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Abstract. This paper proposes an efficient solution with high accuracy
to the problem of privacy-preserving clustering. This problem has been
studied mainly using two approaches: data perturbation and secure mul-
tiparty computation. In our research, we focus on the data perturbation
approach, and propose an algorithm of linear time complexity based on 1-
d clustering to perturb the data. Performance study on real datasets from
the UCI machine learning repository shows that our approach reaches
better accuracy and hence lowers the distortion of clustering result than
previous approaches.

1 Introduction

Nowadays, as information accumulates rapidly, data mining - the technology of
discovering knowledge out of information, becomes more and more prevalent.
Clustering analysis is a commonly used data mining tool. It is a process of
grouping a set of physical or abstract objects into classes of similar objects [5].
Given a similarity measure, it tries to maximize the intra-cluster similarity as
well as minimize the inter-cluster similarity of data. K-means clustering is one
of the most famous clustering problems. The objective of k-means clustering is
to cluster a set of n objects into k partitions such that the average (Euclidean)
distance from objects to its assigned cluster center is minimized where k is
given by the user. K-means clustering has been applied in many applications
in real life, such as customer behavior analysis, biology research and pattern
recognition, etc.. Many of these applications are done over very large datasets,
for example, millions of transaction records. Besides, k-means clustering is shown
to be an NP-hard problem [4]. So, the heuristic algorithm proposed by Lloyd
[13] is usually used in real applications. The algorithm adopts the hill climbing
technique and returns a local optimum solution to the user.

The data used in the clustering process may contain sensitive information
of an individual. For example, the financial transaction records held by a bank.
Privacy issues are concerned on how the bank uses the information collected. The
data owner (the bank) should not let others (the general public) observe the data
(the clients’ transaction records). On the other hand, there are many situations
that there are other parties involved in clustering analysis. First, consider the



situation that a law enforcement agency needs to investigate people’s financial
transactions which are divided between different financial institutions, e.g. banks
and credit card companies. These institutions cooperate together to compute a
global k-means clustering. The database in one financial institution should not
be revealed to others. Consider another situation: as the development in cloud
computing introduces the idea of software as a service (SaaS), a data owner can
outsource the clustering task to a service provider in order to gain the benefits
such as cost relief and payment on consumed resources only. The data owner
sends his data to the service provider and executes an application at service
provider. Since the service provider is a third party, it is not trusted. Privacy of
individuals should be protected against the service provider. So, there is a need
in studying privacy-preserving clustering problem in which the clustering result
is found without accessing the original data.

Some algorithms have been proposed to address the privacy-preserving clus-
tering problem. We describe two main approaches as follows:

1. Secure multiparty computation (SMC) approach: this approach addresses
the privacy-preserving clustering problem in the multiparty case [18, 8]. A
number of data owners, each of them owns a database, cooperate together
to compute global clustering result. The result is computed through certain
rounds of complex communications among the data owners.

2. Perturbation approach: the data owner generates a perturbed database from
the original database by adding noise to it [15, 6, 11]. The perturbed database
can be accessed by any other parties. Hence, one can collect the perturbed
databases he want to perform clustering on and performs data mining on his
own.

 
Original data Perturbed data 

(Additive perturbation) 
Perturbed data 
(Our method) 

Fig. 1. An example illustrating the distortion of clustering result. The leftmost graph
represents the clustering result on the original dataset. The clusters are represented
in different colors. The graph in the center represents the disturbed points by using
additive noise perturbation. The rightmost graph represents the disturbed points using
our method.

