.
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