Although SMC approach provides accurate result and is provably secure,
it cannot be applied to the general case of privacy- preserving clustering, for
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example the outsourcing scenario. In addition, there are considerable communi-
cation overheads in the computation. So, we adopt the perturbation approach
that can be applied in general case of privacy-preserving clustering and we can
use existing algorithms for k-means clustering to compute the clusters. However,
current perturbation approaches on privacy-preserving clustering are either in-
secure against a practical attacker [10] or destructive to the clustering result.
Most of current studies focus on protecting the privacy of the data and do not
consider the distortion to the mining result in the generation of noises. Figure
1 shows the distortion introduced to the clustering result by an existing pertur-
bation method [6] and that by our method. If nosies are not added carefully,
the noises can easily disturb the clustering result. In addition, a secure addi-
tive perturbation takes O(nd2) time, where n is the number of objects in the
database, d is the number of dimensions of each object. It is a considerable high
cost especially when the number of dimensions is high.

In this paper, we study the problem of privacy-preserving clustering and
give a secure and efficient perturbation method in which the clustering result is
accurate.

Contributions of this paper: we study the problem of privacy-preserving
clustering using the data perturbation approach. Our contributions include: (1)
we propose a new attack model to the distance-preserving perturbation and
hence show that it is not secure even the third party obtains the distances
between points from a black box oracle; (2) we propose a novel perturbation
method using 1-d clustering to perturb the data in database which is secure,
efficient and preserves accuracy of clustering result; (3) we give a theoretical
study on the cost and security of the proposed technique; (4) we evaluate the
proposed scheme with experiments on real datasets.

The rest of this paper is organized as follows. Section 2 mentions some related
work. Section 3 defines the problem of privacy-preserving clustering and states
the requirements on the solution. Then, we propose a new attack to distance-
preserving perturbations in section 4 and hence show that distances between
points cannot be revealed to attackers although distances alone do not reveal
the location of points. Section 5 introduces our solution to this problem, and
we perform experiments in Section 6 to compare the accuracy and efficiency of
our solution with previous approaches. Section 7 concludes the paper and gives
directions for future work.

2 Related Work

[15] first addressed the problem of privacy-preserving clustering. They proposed
geometric transformations, which includes shift, scaling and rotation, to disguise
the original data. The geometric transformations used in [15] except scaling can
be summarized as distance-preserving transformations. By distance-preserving
transformations, we mean that |x − y| = |T (x) − T (y)| for all x and y in the
dataset, where T denotes the transformation.
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Since all the pairwise distances are preserved, this kind of transformation
always preserves the accuracy of the clustering result. The privacy of distance-
preserving transformation has been studied by [10]. In algebra [2] this kind of
transformation is called rigid motion, and can be represented by T (x) = Mx+v,
where M is an orthogonal matrix and v is a vector. The known input-output
attack assumes that some of the original data records are leaked and thus the
attacker knows them. Besides, the attacker also has the released data, and knows
the correspondence of the leaked original data and the transformed data. So the
attacker’s task is to solve M and v using some linearly independent known input-
output points to set up linear regression equations. If v = 0, knowing d linearly
independent points is enough for the attacker to solve M thus recover the whole
original dataset. If v is not equal to 0, one more point is needed. This infers the
safety bound of distance-preserving transformation against regression attack is
not high.

[15] also proposed an additive random perturbation to improve the privacy
by adding normally or uniformly distributed noise to the sensitive numerical
attributes, which can be represented as yi = xi + ri. Using this additive pertur-
bation approach can raise the difficulty for the attacker to recover the original
data. However, it can largely distort the clustering result. Besides, it is suscep-
tible to data reconstruction methods such as PCA and Bayesian estimation [6],
which can filter out much of the noise if the data is highly correlated. When the
correlation of the data is high, the information of data concentrates in several
dimensions that have higher variances than others. If the additive noise is evenly
distributed in all dimensions, it can be largely filtered out if the attacker applies
PCA to reduce dimensions that has small variances, while the information of the
data is still approximately preserved. So [6] proposed a method to add noise for
better resistance against this eigen-analysis attack, using the same covariance for
the noise as that of the original data. However, since [6] mainly focused on the
privacy problem of data publishing, its method of perturbation did not consider
the need of accuracy in clustering. In other words, the clustering result can be
largely distorted. And we have conducted experiments to show this. Besides, the
calculation of a covariance matrix of the original data requires the time com-
plexity of O(nd2), where n is the cardinality of the dataset and d is the number
of dimensions. This is a considerable cost for high dimensional data.

Another kind of perturbation is the multiplicative perturbation, which is
based on the Johnson-Lindenstrauss lemma [9]: if data points in a high dimen-
sional space are projected onto a space of lower dimension, the distances between
the data points can be approximately preserved. Also, after the projection, high
dimensional data can not be recovered from low dimensional data because of
the loss of information. Thus projections can be applied to distance-based op-
erations such as privacy-preserving clustering. The best (in terms of accuracy)
and most commonly used dimension reduction technique is PCA. It can be used
to select the dimensions that have greater variances than others, and then the
data can be projected onto these dimensions. Its costs which include calculating
and decomposing the covariance matrix and matrix multiplication require a time
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complexity of O(nd2) + O(d3), which is not suitable for high dimensional data.
So a computationally simpler but less accurate dimension reduction method,
the random projection, was proposed [3]. This projection can be represented as
Y = XM , where X is the n∗d original dataset, M is a d∗ e randomized matrix,
e is the dimension after reduction. The elements of M are i.i.d. samples of a cer-
tain distribution, and Y is the n ∗ e projected dataset. This projection method
reduced the time complexity to be O(nde). [11] used this random projection to
perturb the original data for distributed privacy-preserving data mining.

[18] proposed a solution to the privacy-preserving clustering problem using
a different approach. Data are partitioned according to different attributes and
distributed to several parties. These parties together find the clustering result,
but do not share their original data with each other. The privacy of this ap-
proach is preserved using Yao’s framework of secure multiparty computation
[19]. Since all the computations are done through encryption and decryption, no
distortion of data happens, so the accuracy is preserved. There has been other
work [8] which partitions the data in a different way and uses the same secure
framework with [18]. This approach assumes several non-colluding parties to do
the clustering task, which may be difficult to find in realistic situation. Besides,
the bit communication cost among different parties in each iteration of k-Means
algorithm is O(nrk), where n is the number of data points, r is the number of
parties and k is the number of clusters, which is not low.

3 Problem definition

A data owner owns a database DB, which consists of n objects. Each object
is represented by a d-dimensional point. The distance between two points x =
(x1, x2, ... xd) and y =(y1, y2, ..., yd) is measured by Euclidean distance1,

i.e., |x − y| =
√∑d

i=1(xi − yi)2. The problem of k-means clustering is, given
k as input, to partition the n into k partitions: P1, P2, ..., Pk, such that the
intra-cluster variance is minimized. The intra-cluster variance is measured by∑k

i=1

∑
x∈Pi

(xi − µi)2, where µi is the cluster center of Pi and µi =
∑

x∈Pi
xi

|Pi| .
In privacy-preserving clustering, a third party data miner requires computing

k-means clustering onDB. Due to privacy of information, the data owner releases
a perturbed database DB′ to the data miner. DB′ is computed by perturbing
the original objects in DB. We model the perturbation as DB′ = {y | ∀x ∈
DB, y = T (x)}, where T represents the perturbation process2. Our objective in
this paper is to develop a transformation process T such that

1. T is efficient. The cost at the data owner side is low and should be lower
than the cost of performing clustering on his own. Otherwise, our technique
is not suitable in privacy preservation of outsourcing scenarios.

1 There are other distance measures used in the literature, e.g., Manhattan distance.
We focus to Euclidean distance in this paper because it is more popular in practice.

2 The perturbation function T can be irreversible and non-deterministic.
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2. T is secure. An attacker who obtains DB′ and some background information
on DB cannot recover DB.

3. T preserves the accuracy of the clustering result. The clustering result on
DB′ should be similar to that on DB.

4 Distance Based Attack

An ideal perturbation method is that we can preserve clustering results for any
datasets. The major part of clustering algorithms is to compute the distances
between points and compare the distances to partition the points. If the data
miner can compute the distances accurately, he can compute the correct mining
result. Otherwise, if the distances are disturbed by random noises, the correctness
of the mining result can not be ensured. So, it is an intuitive idea to explore the
feasibility of a perturbation scheme which the data miner can accurately compute
the distance between any two points3. However, in this section, we will show a
negative result that such perturbation scheme cannot be secure by proposing an
attack to it.

Theorem 1. A perturbation scheme T is insecure against a known input-
output attack given T allows an attacker to observe the distances between points
in the original space.

Proof. Suppose an attacker has retrieved the perturbed database DB′ and a
black box oracle G. G lets the attacker compute the distance between two points
x and y by |x − y| = G(x′, y′), where x′ (y′ resp.) is the perturbed point of x
(y resp.). In a known input-output attack, the attacker obtains a number of m
original points zi and the corresponding perturbed points z′i in the database. In
order to recover a victim point v′ in DB′ to v in DB, the attacker first computes
the distances between v and every known point zi. So, we can set up m quadratic
equations4: |v − zi| = G(v′, z′i). Each of the equation forms a d-hypersphere in
the original space and v lies on the intersection of the hyperspheres. In general,
if m ≥ d + 1, the intersection is in fact a point. So, the attacker can conclude
the original value of v. ut

We use an example to illustrate the proposed attack in 2-D space as shown in
figure 2. The attacker knows a set of three points A, B and C in the DB. He also
3 This scheme covers the distance-preserving transformation, but is not restricted to

it. For example, this perturbation scheme can also include encryption, with the help
of a trusted secure device[1]. The data owner can encrypt the data and then send it
to the miner along with the secure device, and the data miner then uses the secure
device to decrypt the data and calculate the pairwise distances in the process of
clustering.

4 Some previous work has also proposed scaling in perturbation which the distances
are not exactly preserved. In such case, we may replace G(v′, z′

i) by sG(v′, z′
i) in the

equation where s is the unknown scaling factor. In general, the attack can still recover
the points given the RHS of the equation is a polynomial of G(v′, z′

i), though the
attacker may need more known points for solving the increased number of unknowns.
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Circle with A as center, 
|AD| as radius

Fig. 2. An example illustrating the proposed attack. The attacker observes the original
value of the point D by knowing A, B, C and the distances |AD|, |BD|, |CD|.

knows the corresponding perturbed points A′, B′, and C ′ in DB′ respectively.
Suppose now he is trying to infer the original point D of a perturbed point D′

in DB′. He calculates the distance of D to every known point using G. So, he
gets |AD|, |BD|, |CD|. The attacker then draws three circles with A, B, C as
the centers and |AD|, |BD|, |CD| as the radii in the 2-D space. D must be on
the perimeter of each circle. Now there is only one intersection of the circles. So,
the attacker can conclude that the intersection in the example is D. Notice that
even the attacker knows two points (say, A, B) only in the example, he can infer
that D is one of the two intersections of the two circles. So, there is 1

2 chance
that the attacker obtains D by a random guess. This infers the safety bound of
such perturbation scheme that preserves the pairwise distances is low, and leads
us to develop a heuristic perturbation scheme in which distances between points
are distorted but the clustering result is almost preserved.

5 Perturbation Based on 1-d Clustering

5.1 The Measure of Distortion

Previous perturbation methods use additive noise and multiplicative noise to
improve the privacy. However, the additive noise can largely distort the clus-
tering result, since it does not take into account the pairwise distances of the
original data. The distortion of the clustering result can be measured by the
difference between the clustering results of the original data and the perturbed
data, and there are several metrics that have been proposed, such as Variation
of Information (VI), Mirkin Metric and Van Dongen Metric. [14] studied these
metrics, and proved that VI is a sensible metric for comparing clusters. As a
metric of comparing the difference between two clustering results, VI is defined
as the formula5 below:

V I = −
∑k

i=1 pi log pi −
∑k

j=1 qj log qj − 2
∑k

i=1

∑k
j=1 tij log tij

piqj

Here pi (i ∈ [1, k]) is the proportion of the cluster i in one cluster result,
i.e. pi is the number of the elements in cluster i divided by the total number of
data points. And qj (j ∈ [1, k]) is the proportion of the cluster j in the other

5 The base of the logarithm in this formula is 2.
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cluster result. tij is the proportion of the same data points shared by pi and qj .
This metric has a range [0, 2logk], and higher value means greater difference.
Besides, since the k-means problem is NP-hard [4], much of the previous work
has adopted the iterative approach proposed by Lloyd [13]. The result of this
approach heavily depends on the initial choice of means, so the comparison of
clustering results between original data and perturbed data should be restricted,
for example, they should be with the same initial means set.

5.2 Our Solution

We observe that for multidimensional data, the clustering result of the whole
dataset will not change too much if we perturb the data in such a way that the
clustering of each single dimension is preserved and the range of each dimension
is also preserved. Having this observation, we propose a randomized perturbation
algorithm that is linear in time complexity and based on 1-d clustering.6

The details of the proposed algorithm is shown in Algorithm 1. We perform
this algorithm on each dimension of the dataset, firstly calculate the 1-d cluster-
ing result and then perturb the data based on that clustering result.

The distance between two neighboring clusters C1 and C2 are calculated using
the formula in [16]: C1.count ∗ C2.count ∗ (C1.mean − C2.mean)2/(C1.count +
C2.count).

5.3 The Analysis of Time Complexity

Step 1 requires 1 scan of the data. Step 2 and step 3 require 1 scan of the data.
After step 3, we get m clusters, and m is less than or equal to θ, the input
number of initial intervals which is proportional to the cardinality of elements.

As for step 4 and step 5, we first look at the distance calculation and merging
part. Since the number of clusters diminishes by a half after each round, the
total step of these operations is the sum of a geometric progression with the
proportion 1/2. So the total step of distance calculation is less than 2m − 1,
and the total step of merging is the half of that of distance calculation. Then
we look at the finding of median of the distances. This can be done using a
divide-and-conquer approach, and has been implemented in the STL of C++ as
the function nth element(), and its time complexity has been shown to be linear
[7].

Step 6 is designed to control the number of final clusters, and its time com-
plexity is O(µlogµ), where µ is the specified number of final clusters. The time
complexity of step 7 is equal to one scan of the elements.

In conclusion, the time complexity of the above algorithm is linear with re-
spect to the cardinality of data, i.e. O(n). When applied to the whole dataset,
the time complexity of this algorithm is O(nd), where n is the count of the data

6 We use a heuristic to compute the clusters on one dimension but not the classic
k-means clustering because we just need a approximate partitioning result and it is
too expensive to execute classic k-means algorithms.

8



Algorithm 1 Perturbation Based on 1-d Clustering
Input: the data array of each dimension, the number of initial intervals θ, the number
of final clusters µ.
Output: the perturbed data array.

PHASE 1, 1-d Clustering: partition the data on one dimension

1. Scan the data to find the maximum and minimum element of the data array.

2. Divide the range of data into θ intervals, with the length of each interval to be
(max −min)/θ, where max and min are the maximum and minimum elements of
the array, and θ is an input number given by the user. Generally, θ is proportional
to the data cardinality.

3. Project each data element to the intervals. Since elements are generally not evenly
distributed, some intervals will have elements in them and some will not. Elements
that belong to the same interval are treated as the initial clusters. The lower bound
and upper bound of each interval that contains elements are used as the lower bound
and upper bound of that cluster.

4. Calculate the distances between neighboring clusters.

5. Find the median of these distances, and merge the neighboring clusters that have
distances smaller than the median. After merging, use the lower bound of the lower
cluster as the new lower bound, and the upper bound of the upper cluster as the
new upper bound.

6. Repeat step 4 and step 5 until the number of clusters is smaller than 2µ. Then
execute step 4, sort the distances, merge the neighboring clusters that have the
smallest distance and continue merging until the number of clusters is µ.

PHASE 2, Random Perturbation: Generate a random point in the partition as the
perturbed point

7. For each cluster, calculate the distance between the lower bound and the mean
and the distance between the upper bound and the mean. Use the smaller one of
these two distances as the radius and the mean as the center to calculate a range.
For each element in that cluster, generate a uniformly distributed random number
in that range, and replace the original element with the random number.
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points and d is the dimension. So its scalability to large dataset with high dimen-
sion is good, compared with other approaches that require the time complexity
O(nd2), O(nd2) +O(d3) or O(nde).

5.4 The Analysis of This Perturbation against Existing Attack
Models

[6] proposed two attack models of the additive random perturbation. The first
one is the eigen-analysis attack based on PCA, which tries to filter out the
random noise in case that the original data is highly correlated. And the second
one is the Bayesian Attack which tries to maximize the probability P (X|Y ),
where Y is the disguised data and X is the reconstructed data.

The key point of the first attack model is that the attacker can calculate the
covariance matrix of the original data from the disguised data, which can be
represented as the formula below:

Cov(Xi +Ri, Xj +Rj) = Cov(Xi, Xj) + δ2, for i = j

Cov(Xi, Xj), for i 6= j

The assumption of applying this formula is that the attacker knows the dis-
tribution of the additive noise, i.e. he knows the variance or noise δ2. However,
in our approach, the original data is not additively perturbed, and the variance
of the noise can not be separately learnt by the attacker.

The Bayesian attack is based on the assumption that both the original data
and the randomized noise are subjected to multivariate normal distributions and
the attacker knows this. This assumption is quite strong [12]. In our approach
where the noise does not have such kind of distribution, this assumption can not
be satisfied.

As for the known input-output attack and the distance based attack, since
our approach changes the pairwise distances among data points, it can not be
regarded as the orthogonal transformation, so the attacker can not use linear
regression to recover the orthogonal transformation matrix, or use the pairwise
distances to infer the original data.

In conclusion, our perturbation approach has good resistance against the
above previous attack methods and our new attack model.

6 Experiments

In this section, we evaluate our proposed perturbation scheme in three aspects:
privacy preserved, accuracy of clustering result, and execution cost. We compare
the performance of our scheme against two existing approaches that are robust
to all existing attacks: the additive random noise using the same covariance ma-
trix as the original data [6], and the multiplicative perturbation, which includes
the projection based on PCA dimension reduction and the random projection
[11]. We denote the approaches as “Additive perturbation” and “Multiplicative
perturbation” respectively.
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There are different techniques in the multiplicative perturbation approach.
The dimension reduction based on PCA is the most accurate dimension reduc-
tion technique, since the principle components captures the maximum possible
variance [12]. In other words, PCA-based projection reaches the highest accu-
racy in the multiplicative perturbation approach. So we choose the PCA-based
projection as the representative multiplicative perturbation to compare the dis-
tortion of clustering result with other approaches. Besides, as we have described
in Section 2, the random projection outperforms PCA-based projection in time
complexity. So we choose random projection to be the representative multiplica-
tive perturbation when comparing the time complexity of different approaches.

6.1 Implementation details

For the additive perturbation approach, we first calculate the covariance matrix
of the original data, and then use the mvnrnd function of MATLAB to generate
the multivariate random noise which has the same covariance matrix as the
original data. There are no input parameters to this approach.

For the PCA-based projection for multiplicative perturbation, more noise
will be introduced if more dimensions are reduced, but it also causes a higher
distortion to the clustering result. We need to give the number of dimensions
to preserve as the input to the algorithm. We pick the input such that the
proportion of preserved variance is higher than 0.99.

For the random projection for multiplicative perturbation, the elements of
the randomized projection matrix is chosen from a standard normal distribution
N(0, 1). We use MATLAB to generate projection matrices of different numbers
of dimensions, and then project the original dataset using these matrices. The
algorithm requires the number of dimensions to preserve as the input. We will
try different numbers of dimensions in the experiment for comparisons.

For the perturbation based on 1-d clustering, the number of initial intervals
θ and the number of final clusters µ are the input to the algorithm. The number
of final clusters is a trade off between the accuracy and privacy: the more final
clusters in each dimension, the lower distortion can be reached, and the less
noise can be introduced into the original data. Here we choose µ for different
datasets in a way to make the accuracy of clustering result comparable with
other approaches. The number of initial intervals θ is also specified by the user,
and here we set the numbers to be half of the data cardinality for all the datasets.

6.2 Experiment Settings

We have implemented the algorithms using C++ and MATLAB. The version of
C++ compiler is gcc 3.4.2. All the experiments are performed on a PC with Intel
Core 2 Duo CPU E6750 2.66G and 2G RAM. The operating system is Windows
XP Professional Version 2002 SP2.
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6.3 Datasets

We use 4 real datasets from the UCI machine learning repository [17]: Wine,
Breast Cancer Wisconsin (Original), Statlog (Shuttle) and Musk (Version 2).
The details of the datasets are shown in the table.

Dataset Name Number of Records Dimensions Classes

Wine 178 13 3

Shuttle 58000 9 7

BCW 683 10 2

Musk 6598 166 2
Table 1. Datasets used in the experiment

We will evaluate the privacy preserved, and accuracy of clustering result of
all approaches on the Wine, Shuttle and BCW datasets. The Musk dataset has
a relatively high number of dimensions, so it is used to compare the execution
time in perturbing the data.

6.4 Measurements of performance

For each of the dataset, we perturb it using the three approaches: additive per-
turbation and multiplicative perturbation and our approach using 1-d clustering
perturbation. So, we obtain the a perturbed datasets for each of the approach.
Then, we perform k-means clustering algorithm by Lloyd [13] over the original
dataset and different perturbed datasets. Since the initial cluster centers may
affect the output of k-means clustering algorithm, we use the same initial centers
for all cases. The measurement of the approaches are defined as follows:

Privacy preserved Privacy is measured as the amount of difference between
the original dataset and the perturbed dataset [6]. We use the mean square error
(MSE) as the measure of difference between original and perturbed dataset,
which is the same as [6]. MSE can be calculated as MSE =

∑
x∈DB |T (x)− x|2,

where T (x) represents the perturbed point of x. If an approach has a smaller
MSE, the perturbed data is very similar to the original data. So, an attacker
can approximately acquire the sensitive information. More privacy is preserved
in the scheme that has a higher MSE.

Accuracy of clustering result We use Variation of Information (VI) as de-
scribed in section 5.1. A smaller VI represents less difference between the clus-
tering results on original dataset and that on the perturbed dataset. An ideal
situation is VI= 0 which means the clustering results are the same.

Execution cost We measure the total execution time of each of perturbation
approach in generating the perturbed dataset from the original dataset.
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6.5 Experiment Results on Privacy Preserved and Accuracy of
Clustering Result

The experiment results on the 3 datasets: Wine, BCW, Shuttle are shown in
table 2, table 3, table 4 respectively.

Parameters VI MSE

Multiplicative perturbation 1 dimension 0 14.5115

Addictive perturbation 0.0839841 16.5334

1-d Clustering Perturbation µ = 8*3, θ = 0.5*178 0 53.0283
Table 2. Experiment Results on Dataset: Wine

Parameters VI MSE

Multiplicative perturbation 1 dimension 0 7.06364

Addictive perturbation 1.708 4.00013e+010

1-d Clustering Perturbation µ = 3*2, θ = 0.5*683 0 2.06604e+009
Table 3. Experiment Results on Dataset: BCW

Parameters VI MSE

Multiplicative perturbation 4 dimension 1.36994 53.8315

Addictive perturbation 3.7063 6317.08

1-d Clustering Perturbation µ = 4*7, θ = 0.5*58000 0.990317 113.62
Table 4. Experiment Results on Dataset: Shuttle

In the experiments, our proposed algorithm outperforms both of the existing
approach except that MSE of additive perturbation is larger (preserves more
privacy) than our approach in BCW and Shuttle datasets. However, VI of ad-
dictive perturbation approach on these two datasets are extremely high for these
two datasets. Note that VI represents the accuracy of clustering result and is
bounded by 2logk. In BCW dataset, VI is bounded by 2log2 = 2. So, additive
perturbation gives nearly the worst mining result of clustering (1.708). In Shuttle
dataset, VI is bounded by 2log7 = 5.61. So, addictive perturbation gives a very
bad mining result too (3.7063). Similarly, VI of addictive perturbation is poor
in the Wine dataset. So, although addictive perturbation can preserve more pri-
vacy, the noises introduced are too large that it heavily damages the clustering
result. We remark addictive perturbation is not able to preserve the clustering
result and hence is not suitable in the problem of privacy-preserving clustering.

On the other hand, multiplicative perturbation has shown a comparable (a
little bit higher in average) VI compared to our approach. It is because the
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principle components with large variants are preserved in the multiplicative per-
turbation approach. Only the principle components with a little variance are fil-
tered. So, the perturbed dataset by multiplicative perturbation is in fact similar
to the original dataset. So, it has the smallest MSE among the three approaches
in all datasets. The privacy preserved by multiplicative perturbation is not as
high as the other two approaches.

6.6 Experiment Results on Execution Time

Parameters Time(s)

120 dimensions 2.828
80 dimensions 2.344

Multiplicative perturbation 40 dimensions 1.875
20 dimensions 1.626
10 dimensions 1.497

Additive perturbation 5.031

1-d Clustering Perturbation µ = 3*2, θ = 0.5*6598 1.341
Table 5. Experiment Results on Dataset: Musk

The experiment results of perturbation time complexity on the Musk dataset
is shown in table 5. It shows that our proposed approach is the fastest among
the three approaches. It is because we have the lowest time complexity which is
linear to the number of objects in the dataset and the number of dimensions. If
the number of dimension is increased, the difference in execution time will be
further widened. Multiplicative perturbation has a comparable execution time
when the number of dimensions preserved is reduced to a smaller value like 10. It
is because the time complexity of random projection technique is O(nde), where
e is the number of dimensions preserved. So, when e is 10, the performance
will be comparable to our proposed algorithm. However, as more dimensions are
reduced, more information is lost in the original dataset, which will result in
poorer clustering result. Note that the random projection itself is a less accurate
projection method than the projection based on PCA, and in the previous section
we have done experiments to show the accuracy of the PCA-based projection.

7 Conclusions and Future Work

In this paper we proposed a solution with high accuracy and low time com-
plexity to the problem of privacy-preserving clustering. Besides, we proposed a
new distance-based attack model to the distance-preserving perturbation, which
strengthened our motivation to find solutions using perturbations that do not
preserve pairwise distances. Previous approaches such as perturbation using ad-
ditive random noises can largely distort the clustering result. In order to improve
the accuracy, our approach takes into account the distribution of the original data
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by doing 1-d clustering on each dimension and then perturbs it using random
noise. Another drawback of previous approaches is the high time complexity,
especially when dealing with high dimensional data. Our approach is linear with
respect to both the cardinality and dimensionality, i.e. O(nd), thus its scalabil-
ity to large and high dimensional dataset is good. The performance study on
real datasets shows our approach reaches good accuracy and causes low time
overhead compared with previous approaches.

As future work, we plan to study the applicability of our approach to general
problems of data publishing, such as range queries and aggregate queries.
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